REVIEW

An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy

  • Joshua D. TOMPKINS ,
  • Arthur D. RIGGS
Expand
  • Department of Diabetes and Metabolic Disease Research, Beckman Research Institute/City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA

Received date: 15 Sep 2014

Accepted date: 22 Oct 2014

Published date: 14 Feb 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

As life expectancy rises, the prevalence of heart failure is steadily increasing, while donors for organ transplantation remain in short supply (Zwi-Dantsis and Gepstein, 2012). Indeed, myocardial infarction represents the foremost cause of death within industrialized nations (Henning, 2011) and further, approximately 1% of all newborns harbor a congenital heart defect. Although medical interventions allow>80% of those with cardiac defects to survive to adulthood, there are often extreme emotional and financial burdens that accompany such congenital anomalies, and many individuals will remain at a heightened risk for myocardial infarction throughout the remainder of their lives (Verheugt et al., 2010; Amianto et al., 2011). In this review, we will discuss the nature of the failing heart and strategies for repair from an epigenetic standpoint. Significant focus will reside on pluripotent-to-cardiomyocyte differentiation for cell replacement, epigenetic mechanisms of cardiomyocyte differentiation, epigenetic “memories,” and epigenetic control of cardiomyocyte cell fate toward translational utility.

Cite this article

Joshua D. TOMPKINS , Arthur D. RIGGS . An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Frontiers in Biology, 2015 , 10(1) : 11 -27 . DOI: 10.1007/s11515-014-1340-0

Compliance with ethics guidelines

Joshua D. Tompkins, PhD and Arthur D. Riggs, PhD declare they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
Ahmed W, Ali I S, Riaz M, Younas A, Sadeque A, Niazi A K, Niazi S H, Ali S H B, Azam M, Qamar R (2013). Association of ANRIL polymorphism (rs1333049:C>G) with myocardial infarction and its pharmacogenomic role in hypercholesterolemia. Gene, 515(2): 416–420

DOI PMID

2
Amianto F, Bergui G, Abbate-Daga G, Bellicanta A, Munno D, Fassino S (2011). Growing up with a congenital heart disease: neuro-cognitive, psychopathological and quality of life outcomes. Panminerva Med, 53(2): 109–127

PMID

3
Anderson D, Self T, Mellor I R, Goh G, Hill S J, Denning C (2007). Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther, 15(11): 2027–2036

DOI PMID

4
Antos C L, McKinsey T A, Dreitz M, Hollingsworth L M, Zhang C L, Schreiber K, Rindt H, Gorczynski R J, Olson E N (2003). Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem, 278(31): 28930–28937

DOI PMID

5
Arya G, Maitra A, Grigoryev S A (2010). A structural perspective on the where, how, why, and what of nucleosome positioning. J Biomol Struct Dyn, 27(6): 803–820

DOI PMID

6
Awad S, Kunhi M, Little G H, Bai Y, An W, Bers D, Kedes L, Poizat C (2013). Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res, 41(16): 7656–7672

DOI PMID

7
Backs J, Song K, Bezprozvannaya S, Chang S, Olson E N (2006). CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest, 116(7): 1853–1864

DOI PMID

8
Bannister A J, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res, 21(3): 381–395

DOI PMID

9
Bar-Nur O, Russ H A, Efrat S, Benvenisty N (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9(1): 17–23

DOI PMID

10
Bergmann O, Bhardwaj R D, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz B A, Druid H, Jovinge S, Frisén J (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923): 98–102

DOI PMID

11
Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth R S, Avkiran M, Martin J L, Pogwizd S M, Bers D M (2008). Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res, 102(6): 695–702

DOI PMID

12
Brito-Martins M, Harding S E, Ali N N (2008). beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. Br J Pharmacol, 153(4): 751–759

DOI PMID

13
Brons I G, Smithers L E, Trotter M W, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes S M, Howlett S K, Clarkson A, Ahrlund-Richter L, Pedersen R A, Vallier L (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150): 191–195

DOI PMID

14
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966

DOI PMID

15
Cai Y, Geutjes E J, de Lint K, Roepman P, Bruurs L, Yu L R, Wang W, van Blijswijk J, Mohammad H, de Rink I, Bernards R, Baylin S B (2014). The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene, 33(17): 2157–2168

DOI PMID

16
Carpenter L, Carr C, Yang C T, Stuckey D J, Clarke K, Watt S M (2012). Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev, 21(6): 977–986

DOI PMID

17
Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007a). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol, 50(19): 1884–1893

DOI PMID

18
Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib I H, Gepstein L, Levenberg S (2007b). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res, 100(2): 263–272

DOI PMID

19
Chang S, McKinsey T A, Zhang C L, Richardson J A, Hill J A, Olson E N (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol, 24(19): 8467–8476

DOI PMID

20
Chen J, Huang Z P, Seok H Y, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu W T, Liao R, Wang D Z (2013). mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res, 112(12): 1557–1566

DOI PMID

21
Chen T, Dent S Y (2014). Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet, 15(2): 93–106

DOI PMID

22
Chimenti I, Gaetani R, Barile L, Forte E, Ionta V, Angelini F, Frati G, Messina E, Giacomello A (2012). Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol, 879: 327–338

DOI PMID

23
Choi S C, Yoon J, Shim W J, Ro Y M, Lim D S (2004). 5-azacytidine induces cardiac differentiation of P19 embryonic stem cells. Exp Mol Med, 36(6): 515–523

DOI PMID

24
Chong J J, Yang X, Don C W, Minami E, Liu Y W, Weyers J J, Mahoney W M, Van Biber B, Cook S M, Palpant N J, Gantz J A, Fugate J A, Muskheli V, Gough G M, Vogel K W, Astley C A, Hotchkiss C E, Baldessari A, Pabon L, Reinecke H, Gill E A, Nelson V, Kiem H P, Laflamme M A, Murry C E (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504): 273–277

DOI PMID

25
Chow M, Boheler K R, Li R A (2013a). Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther, 4(4): 97

DOI PMID

26
Chow M Z, Geng L, Kong C W, Keung W, Fung J C, Boheler K R, Li R A (2013b). Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev, 22(19): 2678–2690

DOI PMID

27
Cohen S M (2014). Everything old is new again: (linc)RNAs make proteins! EMBO J, 33(9): 937–938

DOI PMID

28
Cohn J N, Ferrari R, Sharpe N (2000). Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol, 35(3): 569–582

DOI PMID

29
Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis S E, Minchiotti G, Cobellis G (2014). Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res, 12(2): 323–337

DOI PMID

30
Dimmeler S, Zeiher A M, Schneider M D (2005). Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest, 115(3): 572–583

DOI PMID

31
Djebali S, Davis C A, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov G K, Khatun J, Williams B A, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid R F, Alioto T, Antoshechkin I, Baer M T, Bar N S, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood M J, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo O J, Park E, Persaud K, Preall J B, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L H, Shahab A, Skancke J, Suzuki A M, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis S E, Hannon G, Giddings M C, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras T R (2012). Landscape of transcription in human cells. Nature, 489(7414): 101–108

DOI PMID

32
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall T J, Delphin E S, Zhang C (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem, 284(43): 29514–29525

DOI PMID

33
Dubois N C, Craft A M, Sharma P, Elliott D A, Stanley E G, Elefanty A G, Gramolini A, Keller G (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol, 29(11): 1011–1018

DOI PMID

34
ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414): 57–74

DOI PMID

35
Fan D, Takawale A, Lee J, Kassiri Z (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair, 5(1): 15

DOI PMID

36
Felician G, Collesi C, Lusic M, Martinelli V, Ferro M D, Zentilin L, Zacchigna S, Giacca M (2014). Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res, 115(7): 636–649

DOI PMID

37
Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, Zheng Y G (2011). Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem, 286(23): 20323–20334

DOI PMID

38
Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella G D, Leosco D, Bonaduce D (2014). β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol, 4: 396

DOI PMID

39
Fisher C L, Fisher A G (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev, 21(2): 140–146

DOI PMID

40
Fu J D, Rushing S N, Lieu D K, Chan C W, Kong C W, Geng L, Wilson K D, Chiamvimonvat N, Boheler K R, Wu J C, Keller G, Hajjar R J, Li R A (2011). Distinct roles of microRNA-1 and-499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One, 6(11): e27417

DOI PMID

41
Fukushige S, Kondo E, Horii A (2008). Methyl-CpG targeted transcriptional activation allows re-expression of tumor suppressor genes in human cancer cells. Biochem Biophys Res Commun, 377(2): 600–605

DOI PMID

42
Gadue P, Huber T L, Paddison P J, Keller G M (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A, 103(45): 16806–16811

DOI PMID

43
Gafni O, Weinberger L, Mansour A A, Manor Y S, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna J H (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature, 504(7479): 282–286

DOI PMID

44
Gepstein L, Ding C, Rahmutula D, Wilson E E, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin J E (2010). In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells, 28(12): 2151–2161

DOI PMID

45
Gopalakrishnan S, Van Emburgh B O, Robertson K D (2008). DNA methylation in development and human disease. Mutat Res, 647(1-2): 30–38

DOI PMID

46
Graichen R, Xu X, Braam S R, Balakrishnan T, Norfiza S, Sieh S, Soo S Y, Tham S C, Mummery C, Colman A, Zweigerdt R, Davidson B P (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 76(4): 357–370

DOI PMID

47
Grote P, Herrmann B G (2013). The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol, 10(10): 1579–1585

DOI PMID

48
Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, Herrmann B G (2013). The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell, 24(2): 206–214

DOI PMID

49
Gu Y, Liu G H, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban C R, Zhang K, Izpisua Belmonte J C (2014). Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell, 5(1): 59–68

DOI PMID

50
Guo J U, Su Y, Shin J H, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming G L, Song H (2014). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, 17(2): 215–222

DOI PMID

51
Gupta M K, Rao T N (2014). Hearty miR-363 controls HAND1 in cardiac cell specification. Stem Cell Res Ther, 5(4): 89

DOI PMID

52
Haas J, Frese K S, Park Y J, Keller A, Vogel B, Lindroth A M, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Köhler D, Wolf N M, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz J H, Dösch A, Mereles D, Hardt S, Backs J, Hoheisel J D, Plass C, Katus H A, Meder B (2013). Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med, 5(3): 413–429

DOI PMID

53
Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier L S, Han D W, Glage S, Miller K, Fischer P, Schöler H R, Martin U (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4): 434–441

DOI PMID

54
Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T, Reppel M, Hescheler J, Müller-Ehmsen J (2007). Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation. Circ Res, 101(5): 484–492

DOI PMID

55
Han P, Li W, Lin C H, Yang J, Shang C, Nurnberg S T, Jin K K, Xu W, Lin C Y, Lin C J, Xiong Y, Chien H C, Zhou B, Ashley E, Bernstein D, Chen P S, Chen H S, Quertermous T, Chang C P (2014). A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 514(7520): 102–106

DOI PMID

56
Handy D E, Castro R, Loscalzo J (2011). Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation, 123(19): 2145–2156

DOI PMID

57
Hang C T, Yang J, Han P, Cheng H L, Shang C, Ashley E, Zhou B, Chang C P (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466(7302): 62–67

DOI PMID

58
Hanna J, Cheng A W, Saha K, Kim J, Lengner C J, Soldner F, Cassady J P, Muffat J, Carey B W, Jaenisch R (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A, 107(20): 9222–9227

DOI PMID

59
Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441): 384–388

DOI PMID

60
Hattori F, Chen H, Yamashita H, Tohyama S, Satoh Y S, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T, Shimoji K, Ohno Y, Egashira T, Kaneda R, Murata M, Hidaka K, Morisaki T, Sasaki E, Suzuki T, Sano M, Makino S, Oikawa S, Fukuda K (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods, 7(1): 61–66

DOI PMID

61
Henning R J (2011). Stem cells in cardiac repair. Future Cardiol, 7(1): 99–117

DOI PMID

62
Hirt M N, Boeddinghaus J, Mitchell A, Schaaf S, Börnchen C, Müller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther P K, Hansen A, Eschenhagen T (2014). Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol, 74: 151–161

DOI PMID

63
Ho L, Crabtree G R (2010). Chromatin remodelling during development. Nature, 463(7280): 474–484

DOI PMID

64
Hoekstra M, van der Lans C A, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel T J C, Biessen E A L (2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun, 394(3): 792–797

DOI PMID

65
Horrillo A, Pezzolla D, Fraga M F, Aguilera Y, Salguero-Aranda C, Tejedo J R, Martin F, Bedoya F J, Soria B, Hmadcha A (2013). Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis, 4(4): e570

DOI PMID

66
Horton R E, Millman J R, Colton C K, Auguste D T (2009). Engineering microenvironments for embryonic stem cell differentiation to cardiomyocytes. Regen Med, 4(5): 721–732

DOI PMID

67
Hough S R, Laslett A L, Grimmond S B, Kolle G, Pera M F (2009). A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One, 4(11): e7708

DOI PMID

68
Huang V, Li L C (2012). miRNA goes nuclear. RNA Biol, 9(3): 269–273

DOI PMID

69
Huang Z P, Chen J, Seok H Y, Zhang Z, Kataoka M, Hu X, Wang D Z (2013). MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res, 112(9): 1234–1243

DOI PMID

70
Ikeda S, Kong S W, Lu J, Bisping E, Zhang H, Allen P D, Golub T R, Pieske B, Pu W T (2007). Altered microRNA expression in human heart disease. Physiol Genomics, 31(3): 367–373

DOI PMID

71
Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet, 51(12): 1087–1099

DOI PMID

72
Jaguszewski M, Osipova J, Ghadri J R, Napp L C, Widera C, Franke J, Fijalkowski M, Nowak R, Fijalkowska M, Volkmann I, Katus H A, Wollert K C, Bauersachs J, Erne P, Lüscher T F, Thum T, Templin C (2014). A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J, 35(15): 999–1006

DOI PMID

73
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080

DOI PMID

74
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

DOI PMID

75
Karamboulas C, Swedani A, Ward C, Al-Madhoun A S, Wilton S, Boisvenue S, Ridgeway A G, Skerjanc I S (2006). HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci, 119(Pt 20): 4305–4314

DOI PMID

76
Kattman S J, Witty A D, Gagliardi M, Dubois N C, Niapour M, Hotta A, Ellis J, Keller G (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2): 228–240

DOI PMID

77
Kavi H H, Birchler J A (2009). Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin, 2(1): 15

DOI PMID

78
Kawamura T, Ono K, Morimoto T, Wada H, Hirai M, Hidaka K, Morisaki T, Heike T, Nakahata T, Kita T, Hasegawa K (2005). Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem, 280(20): 19682–19688

DOI PMID

79
Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 108(3): 407–414

DOI PMID

80
Kehat I, Molkentin J D (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25): 2727–2735

DOI PMID

81
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A, 105(42): 16230–16235

DOI PMID

82
Kim D H, Villeneuve L M, Morris K V, Rossi J J (2006). Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol, 13(9): 793–797

DOI PMID

83
Kim J K, Samaranayake M, Pradhan S (2009). Epigenetic mechanisms in mammals. Cell Mol Life Sci, 66(4): 596–612

DOI PMID

84
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M J, Ji H, Ehrlich L I R, Yabuuchi A, Takeuchi A, Cunniff K C, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon T J, Irizarry R A, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin S H, Weissman I L, Feinberg A P, Daley G Q (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313): 285–290

DOI PMID

85
Klattenhoff C A, Scheuermann J C, Surface L E, Bradley R K, Fields P A, Steinhauser M L, Ding H, Butty V L, Torrey L, Haas S, Abo R, Tabebordbar M, Lee R T, Burge C B, Boyer L A (2013). Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152(3): 570–583

DOI PMID

86
Kohli R M, Zhang Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472): 472–479

DOI PMID

87
Koitabashi N, Kass D A (2012). Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat Rev Cardiol, 9(3): 147–157

DOI PMID

88
Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, Manzke O, Bloch W, Bohlen H, Hescheler J, Fleischmann B K (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J, 19(6): 577–579

PMID

89
Krenning G, Zeisberg E M, Kalluri R (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol, 225(3): 631–637

DOI PMID

90
Kreutziger K L, Muskheli V, Johnson P, Braun K, Wight T N, Murry C E (2011). Developing vasculature and stroma in engineered human myocardium. Tissue Eng Part A, 17(9-10): 1219–1228

DOI PMID

91
Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T (2014). Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res, 114(10): 1569–1575

DOI PMID

92
Laflamme M A, Chen K Y, Naumova A V, Muskheli V, Fugate J A, Dupras S K, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill E A, Ueno S, Yuan C, Gold J, Murry C E (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 25(9): 1015–1024

DOI PMID

93
Laflamme M A, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry C E (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol, 167(3): 663–671

DOI PMID

94
Laflamme M A, Murry C E (2005). Regenerating the heart. Nat Biotechnol, 23(7): 845–856

DOI PMID

95
Laflamme M A, Murry C E (2011). Heart regeneration. Nature, 473(7347): 326–335

DOI PMID

96
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong C T, Low H M, Kin Sung K W, Rigoutsos I, Loring J, Wei C L (2010). Dynamic changes in the human methylome during differentiation. Genome Res, 20(3): 320–331

DOI PMID

97
Leri A, Kajstura J, Anversa P (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res, 109(8): 941–961

DOI PMID

98
Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2010). Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A, 16(1): 115–125

DOI PMID

99
Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, Chen P, Ma K, Zhou C (2013). MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS One, 8(9): e74504

DOI PMID

100
Lian X, Zhang J, Azarin S M, Zhu K, Hazeltine L B, Bao X, Hsiao C, Kamp T J, Palecek S P (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc, 8(1): 162–175

DOI PMID

101
Lin Z, Pu WT (2014). Strategies for cardiac regeneration and repair. Sci Transl Med, 6: 239rv231

102
Lindsley R C, Gill J G, Kyba M, Murphy T L, Murphy K M (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133(19): 3787–3796

DOI PMID

103
Lu T Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013). Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun, 4: 2307

DOI PMID

104
Luco R F, Allo M, Schor I E, Kornblihtt A R, Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16–26

DOI PMID

105
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260

DOI PMID

106
Majumdar G, Johnson I M, Kale S, Raghow R (2008). Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem, 312(1-2): 47–60

DOI PMID

107
Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart A F, Smith A, Stunnenberg H G (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3): 590–604

DOI PMID

108
Matkovich S J, Edwards J R, Grossenheider T C, de Guzman Strong C, Dorn G W 2nd (2014). Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A, 111(33): 12264–12269

DOI PMID

109
Nature Methods editorial (2012). Method of the Year 2011. Nat Methods, 9(1): 1

DOI PMID

110
Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K (2006). Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation, 113(5): 679–690

DOI PMID

111
Movassagh M, Choy M K, Goddard M, Bennett M R, Down T A, Foo R S (2010). Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One, 5(1): e8564

DOI PMID

112
Movassagh M, Choy M K, Knowles D A, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett M R, Foo R S Y (2011). Distinct epigenomic features in end-stage failing human hearts. Circulation, 124(22): 2411–2422

DOI PMID

113
Mujtaba S, Zeng L, Zhou M M (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 26(37): 5521–5527

DOI PMID

114
Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere A B, Passier R, Tertoolen L (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107(21): 2733–2740

DOI PMID

115
Naito A T, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A, 103(52): 19812–19817

DOI PMID

116
Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita J K (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5): 498–506

DOI PMID

117
Ng S Y, Wong C K, Tsang S Y (2010). Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol, 299(6): C1234–C1249

DOI PMID

118
Nie L, Wu H J, Hsu J M, Chang S S, Labaff A M, Li C W, Wang Y, Hsu J L, Hung M C (2012). Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res, 4(2): 127–150

PMID

119
Nissim L, Perli S D, Fridkin A, Perez-Pinera P, Lu T K (2014). Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell, 54(4): 698–710

DOI PMID

120
Nunes S S, Miklas J W, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme M A, Nanthakumar K, Gross G J, Backx P H, Keller G, Radisic M (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods, 10(8): 781–787

DOI PMID

121
Nussbaum J, Minami E, Laflamme M A, Virag J A, Ware C B, Masino A, Muskheli V, Pabon L, Reinecke H, Murry C E (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J, 21(7): 1345–1357

DOI PMID

122
Osafune K, Caron L, Borowiak M, Martinez R J, Fitz-Gerald C S, Sato Y, Cowan C A, Chien K R, Melton D A (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol, 26(3): 313–315

DOI PMID

123
Paige S L, Thomas S, Stoick-Cooper C L, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon R T, Stamatoyannopoulos J, Murry C E (2012). A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell, 151(1): 221–232

DOI PMID

124
Papait R, Condorelli G (2010). Epigenetics in heart failure. Ann N Y Acad Sci, 1188(1): 159–164

DOI PMID

125
Papait R, Kunderfranco P, Stirparo G G, Latronico M V, Condorelli G (2013). Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res, 6(6): 876–883

DOI PMID

126
Pascut F C, Goh H T, George V, Denning C, Notingher I (2011). Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells. J Biomed Opt, 16(4): 045002

DOI PMID

127
Passier R, van Laake L W, Mummery C L (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193): 322–329

DOI PMID

128
Porrello E R, Mahmoud A I, Simpson E, Hill J A, Richardson J A, Olson E N, Sadek H A (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020): 1078–1080

DOI PMID

129
Radisic M, Christman K L (2013). Materials science and tissue engineering: repairing the heart. Mayo Clin Proc, 88(8): 884–898

DOI PMID

130
Rai M, Walthall J M, Hu J, Hatzopoulos A K (2012). Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev, 21(1): 54–66

DOI PMID

131
Rajala K, Pekkanen-Mattila M, Aalto-Setälä K (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells Int, 2011: 383709

DOI PMID

132
Reinecke H, Zhang M, Bartosek T, Murry C E (1999). Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100(2): 193–202

DOI PMID

133
Reisman D, Glaros S, Thompson E A (2009). The SWI/SNF complex and cancer. Oncogene, 28(14): 1653–1668

DOI PMID

134
Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012). NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J, 31(3): 593–605

DOI PMID

135
Rizzi R, Di Pasquale E, Portararo P, Papait R, Cattaneo P, Latronico M V, Altomare C, Sala L, Zaza A, Hirsch E, Naldini L, Condorelli G, Bearzi C (2012). Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death Differ, 19(7): 1162–1174

DOI PMID

136
Robertson K D (2005). DNA methylation and human disease. Nat Rev Genet, 6(8): 597–610

DOI PMID

137
Robey T E, Saiget M K, Reinecke H, Murry C E (2008). Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol, 45(4): 567–581

DOI PMID

138
Rubart M, Pasumarthi K B, Nakajima H, Soonpaa M H, Nakajima H O, Field L J (2003). Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res, 92(11): 1217–1224

DOI PMID

139
Salmanidis M, Pillman K, Goodall G, Bracken C (2014). Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol, 54: 304–311

DOI PMID

140
Sanchez-Freire V, Lee A S, Hu S, Abilez O J, Liang P, Lan F, Huber B C, Ong S G, Hong W X, Huang M, Wu J C (2014). Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol, 64(5): 436–448

DOI PMID

141
Santillan D A, Theisler C M, Ryan A S, Popovic R, Stuart T, Zhou M M, Alkan S, Zeleznik-Le N J (2006). Bromodomain and histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer Res, 66(20): 10032–10039

DOI PMID

142
Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411

DOI PMID

143
Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008). Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol, 28(8): 2718–2731

DOI PMID

144
Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi M E (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 25(5): 1136–1144

DOI PMID

145
Segers V F, Lee R T (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181): 937–942

DOI PMID

146
Senyo S E, Steinhauser M L, Pizzimenti C L, Yang V K, Cai L, Wang M, Wu T D, Guerquin-Kern J L, Lechene C P, Lee R T (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432): 433–436

DOI PMID

147
Sera T (2009). Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev, 61(7-8): 513–526

DOI PMID

148
Shiba Y, Fernandes S, Zhu W Z, Filice D, Muskheli V, Kim J, Palpant N J, Gantz J, Moyes K W, Reinecke H, Van Biber B, Dardas T, Mignone J L, Izawa A, Hanna R, Viswanathan M, Gold J D, Kotlikoff M I, Sarvazyan N, Kay M W, Murry C E, Laflamme M A (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415): 322–325

DOI PMID

149
Shiba Y, Hauch K D, Laflamme M A (2009). Cardiac applications for human pluripotent stem cells. Curr Pharm Des, 15(24): 2791–2806

DOI PMID

150
Shilatifard A (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem, 75(1): 243–269

DOI PMID

151
Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol, 285(6): H2355–H2363

PMID

152
Sondermeijer B M, Bakker A, Halliani A, de Ronde M W, Marquart A A, Tijsen A J, Mulders T A, Kok M G M, Battjes S, Maiwald S, Sivapalaratnam S, Trip M D, Moerland P D, Meijers J C M, Creemers E E, Pinto-Sietsma S J (2011). Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One, 6(10): e25946

DOI PMID

153
Stein A B, Jones T A, Herron T J, Patel S R, Day S M, Noujaim S F, Milstein M L, Klos M, Furspan P B, Jalife J, Dressler G R (2011). Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest, 121(7): 2641–2650

DOI PMID

154
Stevens K R, Kreutziger K L, Dupras S K, Korte F S, Regnier M, Muskheli V, Nourse M B, Bendixen K, Reinecke H, Murry C E (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A, 106(39): 16568–16573

DOI PMID

155
Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen S E (2011). 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol, 12(6): R54

DOI PMID

156
Sucharov C, Bristow M R, Port J D (2008). miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol, 45(2): 185–192

DOI PMID

157
Sullivan G J, Bai Y, Fletcher J, Wilmut I (2010). Induced pluripotent stem cells: epigenetic memories and practical implications. Mol Hum Reprod, 16(12): 880–885

DOI PMID

158
Takaya T, Ono K, Kawamura T, Takanabe R, Kaichi S, Morimoto T, Wada H, Kita T, Shimatsu A, Hasegawa K (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ J, 73(8): 1492–1497

DOI PMID

159
Tanasijevic B, Dai B, Ezashi T, Livingston K, Roberts R M, Rasmussen T P (2009). Progressive accumulation of epigenetic heterogeneity during human ES cell culture. Epigenetics, 4(5): 330–338

DOI PMID

160
Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y, Egashira T, Seki T, Muraoka N, Yamakawa H, Ohgino Y, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Fukuda K (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12(1): 127–137

DOI PMID

161
Tompkins J D, Hall C, Chen V C, Li A X, Wu X, Hsu D, Couture L A, Riggs A D (2012). Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A, 109(31): 12544–12549

DOI PMID

162
Trivedi C M, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger P R, Wurst W, Ferrari V A, Abrams C S, Gruber P J, Epstein J A (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med, 13(3): 324–331

DOI PMID

163
Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992): 689–693

DOI PMID

164
Tulloch N L, Muskheli V, Razumova M V, Korte F S, Regnier M, Hauch K D, Pabon L, Reinecke H, Murry C E (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res, 109(1): 47–59

DOI PMID

165
Ueno S, Weidinger G, Osugi T, Kohn A D, Golob J L, Pabon L, Reinecke H, Moon R T, Murry C E (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A, 104(23): 9685–9690

DOI PMID

166
Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita J K (2011). Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One, 6(8): e23657

DOI PMID

167
Van Hoof D, Dormeyer W, Braam S R, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D, Heck A J R, Krijgsveld J, Mummery C L (2010). Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res, 9(3): 1610–1618

DOI PMID

168
van Rooij E, Sutherland L B, Liu N, Williams A H, McAnally J, Gerard R D, Richardson J A, Olson E N (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A, 103(48): 18255–18260

DOI PMID

169
Verheugt C L, Uiterwaal C S, van der Velde E T, Meijboom F J, Pieper P G, van Dijk A P, Vliegen H W, Grobbee D E, Mulder B J M (2010). Mortality in adult congenital heart disease. Eur Heart J, 31(10): 1220–1229

DOI PMID

170
Voigt P, LeRoy G, Drury W J 3rd, Zee B M, Son J, Beck D B, Young N L, Garcia B A, Reinberg D (2012). Asymmetrically modified nucleosomes. Cell, 151(1): 181–193

DOI PMID

171
Wamstad J A, Alexander J M, Truty R M, Shrikumar A, Li F, Eilertson K E, Ding H, Wylie J N, Pico A R, Capra J A, Erwin G, Kattman S J, Keller G M, Srivastava D, Levine S S, Pollard K S, Holloway A K, Boyer L A, Bruneau B G (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell, 151(1): 206–220

DOI PMID

172
Wang G K, Zhu J Q, Zhang J T, Li Q, Li Y, He J, Qin Y W, Jing Q (2010). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 31(6): 659–666

DOI PMID

173
Xu C, Police S, Rao N, Carpenter M K (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res, 91(6): 501–508

DOI PMID

174
Xu H, Yi B A, Wu H, Bock C, Gu H, Lui K O, Park J H C, Shao Y, Riley A K, Domian I J, Hu E, Willette R, Lepore J, Meissner A, Wang Z, Chien K R (2012). Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res, 22(1): 142–154

DOI PMID

175
Xue T, Cho H C, Akar F G, Tsang S Y, Jones S P, Marbán E, Tomaselli G F, Li R A (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111(1): 11–20

DOI PMID

176
Yang L, Soonpaa M H, Adler E D, Roepke T K, Kattman S J, Kennedy M, Henckaerts E, Bonham K, Abbott G W, Linden R M, Field L J, Keller G M (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194): 524–528

DOI PMID

177
Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. Elife, 3: e02046

DOI PMID

178
Yao C X, Wei Q X, Zhang Y Y, Wang W P, Xue L X, Yang F, Zhang S F, Xiong C J, Li W Y, Wei Z R, Zou Y, Zang M X (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biol, 10(4): 465–480

DOI PMID

179
Yi F F, Yang L, Li Y H, Su P X, Cai J, Yang X C (2009). Electrophysiological development of transplanted embryonic stem cell-derived cardiomyocytes in the hearts of syngeneic mice. Arch Med Res, 40(5): 339–344

DOI PMID

180
Yoon B S, Yoo S J, Lee J E, You S, Lee H T, Yoon H S (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74(4): 149–159

DOI PMID

181
Zaratiegui M, Irvine D V, Martienssen R A (2007). Noncoding RNAs and gene silencing. Cell, 128(4): 763–776

DOI PMID

182
Zhang C L, McKinsey T A, Chang S, Antos C L, Hill J A, Olson E N (2002a). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 110(4): 479–488

DOI PMID

183
Zhang J, Klos M, Wilson G F, Herman A M, Lian X, Raval K K, Barron M R, Hou L, Soerens A G, Yu J, Palecek S P, Lyons G E, Thomson J A, Herron T J, Jalife J, Kamp T J (2012a). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res, 111(9): 1125–1136

DOI PMID

184
Zhang L, Chen B, Zhao Y, Dubielecka P M, Wei L, Qin G J, Chin Y E, Wang Y, Zhao T C (2012b). Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem, 287(47): 39338–39348

DOI PMID

185
Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P, Cheng G, Zhao T C (2012c). Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther, 341(1): 285–293

DOI PMID

186
Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers D M, Maier L S, Olson E N, Brown J H (2007). CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem, 282(48): 35078–35087

DOI PMID

187
Zhang Y M, Hartzell C, Narlow M, Dudley S C Jr (2002). Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation, 106(10): 1294–1299

DOI PMID

188
Zhu S, Hu X, Han S, Yu Z, Peng Y, Zhu J, Liu X, Qian L, Zhu C, Li M, Song G, Guo X (2014). Differential expression profile of long non-coding RNAs during differentiation of cardiomyocytes. Int J Med Sci, 11(5): 500–507

DOI PMID

189
Zwi-Dantsis L, Gepstein L (2012). Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci, 69(19): 3285–3299

DOI PMID

Outlines

/