Phototropism in land plants: Molecules and mechanism from light perception to response

Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum

PDF(291 KB)
PDF(291 KB)
Front. Biol. ›› 2018, Vol. 13 ›› Issue (5) : 342-357. DOI: 10.1007/s11515-018-1518-y
REVIEW
REVIEW

Phototropism in land plants: Molecules and mechanism from light perception to response

Author information +
History +

Abstract

BACKGROUND: Phototropism is the response a plant exhibits when it is faced with a directional blue light stimulus. Though a seemingly simple differential cell elongation response within a responding tissue that results in organ curvature, phototropism is regulated through a complex set of signal perception and transduction events that move from the plasma membrane to the nucleus. In nature phototropism is one of several plant responses that have evolved to optimize photosynthesis and growth.

OBJECTIVE: In the present work we will review the state of the field with respect to the molecules and mechanisms associated with phototropism in land plants.

METHODS: A systematic literature search was done to identify relevant advances in the field. Though we tried to focus on literature within the past decade (1998-present), we have discussed and cited older literature where appropriate because of context or its significant impact to the present field. Several previous review articles are also cited where appropriate and readers should seek those out.

RESULTS: A total of 199 articles are cited that fulfill the criteria listed above.

CONCLUSIONS: Though important numerous and significant advances have been made in our understanding of the molecular, biochemical, cell biological and physiologic mechanisms underlying phototropism in land plants over the past decade, there are many remaining unanswered questions. The future is indeed bright for researchers in the field and we look forward to the next decade worth of discoveries.

Keywords

phototropism / phototropin / phytochrome / crytochrome / auxin / auxin response factor / phosphorylation / ubiquitination / transcriptional control / cell elongation / growth / non-phototropic hypocotyl 3 / NPH3/RPT2-like / protein kinase / calcium

Cite this article

Download citation ▾
Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response. Front. Biol., 2018, 13(5): 342‒357 https://doi.org/10.1007/s11515-018-1518-y

References

[1]
Aggarwal C, Banaś A K, Kasprowicz-Maluśki A, Borghetti C, Łabuz J, Dobrucki J, Gabryś H (2014). Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. J Exp Bot, 65(12): 3263–3276
CrossRef Pubmed Google scholar
[2]
Ahmad M, Cashmore A R (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 366(6451): 162–166
CrossRef Pubmed Google scholar
[3]
Ahmad M, Jarillo J A, Cashmore A R, Ahmad M, Jarillo J A, Cashmore A R (1998). Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell, 10(2): 197–207
Pubmed
[4]
Askinosie S (2016). Blue light- and ubiquitin-dependent influence on phototropin 1 abundance and movement at the plasma membrane. PhD Dissertation, University of Missouri-Columbia, pp. 161
[5]
Babourina O, Godfrey L, Voltchanskii K (2004). Changes in ion fluxes during phototropic bending of etiolated oat coleoptiles. Ann Bot, 94(1): 187–194
CrossRef Pubmed Google scholar
[6]
Baum G, Long J C, Jenkins G I, Trewavas A J (1999). Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA, 96(23): 13554–13559
CrossRef Pubmed Google scholar
[7]
Benjamins R, Ampudia C S, Hooykaas P J, Offringa R (2003). PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol, 132(3): 1623–1630
CrossRef Pubmed Google scholar
[8]
Bennett M J, Marchant A, Green H G, May S T, Sally P, Millner P A, Walker A R, Schulz B, Feldmann K A (1996). Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science, 273(5277), 948–950.
[9]
Bennett S R M, Alvarez J, Bossinger G, Smyth D R (1995). Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J, 8(4): 505–520
CrossRef Google scholar
[10]
Bennett T (2015). PIN proteins and the evolution of plant development. Trends Plant Sci, 20(8): 498–507
CrossRef Pubmed Google scholar
[11]
Blakeslee J J, Bandyopadhyay A, Peer W A, Makam S N, Murphy A S (2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol, 134(1): 28–31
CrossRef Pubmed Google scholar
[12]
Boer D R, Freire-Rios A, van den Berg W A M, Saaki T, Manfield I W, Kepinski S, López-Vidrieo I, Franco-Zorrilla J M, de Vries S C, Solano R, Weijers D, Coll M (2014). Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell, 156(3): 577–589
CrossRef Pubmed Google scholar
[13]
Bögre L, Okrész L, Henriques R, Anthony R G (2003). Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci, 8(9): 424–431
CrossRef Pubmed Google scholar
[14]
Borner G H H, Lilley K S, Stevens T J, Dupree P (2003). Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol, 132(2): 568–577
CrossRef Pubmed Google scholar
[15]
Briggs W R, Huala E (1999). Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol, 15(1): 33–62
CrossRef Pubmed Google scholar
[16]
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L (2010). Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 153(3): 1398–1412
CrossRef Pubmed Google scholar
[17]
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L O, van der Horst G T, Batschauer A, Ahmad M (2011). The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol, 62(1): 335–364
CrossRef Pubmed Google scholar
[18]
Chen L, Hellmann H (2013). Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant, 6(5): 1388–1404
CrossRef Pubmed Google scholar
[19]
Cheng Y, Qin G, Dai X, Zhao Y (2007). NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA, 104(47): 18825–18829
CrossRef Pubmed Google scholar
[20]
Cheng Y, Qin G, Dai X, Zhao Y (2008). NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA, 105(52): 21017–21022
CrossRef Pubmed Google scholar
[21]
Cho M, Lee S H, Cho H T (2007). P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell, 19(12): 3930–3943
CrossRef Pubmed Google scholar
[22]
Christensen S K, Dagenais N, Chory J, Weigel D (2000). Regulation of auxin response by the protein kinase PINOID. Cell, 100(4): 469–478
CrossRef Pubmed Google scholar
[23]
Christie J M, Reymond P, Powell G K, Bernasconi P, Raibekas A A, Liscum E, Briggs W R (1998). Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science, 282(5394): 1698–1701
CrossRef Pubmed Google scholar
[24]
Christie J M, Salomon M, Nozue K, Wada M, Briggs W R (1999). LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA, 96(15): 8779–8783
CrossRef Pubmed Google scholar
[25]
Christie J M, Suetsugu N, Sullivan S, Wada M (2018). Shining light on the function of NPH3/RPT2-Like proteins in phototropin signalling. Plant Physiol, 176(2): 1015–1024
CrossRef Pubmed Google scholar
[26]
Christie J M, Yang H, Richter G L, Sullivan S, Thomson C E, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee O R, Adamec J, Peer W A, Murphy A S (2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol, 9(6): e1001076
CrossRef Pubmed Google scholar
[27]
Clack T, Mathews S, Sharrock R A (1994). The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol, 25(3): 413–427
CrossRef Pubmed Google scholar
[28]
Crosson S, Rajagopal S, Moffat K (2003). The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry, 42(1): 2–10
CrossRef Pubmed Google scholar
[29]
Darwin C (1880). The Power of Movement in Plants. (London: John Murray Publishers).
[30]
de Carbonnel M, Davis P, Roelfsema M R G, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010). The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol, 152(3): 1391–1405
CrossRef Pubmed Google scholar
[31]
DeBlasio S L, Mullen J L, Luesse D R, Hangarter R P (2003). Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol, 133(4): 1471–1479
CrossRef Pubmed Google scholar
[32]
Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C (2012). Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J, 31(16): 3457–3467
CrossRef Pubmed Google scholar
[33]
Deshaies R J, Joazeiro C A (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem, 78(1): 399–434
CrossRef Pubmed Google scholar
[34]
Dezfulian M H, Jalili E, Roberto D K A, Moss B L, Khoo K, Nemhauser J L, Crosby W L (2016). Oligomerization of SCFTIR1 is essential for Aux/IAA degradation and auxin signaling in Arabidopsis. PLoS Genet, 12(9): e1006301
CrossRef Pubmed Google scholar
[35]
Ding Z, Galván-Ampudia C S, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita M T, Tasaka M, Fankhauser C, Offringa R, Friml J (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol, 13(4): 447–452
CrossRef Pubmed Google scholar
[36]
Doherty G J, McMahon H T (2009). Mechanisms of endocytosis. Annu Rev Biochem, 78(1): 857–902
CrossRef Pubmed Google scholar
[37]
Dümmer M, Michalski C, Essen L O, Rath M, Galland P, Forreiter C (2016). EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana. J Plant Physiol, 206: 114–124
CrossRef Pubmed Google scholar
[38]
Esmon C A, Tinsley A G, Ljung K, Sandberg G, Hearne L B, Liscum E (2006). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA, 103(1): 236–241
CrossRef Pubmed Google scholar
[39]
Fankhauser C (2001). The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem, 276(15): 11453–11456
CrossRef Pubmed Google scholar
[40]
Fankhauser C, Yeh K C, Lagarias J C, Zhang H, Elich T D, Chory J (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science, 284(5419): 1539–1541
CrossRef Pubmed Google scholar
[41]
Felle H (1988). Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta, 174(4): 495–499
CrossRef Pubmed Google scholar
[42]
Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, Shen Y, Feng S, Bostick M, Callis J, Hellmann H, Deng X W (2005). Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell, 17(4): 1180–1195
CrossRef Pubmed Google scholar
[43]
Folta K M, Lieg E J, Durham T, Spalding E P (2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol, 133(4): 1464–1470
CrossRef Pubmed Google scholar
[44]
Franklin K A, Quail P H (2010). Phytochrome functions in Arabidopsis development. J Exp Bot, 61(1): 11–24
CrossRef Pubmed Google scholar
[45]
Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873): 806–809
CrossRef Pubmed Google scholar
[46]
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk P B, Ljung K, Sandberg G, Hooykaas P J, Palme K, Offringa R (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science, 306(5697): 862–865
CrossRef Pubmed Google scholar
[47]
Furutani M, Kajiwara T, Kato T, Treml B S, Stockum C, Torres-Ruiz R A, Tasaka M (2007). The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development, 134(21): 3849–3859
CrossRef Pubmed Google scholar
[48]
Gehring C A, Williams D A, Cody S H, Parish R W (1990). Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature, 345(6275): 528–530
CrossRef Pubmed Google scholar
[49]
Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003b). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112(2): 219–230
CrossRef Pubmed Google scholar
[50]
Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz R A, Mayer U, Jürgens G (2004a). Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development, 131(2): 389–400
CrossRef Pubmed Google scholar
[51]
Genschik P, Sumara I, Lechner E (2013). The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J, 32(17): 2307–2320
CrossRef Pubmed Google scholar
[52]
Grones P, Friml J (2015). Auxin transporters and binding proteins at a glance. J Cell Sci, 128(1): 1–7
CrossRef Pubmed Google scholar
[53]
Grunewald W, Friml J (2010). The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J, 29(16): 2700–2714
CrossRef Pubmed Google scholar
[54]
Guilfoyle T J (2015). The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell, 27(1): 33–43
CrossRef Pubmed Google scholar
[55]
Ha C M, Jun J H, Fletcher J C (2010). Shoot apical meristem form and function. Curr Top Dev Biol, 91(C): 103–140
CrossRef Pubmed Google scholar
[56]
Haga K, Frank L, Kimura T, Schwechheimer C, Sakai T (2018). Roles of AGCVIII kinases in the hypocotyl phototropism of Arabidopsis seedlings. Plant Cell Physiol, 59(5): 1060–1071
CrossRef Pubmed Google scholar
[57]
Haga K, Takano M, Neumann R, Iino M (2005). The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17(1): 103–115
CrossRef Pubmed Google scholar
[58]
Haga K, Tsuchida-Mayama T, Yamada M, Sakai T (2015). Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses. Plant Cell, 27(4): 1098–1112
CrossRef Pubmed Google scholar
[59]
Haglund K, Dikic I (2005). Ubiquitylation and cell signaling. EMBO J, 24(19): 3353–3359
CrossRef Pubmed Google scholar
[60]
Han I S, Cho H Y, Moni A, Lee A Y, Briggs W R (2013). Investigations on the photoregulation of chloroplast movement and leaf positioning in Arabidopsis. Plant Cell Physiol, 54(1): 48–56
CrossRef Pubmed Google scholar
[61]
Han I S, Tseng T S, Eisinger W, Briggs W R (2008). Phytochrome A regulates the intracellular distribution of phototropin 1-green fluorescent protein in Arabidopsis thaliana. Plant Cell, 20(10): 2835–2847
CrossRef Pubmed Google scholar
[62]
Han M, Park Y, Kim I, Kim E H, Yu T K, Rhee S, Suh J Y (2014). Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17. Proc Natl Acad Sci USA, 111(52): 18613–18618
CrossRef Pubmed Google scholar
[63]
Harada A, Sakai T, Okada K (2003). Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA, 100(14): 8583–8588
CrossRef Pubmed Google scholar
[64]
Harada A, Shimazaki K (2007). Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol, 83(1): 102–111
CrossRef Pubmed Google scholar
[65]
Harada A, Takemiya A, Inoue S, Sakai T, Shimazaki K (2013). Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol, 54(1): 36–47
CrossRef Pubmed Google scholar
[66]
Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E (2000). The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 12(5): 757–770
CrossRef Pubmed Google scholar
[67]
Harper S M, Christie J M, Gardner K H (2004). Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity. Biochemistry, 43(51): 16184–16192
CrossRef Pubmed Google scholar
[68]
Holland J J, Roberts D, Liscum E (2009). Understanding phototropism: from Darwin to today. J Exp Bot, 60(7): 1969–1978
CrossRef Pubmed Google scholar
[69]
Hotton S K, Callis J (2008). Regulation of cullin RING ligases. Annu Rev Plant Biol, 59(1): 467–489
CrossRef Pubmed Google scholar
[70]
Huala E, Oeller P W, Liscum E, Han I S, Larsen E, Briggs W R (1997). Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 278(5346): 2120–2123
CrossRef Pubmed Google scholar
[71]
Huang F, Zago M K, Abas L, van Marion A, Galván-Ampudia C S, Offringa R (2010). Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell, 22(4): 1129–1142
CrossRef Pubmed Google scholar
[72]
Hughes J (2013). Phytochrome cytoplasmic signaling. Annu Rev Plant Biol, 64(1): 377–402
CrossRef Pubmed Google scholar
[73]
Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell, 16(4): 887–896
CrossRef Pubmed Google scholar
[74]
Inoue S, Kinoshita T, Matsumoto M, Nakayama K I, Doi M, Shimazaki K (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA, 105(14): 5626–5631
CrossRef Pubmed Google scholar
[75]
Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008). Leaf positioning of Arabidopsis in response to blue light. Mol Plant, 1(1): 15–26
CrossRef Pubmed Google scholar
[76]
Inoue S, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama K I, Kinoshita T, Shimazaki K (2011). Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol, 156(1): 117–128
CrossRef Pubmed Google scholar
[77]
Jaedicke K, Lichtenthäler A L, Meyberg R, Zeidler M, Hughes J (2012). A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci USA, 109(30): 12231–12236
CrossRef Pubmed Google scholar
[78]
Janoudi A K, Gordon W R, Wagner D, Quail P, Poff K L (1997). Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana. Plant Physiol, 113(3): 975–979
CrossRef Pubmed Google scholar
[79]
Janoudi A K, Poff K L (1993). Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana. Plant Physiol, 101(101): 1175–1180
CrossRef Pubmed Google scholar
[80]
Janoudi A-K, Konjevic R, Apel P, Poff K L (1992). Time threshold for second positive phototropism is decreased by a preirradiation with red light. Plant Physiol, 99(4): 1422–1425
CrossRef Pubmed Google scholar
[81]
Jarillo J A, Gabrys H, Capel J, Alonso J M, Ecker J R, Cashmore A R (2001). Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 410(6831): 952–954
CrossRef Pubmed Google scholar
[82]
Jones M A, Feeney K A, Kelly S M, Christie J M (2007). Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem, 282(9): 6405–6414
CrossRef Pubmed Google scholar
[83]
Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291(5511): 2138–2141
CrossRef Pubmed Google scholar
[84]
Kaiserli E, Sullivan S, Jones M A, Feeney K A, Christie J M (2009). Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell, 21(10): 3226–3244
CrossRef Pubmed Google scholar
[85]
Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki M K, Yamamoto K T, Schwechheimer C, Fankhauser C (2014). Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J, 77(3): 393–403
CrossRef Pubmed Google scholar
[86]
Kami C, Hersch M, Trevisan M, Genoud T, Hiltbrunner A, Bergmann S, Fankhauser C (2012). Nuclear phytochrome A signaling promotes phototropism in Arabidopsis. Plant Cell, 24(2): 566–576
CrossRef Pubmed Google scholar
[87]
Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010). Light-regulated plant growth and development. Curr Top Dev Biol, 91: 29–66
CrossRef Pubmed Google scholar
[88]
Kansup J, Tsugama D, Liu S, Takano T (2014). Arabidopsis G-protein β subunit AGB1 interacts with NPH3 and is involved in phototropism. Biochem Biophys Res Commun, 445(1): 54–57
CrossRef Pubmed Google scholar
[89]
Khurana J P, Poff K L (1989). Mutants of Arabidopsis thaliana with altered phototropism. Planta, 178(3), 400–406.
[90]
Kim J, Harter K, Theologis A (1997). Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA, 94(22): 11786–11791
CrossRef Pubmed Google scholar
[91]
Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001). Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 414(6864): 656–660
CrossRef Pubmed Google scholar
[92]
Knauer T, Dümmer M, Landgraf F, Forreiter C (2011). A negative effector of blue light-induced and gravitropic bending in Arabidopsis. Plant Physiol, 156(1): 439–447
CrossRef Pubmed Google scholar
[93]
Kong S G, Kagawa T, Wada M, Nagatani A (2013a). A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement. Plant Cell Physiol, 54(1): 57–68
CrossRef Pubmed Google scholar
[94]
Kong S G, Kinoshita T, Shimazaki K, Mochizuki N, Suzuki T, Nagatani A (2007). The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses. Plant J, 51(5): 862–873
CrossRef Pubmed Google scholar
[95]
Kong S G, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M (2013b). Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant Cell Physiol, 54(1): 80–92
CrossRef Pubmed Google scholar
[96]
Kong S G, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006). Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J, 45(6): 994–1005
CrossRef Pubmed Google scholar
[97]
Korasick D A, Westfall C S, Lee S G, Nanao M H, Dumas R, Hagen G, Strader L C (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Nat Acad Sci , 111(14), 5427–5432.
[98]
Kozuka T, Suetsugu N, Wada M, Nagatani A (2013). Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana. Plant Cell Physiol, 54(1): 69–79
CrossRef Pubmed Google scholar
[99]
Lalanne E, Michaelidis C, Moore J M, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada J P, Grossniklaus U, Twell D (2004). Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics, 167(4): 1975–1986
CrossRef Pubmed Google scholar
[100]
Lariguet P, Boccalandro H E, Alonso J M, Ecker J R, Chory J, Casal J J, Fankhauser C (2003). A growth regulatory loop that provides homeostasis to phytochrome a signaling. Plant Cell, 15(12): 2966–2978
CrossRef Pubmed Google scholar
[101]
Lariguet P, Dunand C (2005). Plant photoreceptors: phylogenetic overview. J Mol Evol, 61(4): 559–569
CrossRef Pubmed Google scholar
[102]
Lariguet P, Fankhauser C (2004). Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J, 40(5): 826–834
CrossRef Pubmed Google scholar
[103]
Lariguet P, Schepens I, Hodgson D, Pedmale U V, Trevisan M, Kami C, Liscum E (2006). PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Nat Acad Sci, 103(26), 10134–10139.
[104]
Lascève G, Leymarie J, Olney M A, Liscum E, Christie J M, Vavasseur A, Briggs W R (1999). Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol, 120(2): 605–614
CrossRef Pubmed Google scholar
[105]
Lavy M, Estelle M (2016). Mechanisms of auxin signaling. Development, 143(18): 3226–3229
CrossRef Pubmed Google scholar
[106]
Lee S, Lee S, Yang K Y, Kim Y M, Park S Y, Kim S Y, Soh M S (2006). Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol, 47(5): 591–600
CrossRef Pubmed Google scholar
[107]
Lewis D R, Miller N D, Splitt B L, Wu G, Spalding E P (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell, 19(6): 1838–1850
CrossRef Pubmed Google scholar
[108]
Li F W, Rothfels C J, Melkonian M, Villarreal J C, Stevenson D W, Graham S W, Wong G K, Mathews S, Pryer K M (2015). The origin and evolution of phototropins. Front Plant Sci, 6: 637
CrossRef Pubmed Google scholar
[109]
Li J, Dai X, Zhao Y (2006). A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol, 140(3): 899–908
CrossRef Pubmed Google scholar
[110]
Li Y, Dai X, Cheng Y, Zhao Y (2011). NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant, 4(1): 171–179
CrossRef Pubmed Google scholar
[111]
Lindeboom J J, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons A M, Mulder B M, Kirik V, Ehrhardt D W (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science, 342(6163): 1245533
CrossRef Pubmed Google scholar
[112]
Liscum E (2016). Blue light-induced intracellular movement of phototropins: Functional relevance or red herring? Front Plant Sci, 7: 827
CrossRef Pubmed Google scholar
[113]
Liscum E, Askinosie S K, Leuchtman D L, Morrow J, Willenburg K T, Coats D R (2014). Phototropism: growing towards an understanding of plant movement. Plant Cell, 26(1): 38–55
CrossRef Pubmed Google scholar
[114]
Liscum E, Briggs W R (1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 7(4): 473–485
CrossRef Pubmed Google scholar
[115]
Liscum E, Briggs W R (1996). Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 112(1): 291–296
CrossRef Pubmed Google scholar
[116]
Liscum E, Reed J W (2002). Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol, 49(3-4): 387–400
CrossRef Pubmed Google scholar
[117]
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y (2016). Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J Plant Res, 129(2): 137–148
CrossRef Pubmed Google scholar
[118]
Mara C D, Huang T, Irish V F (2010). The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 22(3): 690–702
CrossRef Pubmed Google scholar
[119]
McSteen P (2010). Auxin and monocot development. Cold Spring Harb Perspect Biol, 2(3): a001479
CrossRef Pubmed Google scholar
[120]
Michalski C, Dümmer M, Galland P, Forreiter C (2017). Impact of EHB1 and AGD12 on root and hypocotyl phototropism in Arabidopsis thaliana. J Plant Growth Regul, 36(3): 660–668
CrossRef Google scholar
[121]
Motchoulski A, Liscum E (1999). Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science, 286(5441): 961–964
CrossRef Pubmed Google scholar
[122]
Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T (2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J, 53(3): 516–529
CrossRef Pubmed Google scholar
[123]
Nakasako M, Zikihara K, Matsuoka D, Katsura H, Tokutomi S (2008). Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. J Mol Biol, 381(3): 718–733
CrossRef Pubmed Google scholar
[124]
Nakazawa M, Yabe N, Ichikawa T, Yamamoto Y Y, Yoshizumi T, Hasunuma K, Matsui M (2001). DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J, 25(2): 213–221
CrossRef Pubmed Google scholar
[125]
Noh B, Bandyopadhyay A, Peer W A, Spalding E P, Murphy A S (2003). Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature, 423(6943): 999–1002
CrossRef Pubmed Google scholar
[126]
Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh K C, Lagarias J C, Wada M (1998). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA, 95(26): 15826–15830
CrossRef Pubmed Google scholar
[127]
Ohgishi M, Saji K, Okada K, Sakai T (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA, 101(8): 2223–2228
CrossRef Pubmed Google scholar
[128]
Okadaa K, Shimuraab Y (1992). Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust J Plant Physiol, 19(4): 439–448
CrossRef Google scholar
[129]
Okushima Y, Overvoorde P J, Arima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 17(2): 444–463
CrossRef Pubmed Google scholar
[130]
Park J E, Seo P J, Lee A K, Jung J H, Kim Y S, Park C M (2007). An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol, 48(8): 1236–1241
CrossRef Pubmed Google scholar
[131]
Park J Y, Kim H J, Kim J (2002). Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant J, 32(5): 669–683
CrossRef Pubmed Google scholar
[132]
Parks B M, Quail P H, Hangarter R P (1996). Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol, 110(1): 155–162
CrossRef Pubmed Google scholar
[133]
Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett M J (2001). Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J, 25(4): 399–406
CrossRef Pubmed Google scholar
[134]
Pedmale U V, Celaya R B, Liscum E (2002). Phototropism: Mechanisms and outcomes. The Arabidopsis Book, 8(8),
CrossRef Google scholar
[135]
Pedmale U V, Liscum E (2007). Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem, 282(27): 19992–20001
CrossRef Pubmed Google scholar
[136]
Peer W A, Blakeslee J J, Yang H, Murphy A S (2011). Seven things we think we know about auxin transport. Mol Plant, 4(3): 487–504
CrossRef Pubmed Google scholar
[137]
Petricka J J, Clay N K, Nelson T M (2008). Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J, 56(2): 251–263
CrossRef Pubmed Google scholar
[138]
Pires N, Dolan L (2010). Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol, 27(4): 862–874
CrossRef Pubmed Google scholar
[139]
Preuten T, Blackwood L, Christie J M, Fankhauser C (2015). Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go? New Phytol, 206(3): 1038–1050
CrossRef Pubmed Google scholar
[140]
Rademacher E H, Offringa R (2012). Evolutionary adaptations of plant AGC kinases: From light signaling to cell polarity regulation. Front Plant Sci, 3: 250
CrossRef Pubmed Google scholar
[141]
Rayle D L, Cleland R (1970). Enhancement of wall loosening and elongation by Acid solutions. Plant Physiol, 46(2): 250–253
CrossRef Pubmed Google scholar
[142]
Rayle D L, Cleland R E (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol, 99(4): 1271–1274
CrossRef Pubmed Google scholar
[143]
Ren H, Gray W M (2015). SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant, 8(8): 1153–1164
CrossRef Pubmed Google scholar
[144]
Roberts D, Pedmale U V, Morrow J, Sachdev S, Lechner E, Tang X, Zheng N, Hannink M, Genschik P, Liscum E (2011). Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3). Plant Cell, 23(10): 3627–3640
CrossRef Pubmed Google scholar
[145]
Rockwell N C, Su Y S, Lagarias J C (2006). Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 57(26): 837–858
CrossRef Pubmed Google scholar
[146]
Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia A C, Peirats-Llobet M, Fernandez M A, Antoni R, Fernandez D, Marquez J A, Mulet J M, Albert A, Rodriguez P L (2014). C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell, 26(12): 4802–4820
CrossRef Pubmed Google scholar
[147]
Rojas-Pirela M, Rigden D J, Michels P A, Cáceres A J, Concepción J L, Quiñones W (2018). Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol, 219: 52–66
CrossRef Pubmed Google scholar
[148]
Rösler J, Klein I, Zeidler M (2007). Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci USA, 104(25): 10737–10742
CrossRef Pubmed Google scholar
[149]
Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997). Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell, 9(5): 745–757
CrossRef Pubmed Google scholar
[150]
Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R,Okada K (2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Pro Nat Acad Sci, 98(12), 6969–6974
[151]
Sakai T, Wada T, Ishiguro S, Okada K (2000). RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 12(2): 225–236
CrossRef Pubmed Google scholar
[152]
Sakamoto K, Briggs W R (2002). Cellular and subcellular localization of phototropin 1. Plant Cell, 14(8): 1723–1735
CrossRef Pubmed Google scholar
[153]
Salomon M, Christie J M, Knieb E, Lempert U, Briggs W R (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39(31): 9401–9410
CrossRef Pubmed Google scholar
[154]
Salomon M, Lempert U, Rüdiger W (2004). Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett, 572(1-3): 8–10
CrossRef Pubmed Google scholar
[155]
Sampedro J, Cosgrove D J (2005). The expansin superfamily. Genome Biol, 6(12): 242
CrossRef Pubmed Google scholar
[156]
Sancar A (2004). Photolyase and cryptochrome blue-light photoreceptors. Adv Protein Chem, 69: 73–100
CrossRef Pubmed Google scholar
[157]
Sanders D, Pelloux J, Brownlee C, Harper J F (2002). Calcium at the crossroads of signaling. Plant Cell, 14(Suppl): S401–S417
CrossRef Pubmed Google scholar
[158]
Santner A A, Watson J C (2006). The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J, 45(5): 752–764
CrossRef Pubmed Google scholar
[159]
Sauer M, Kleine-Vehn J (2011). AUXIN BINDING PROTEIN1: the outsider. Plant Cell, 23(6): 2033–2043
CrossRef Pubmed Google scholar
[160]
Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba T (2002). The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J, 32(6): 1011–1022
CrossRef Pubmed Google scholar
[161]
Schepens I, Boccalandro H E, Kami C, Casal J J, Fankhauser C (2008). PHYTOCHROME KINASE SUBSTRATE4 modulates phytochrome-mediated control of hypocotyl growth orientation. Plant Physiol, 147(2): 661–671
CrossRef Pubmed Google scholar
[162]
Scherer G F (2011). AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? J Exp Bot, 62: 3339–3357
[163]
Schumacher P, Demarsy E, Waridel P, Petrolati L A, Trevisan M, Fankhauser C (2018). A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process. Nat Commun, 9(1): 2403
CrossRef Pubmed Google scholar
[164]
Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17(2): 616–627
CrossRef Pubmed Google scholar
[165]
Stogios P J, Downs G S, Jauhal J J S, Nandra S K, Privé G G (2005). Sequence and structural analysis of BTB domain proteins. Genome Biol, 6(10): R82
CrossRef Pubmed Google scholar
[166]
Stone B B, Stowe-Evans E L, Harper R M, Celaya R B, Ljung K, Sandberg G, Liscum E (2008). Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant, 1(1): 129–144
CrossRef Pubmed Google scholar
[167]
Stowe-Evans E L, Harper R M, Motchoulski A V, Liscum E (1998). NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol, 118(4): 1265–1275
CrossRef Pubmed Google scholar
[168]
Stowe-Evans E L, Luesse D R, Liscum E (2001). The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol, 126(2): 826–834
CrossRef Pubmed Google scholar
[169]
Strader L C, Zhao Y (2016). Auxin perception and downstream events. Curr Opin Plant Biol, 33: 8–14
CrossRef Pubmed Google scholar
[170]
Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005). A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA, 102(38): 13705–13709
CrossRef Pubmed Google scholar
[171]
Suetsugu N, Takemiya A, Kong S G, Higa T, Komatsu A, Shimazaki K, Kohchi T, Wada M (2016). RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci USA, 113(37): 10424–10429
CrossRef Pubmed Google scholar
[172]
Sullivan S, Hart J E, Rasch P, Walker C H, Christie J M (2016). Phytochrome A mediates blue-light enhancement of second-positive phototropism in Arabidopsis. Front Plant Sci, 7: 290
CrossRef Pubmed Google scholar
[173]
Sullivan S, Kaiserli E, Tseng T S, Christie J M (2010). Subcellular localization and turnover of Arabidopsis phototropin 1. Plant Signal Behav, 5(2): 184–186
CrossRef Pubmed Google scholar
[174]
Sullivan S, Thomson C E, Lamont D J, Jones M A, Christie J M (2008). In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1. Mol Plant, 1(1): 178–194
CrossRef Pubmed Google scholar
[175]
Sun J, Qi L, Li Y, Zhai Q, Li C (2013). PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell, 25, 2102–2114.
[176]
Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K (2005). Phototropins promote plant growth in response to blue light in low light environments. Plant Cell, 17(4): 1120–1127
CrossRef Pubmed Google scholar
[177]
Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki M K, Harper R M, Liscum E, Yamamoto K T (2004). MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell, 16(2): 379–393
CrossRef Pubmed Google scholar
[178]
Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009). Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and-independent mechanisms. PLoS Genet, 5(1): e1000328
CrossRef Pubmed Google scholar
[179]
Titapiwatanakun B, Blakeslee J J, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer W A, Murphy A S (2009). ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J, 57(1): 27–44
CrossRef Pubmed Google scholar
[180]
Tokutomi S, Matsuoka D, Zikihara K (2008). Molecular structure and regulation of phototropin kinase by blue light. Biochim Biophys Acta, 1784(1): 133–142
CrossRef Pubmed Google scholar
[181]
Treml B S, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz R A (2005). The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development, 132(18): 4063–4074
CrossRef Pubmed Google scholar
[182]
Tseng T S, Briggs W R (2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. Plant Cell, 22(2): 392–402
CrossRef Pubmed Google scholar
[183]
Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T (2008). Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci, 174(6): 626–633
CrossRef Google scholar
[184]
Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S (2010). Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J, 62(4): 653–662
CrossRef Pubmed Google scholar
[185]
Ulmasov T, Hagen G, Guilfoyle T J (1997). ARF1, a transcription factor that binds to auxin response elements. Science, 276(5320), 1865–1868.
[186]
Urano D, Chen J G, Botella J R, Jones A M (2013). Heterotrimeric G protein signalling in the plant kingdom. Open Biol, 3(3): 120186–120186
CrossRef Pubmed Google scholar
[187]
Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J (2012). The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell, 24(2): 551–565
CrossRef Pubmed Google scholar
[188]
Wan Y L, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W (2008). The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant, 1(1): 103–117
CrossRef Pubmed Google scholar
[189]
Watahiki M K, Yamamoto K T (1997). The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol, 115(2): 419–426
CrossRef Pubmed Google scholar
[190]
Went, F. W., and Thimann, K. V. (1937). Phytohormones.
[191]
Westfall C S, Herrmann J, Chen Q, Wang S, Jez J M (2010). Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav, 5(12): 1607–1612
CrossRef Pubmed Google scholar
[192]
Whippo C W, Hangarter R P (2003). Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol, 132(3): 1499–1507
CrossRef Pubmed Google scholar
[193]
Whippo C W, Hangarter R P (2004). Phytochrome modulation of blue-light-induced phototropism. Plant Cell Environ, 27(10): 1223–1228
CrossRef Google scholar
[194]
Willige B C, Ahlers S, Zourelidou M, Barbosa I C R, Demarsy E, Trevisan M, Davis P A, Roelfsema M R, Hangarter R, Fankhauser C, Schwechheimer C (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell, 25(5): 1674–1688
CrossRef Pubmed Google scholar
[195]
Woo O G, Kim S H, Cho S K, Kim S H, Lee H N, Chung T, Yang S W, Lee J H (2018). BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction. Plant Mol Biol, 96(6): 593–606
CrossRef Pubmed Google scholar
[196]
Xue Y, Xing J, Wan Y, Lv X, Fan L, Zhang Y, Song K, Wang L, Wang X, Deng X, Baluška F, Christie J M, Lin J (2018). Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains. Mol Plant, 11(6): 846–859
CrossRef Pubmed Google scholar
[197]
Zazímalová E, Murphy A S, Yang H, Hoyerová K, Hosek P (2010). Auxin transporters--why so many? Cold Spring Harb Perspect Biol, 2(3): a001552
CrossRef Pubmed Google scholar
[198]
Zhang L, Du L, Shen C, Yang Y, Poovaiah B W (2014). Regulation of plant immunity through ubiquitin-mediated modulation of Ca(2+) -calmodulin-AtSR1/CAMTA3 signaling. Plant J, 78(2): 269–281
CrossRef Pubmed Google scholar
[199]
Zhang X S, O’Neill S D (1993). Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell, 5(4): 403–418
CrossRef Pubmed Google scholar
[200]
Zhao X, Wang Y L, Qiao X R, Wang J, Wang L D, Xu C S, Zhang X (2013). Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol, 162(3): 1539–1551
CrossRef Pubmed Google scholar
[201]
Zhao Y (2010). Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, 61(1): 49–64
CrossRef Pubmed Google scholar
[202]
Zourelidou M, Müller I, Willige B C, Nill C, Jikumaru Y, Li H, Schwechheimer C (2009). The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development, 136(4): 627–636
CrossRef Pubmed Google scholar

Acknowledgement

Research in the Liscum laboratory is supported by the National Science Foundation (IOS-1146142).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(291 KB)

Accesses

Citations

Detail

Sections
Recommended

/