
Cytoskeletal changes in diseases of the nervous system
Alexandra K. SUCHOWERSKA, Thomas FATH
Front. Biol. ›› 2014, Vol. 9 ›› Issue (1) : 5-17.
Cytoskeletal changes in diseases of the nervous system
The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.
cytoskeleton / actin / microtubules / intermediate filaments / nervous system / disease
[1] |
Al-ChalabiA, AndersenP M, NilssonP, ChiozaB, AnderssonJ L, RussC, ShawC E, PowellJ F, LeighP N (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet, 8(2): 157–164
CrossRef
Pubmed
Google scholar
|
[2] |
AndersonS A, VolkD W, LewisD A (1996). Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res, 19(2–3): 111–119
CrossRef
Pubmed
Google scholar
|
[3] |
AndrianantoandroE, PollardT D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23
CrossRef
Pubmed
Google scholar
|
[4] |
AndrieuxA, SalinP A, VernetM, KujalaP, BaratierJ, Gory-FauréS, BoscC, PointuH, ProiettoD, SchweitzerA, DenarierE, KlumpermanJ, JobD (2002). The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev, 16(18): 2350–2364
CrossRef
Pubmed
Google scholar
|
[5] |
ArberS, BarbayannisF A, HanserH, SchneiderC, StanyonC A, BernardO, CaroniP (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 393(6687): 805–809
CrossRef
Pubmed
Google scholar
|
[6] |
ArmstrongR A, CairnsN J (2012). Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders. J Neural Transm, 119(12): 1551–1560
CrossRef
Pubmed
Google scholar
|
[7] |
ArmstrongR A, KertyE, SkullerudK, CairnsN J (2006). Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm, 113(9): 1207–1215
CrossRef
Pubmed
Google scholar
|
[8] |
AsburyA K, GaleM K, CoxS C, BaringerJ R, BergB O (1972). Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol, 20(3): 237–247
CrossRef
Pubmed
Google scholar
|
[9] |
AsrarS, MengY, ZhouZ, TodorovskiZ, HuangW W, JiaZ (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56(1): 73–80
CrossRef
Pubmed
Google scholar
|
[10] |
BaasP W, AhmadF J (2013). Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 136(Pt 10): 2937–2951
CrossRef
Pubmed
Google scholar
|
[11] |
BallatoreC, LeeV M, TrojanowskiJ Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672
CrossRef
Pubmed
Google scholar
|
[12] |
BégouM, BrunP, BertrandJ B, JobD, SchweitzerA, D’AmatoT, SaoudM, AndrieuxA, Suaud-ChagnyM F (2007). Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse, 61(9): 689–697
CrossRef
Pubmed
Google scholar
|
[13] |
BégouM, VolleJ, BertrandJ B, BrunP, JobD, SchweitzerA, SaoudM, D’AmatoT, AndrieuxA, Suaud-ChagnyM F (2008). The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience, 157(1): 29–39
CrossRef
Pubmed
Google scholar
|
[14] |
BelichenkoP V, DahlströmA (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods, 57(1): 55–61
CrossRef
Pubmed
Google scholar
|
[15] |
Bento-AbreuA, Van DammeP, Van Den BoschL, RobberechtW (2010). The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci, 31(12): 2247–2265
CrossRef
Pubmed
Google scholar
|
[16] |
BergeronC, Beric-MaskarelK, MuntasserS, WeyerL, SomervilleM J, PercyM E (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53(3): 221–230
CrossRef
Pubmed
Google scholar
|
[17] |
BernhardtR, MatusA (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol, 226(2): 203–221
CrossRef
Pubmed
Google scholar
|
[18] |
BishopA L, HallA (2000). Rho GTPases and their effector proteins. Biochem J, 348(Pt 2): 241–255
CrossRef
Pubmed
Google scholar
|
[19] |
BloomG S, ValleeR B (1983). Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol, 96(6): 1523–1531
CrossRef
Pubmed
Google scholar
|
[20] |
BocquetA, BergesR, FrankR, RobertP, PetersonA C, EyerJ (2009). Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 29(35): 11043–11054
CrossRef
Pubmed
Google scholar
|
[21] |
BoschM, HayashiY (2012). Structural plasticity of dendritic spines. Curr Opin Neurobiol, 22(3): 383–388
CrossRef
Pubmed
Google scholar
|
[22] |
BrettschneiderJ, PetzoldA, SüssmuthS D, LudolphA C, TumaniH (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6): 852–856
CrossRef
Pubmed
Google scholar
|
[23] |
BrunP, BégouM, AndrieuxA, Mouly-BadinaL, ClergetM, SchweitzerA, ScarnaH, RenaudB, JobD, Suaud-ChagnyM F (2005). Dopaminergic transmission in STOP null mice. J Neurochem, 94(1): 63–73
CrossRef
Pubmed
Google scholar
|
[24] |
BrundenK R, ZhangB, CarrollJ, YaoY, PotuzakJ S, HoganA M, IbaM, JamesM J, XieS X, BallatoreC, SmithA B 3rd, LeeV M Y, TrojanowskiJ Q (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci, 30(41): 13861–13866
CrossRef
Pubmed
Google scholar
|
[25] |
BugyiB, PappG, HildG, LõrinczyD, NevalainenE M, LappalainenP, SomogyiB, NyitraiM (2006). Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem, 281(16): 10727–10736
CrossRef
Pubmed
Google scholar
|
[26] |
CaceresA, BankerG, StewardO, BinderL, PayneM (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res, 315(2): 314–318
Pubmed
|
[27] |
CairnsN J, LeeV M Y, TrojanowskiJ Q (2004). The cytoskeleton in neurodegenerative diseases. J Pathol, 204(4): 438–449
CrossRef
Pubmed
Google scholar
|
[28] |
ChaiX, FörsterE, ZhaoS, BockH H, FrotscherM (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299
CrossRef
Pubmed
Google scholar
|
[29] |
ChenY, ZhengZZ, HuangR, ChenK, SongW, ZhaoB, ChenX, YangY, YuanL, ShangHF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging34:1922 e1921–1925.
|
[30] |
ClintonS M, AbelsonS, HaroutunianV, DavisK, Meador-WoodruffJ H (2004). Neurofilament subunit protein abnormalities in the thalamus in scizophrenia. Thalamus Relat Syst, 2: 265–272
|
[31] |
ClintonS M, HaroutunianV, DavisK L, Meador-WoodruffJ H (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160(6): 1100–1109
CrossRef
Pubmed
Google scholar
|
[32] |
CohenR S, ChungS K, PfaffD W (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol, 5(3): 271–284
CrossRef
Pubmed
Google scholar
|
[33] |
CollardJ F, CôtéF, JulienJ P (1995). Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375(6526): 61–64
CrossRef
Pubmed
Google scholar
|
[34] |
CôtéF, CollardJ F, JulienJ P (1993). Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell, 73(1): 35–46
CrossRef
Pubmed
Google scholar
|
[35] |
CotterD, WilsonS, RobertsE, KerwinR, EverallI P (2000). Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res, 41(2): 313–323
CrossRef
Pubmed
Google scholar
|
[36] |
DaoudH, DobrzenieckaS, CamuW, MeiningerV, DupreN, DionPA, RouleauGA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging34:1311 e1311–1312.
|
[37] |
DehmeltL, HalpainS (2004). Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol, 58(1): 18–33
CrossRef
Pubmed
Google scholar
|
[38] |
DentE W, KalilK (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci, 21(24): 9757–9769
Pubmed
|
[39] |
DeoA J, GoldszerI M, LiS, DiBitettoJ V, HenteleffR, SampsonA, LewisD A, PenzesP, SweetR A (2013). PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS ONE, 8(4): e59458
CrossRef
Pubmed
Google scholar
|
[40] |
Díez-GuerraF J, AvilaJ (1993). MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport, 4(4): 419–422
CrossRef
Pubmed
Google scholar
|
[41] |
DiProsperoN A, ChenE Y, CharlesV, PlomannM, KordowerJ H, TagleD A (2004). Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5): 517–533
CrossRef
Pubmed
Google scholar
|
[42] |
DixitR, RossJ L, GoldmanY E, HolzbaurE L (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866): 1086–1089
CrossRef
Pubmed
Google scholar
|
[43] |
DomR, MalfroidM, BaroF (1976). Neuropathology of Huntington’s chorea.Studies of the ventrobasal complex of the thalamus. Neurology, 26(1): 64–68
CrossRef
Pubmed
Google scholar
|
[44] |
DowningK H, NogalesE (1998). Tubulin and microtubule structure. Curr Opin Cell Biol, 10(1): 16–22
CrossRef
Pubmed
Google scholar
|
[45] |
DuanW, GuoY, JiangH, YuX, LiC (2011). MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res, 1397: 1–9
CrossRef
Pubmed
Google scholar
|
[46] |
EbnethA, GodemannR, StamerK, IllenbergerS, TrinczekB, MandelkowE (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol, 143(3): 777–794
CrossRef
Pubmed
Google scholar
|
[47] |
EdwardsD C, SandersL C, BokochG M, GillG N (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol, 1(5): 253–259
CrossRef
Pubmed
Google scholar
|
[48] |
EhlersM D, FungE T, O’BrienR J, HuganirR L (1998). Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci, 18(2): 720–730
Pubmed
|
[49] |
EhlersM D, TingleyW G, HuganirR L (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269(5231): 1734–1737
CrossRef
Pubmed
Google scholar
|
[50] |
FerriC P, PrinceM, BrayneC, BrodatyH, FratiglioniL, GanguliM, HallK, HasegawaK, HendrieH, HuangY, JormA, MathersC, MenezesP R, RimmerE, ScazufcaM, and the Alzheimer’s Disease International (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503): 2112–2117
CrossRef
Pubmed
Google scholar
|
[51] |
FiglewiczD A, KrizusA, MartinoliM G, MeiningerV, DibM, RouleauG A, JulienJ P (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet, 3(10): 1757–1761
CrossRef
Pubmed
Google scholar
|
[52] |
FreimanT M, Eismann-SchweimlerJ, FrotscherM (2011). Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol, 229(2): 332–338
CrossRef
Pubmed
Google scholar
|
[53] |
FuchsE, ClevelandD W (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350): 514–519
CrossRef
Pubmed
Google scholar
|
[54] |
FulgaT A, Elson-SchwabI, KhuranaV, SteinhilbM L, SpiresT L, HymanB T, FeanyM B (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol, 9(2): 139–148
CrossRef
Pubmed
Google scholar
|
[55] |
GallowayP G, MulvihillP, PerryG (1992). Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol, 140(4): 809–822
Pubmed
|
[56] |
GallowayP G, PerryG, GambettiP (1987). Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol, 46(2): 185–199
CrossRef
Pubmed
Google scholar
|
[57] |
GareyL J, OngW Y, PatelT S, KananiM, DavisA, MortimerA M, BarnesT R, HirschS R (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry, 65(4): 446–453
CrossRef
Pubmed
Google scholar
|
[58] |
GeW W, WenW, StrongW, Leystra-LantzC, StrongM J (2005). Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280(1): 118–124
Pubmed
|
[59] |
GibsonP H, TomlinsonB E (1977). Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci, 33(1–2): 199–206
CrossRef
Pubmed
Google scholar
|
[60] |
GlantzL A, LewisD A (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry, 57(1): 65–73
CrossRef
Pubmed
Google scholar
|
[61] |
GlantzL A, LewisD A (2001). Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry, 58(2): 203
CrossRef
Pubmed
Google scholar
|
[62] |
GoedertM, WischikC M, CrowtherR A, WalkerJ E, KlugA (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA, 85(11): 4051–4055
CrossRef
Pubmed
Google scholar
|
[63] |
Grundke-IqbalI, IqbalK, QuinlanM, TungY C, ZaidiM S, WisniewskiH M (1986a). Microtubule-associated protein tau.A component of Alzheimer paired helical filaments. J Biol Chem, 261(13): 6084–6089
Pubmed
|
[64] |
Grundke-IqbalI, IqbalK, TungY C, QuinlanM, WisniewskiH M, BinderL I (1986b). Abnormal phosphorylation of the microtubule-associated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 83(13): 4913–4917
CrossRef
Pubmed
Google scholar
|
[65] |
GunningP, O’NeillG, HardemanE (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev, 88(1): 1–35
CrossRef
Pubmed
Google scholar
|
[66] |
HaasC A, DudeckO, KirschM, HuszkaC, KannG, PollakS, ZentnerJ, FrotscherM (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22(14): 5797–5802
Pubmed
|
[67] |
HangerD P, AndertonB H, NobleW (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119
CrossRef
Pubmed
Google scholar
|
[68] |
HayashiM L, ChoiS Y, RaoB S, JungH Y, LeeH K, ZhangD, ChattarjiS, KirkwoodA, TonegawaS (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron, 42(5): 773–787
CrossRef
Pubmed
Google scholar
|
[69] |
HillJ J, HashimotoT, LewisD A (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6): 557–566
CrossRef
Pubmed
Google scholar
|
[70] |
HillW D, LeeV M, HurtigH I, MurrayJ M, TrojanowskiJ Q (1991). Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol, 309(1): 150–160
CrossRef
Pubmed
Google scholar
|
[71] |
HouserC R (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535(2): 195–204
CrossRef
Pubmed
Google scholar
|
[72] |
HuttonM, LendonC L, RizzuP, BakerM, FroelichS, HouldenH, Pickering-BrownS, ChakravertyS, IsaacsA, GroverA, HackettJ, AdamsonJ, LincolnS, DicksonD, DaviesP, PetersenR C, StevensM, de GraaffE, WautersE, van BarenJ, HillebrandM, JoosseM, KwonJ M, NowotnyP, CheL K, NortonJ, MorrisJ C, ReedL A, TrojanowskiJ, BasunH, LannfeltL, NeystatM, FahnS, DarkF, TannenbergT, DoddP R, HaywardN, KwokJ B, SchofieldP R, AndreadisA, SnowdenJ, CraufurdD, NearyD, OwenF, OostraB A, HardyJ, GoateA, van SwietenJ, MannD, LynchT, HeutinkP (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686): 702–705
CrossRef
Pubmed
Google scholar
|
[73] |
IngreC, LandersJE, RizikN, VolkAE, AkimotoC, BirveA, HubersA, KeaglePJ, PiotrowskaK, PressR, AndersenPM, LudolphAC, WeishauptJ H (2013). A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging, 34:1708 e1701–1706
|
[74] |
IqbalK, Grundke-IqbalI, ZaidiT, MerzP A, WenG Y, ShaikhS S, WisniewskiH M, AlafuzoffI, WinbladB (1986). Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 2(8504): 421–426
CrossRef
Pubmed
Google scholar
|
[75] |
IttnerL M, KeY D, DelerueF, BiM, GladbachA, van EerselJ, WölfingH, ChiengB C, ChristieM J, NapierI A, EckertA, StaufenbielM, HardemanE, GötzJ (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397
CrossRef
Pubmed
Google scholar
|
[76] |
JordanovaA, De JongheP, BoerkoelC F, TakashimaH, De VriendtE, CeuterickC, MartinJ J, ButlerI J, ManciasP, PapasozomenosS Ch, TerespolskyD, PotockiL, BrownC W, ShyM, RitaD A, TournevI, KremenskyI, LupskiJ R, TimmermanV (2003). Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 126(Pt 3): 590–597
CrossRef
Pubmed
Google scholar
|
[77] |
KeY D, SuchowerskaA K, van der HovenJ, De SilvaD M, WuC W, van EerselJ, IttnerA, IttnerL M (2012). Lessons from tau-deficient mice. Int J Alzheimers Dis, 2012: 873270
CrossRef
Pubmed
Google scholar
|
[78] |
KimC H, LismanJ E (1999). A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci, 19(11): 4314–4324
Pubmed
|
[79] |
KorobovaF, SvitkinaT (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell, 19(4): 1561–1574
CrossRef
Pubmed
Google scholar
|
[80] |
KrügerR, FischerC, SchulteT, StraussK M, MüllerT, WoitallaD, BergD, HungsM, GobbeleR, BergerK, EpplenJ T, RiessO, SchölsL (2003). Mutation analysis of the neurofilament M gene in Parkinson’s disease. Neurosci Lett, 351(2): 125–129
CrossRef
Pubmed
Google scholar
|
[81] |
KuhnT B, BamburgJ R (2008). Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol, 644: 232–249
CrossRef
Pubmed
Google scholar
|
[82] |
LattanteS, Le BerI, CamuzatA, BriceA, KabashiE (2013). Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging, 34:1709 e1701–1702
|
[83] |
LavedanC, BuchholtzS, NussbaumR L, AlbinR L, PolymeropoulosM H (2002). A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett, 322(1): 57–61
CrossRef
Pubmed
Google scholar
|
[84] |
LeeM K, MarszalekJ R, ClevelandD W (1994). A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 13(4): 975–988
CrossRef
Pubmed
Google scholar
|
[85] |
LeeV M, GoedertM, TrojanowskiJ Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159
CrossRef
Pubmed
Google scholar
|
[86] |
LiB, ChohanM O, Grundke-IqbalI, IqbalK (2007). Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol, 113(5): 501–511
CrossRef
Pubmed
Google scholar
|
[87] |
LückingC B, DürrA, BonifatiV, VaughanJ, De MicheleG, GasserT, HarhangiB S, MecoG, DenèfleP, WoodN W, AgidY, BriceA, and the French Parkinson’s Disease Genetics Study Group, and the European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med, 342(21): 1560–1567
CrossRef
Pubmed
Google scholar
|
[88] |
LuoL, HenschT K, AckermanL, BarbelS, JanL Y, JanY N (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379(6568): 837–840
CrossRef
Pubmed
Google scholar
|
[89] |
MaciverS K, HarringtonC R (1995). Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport, 6(15): 1985–1988
CrossRef
Pubmed
Google scholar
|
[90] |
MahammadS, MurthyS N, DidonnaA, GrinB, IsraeliE, PerrotR, BomontP, JulienJ P, KuczmarskiE, OpalP, GoldmanR D (2013). Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest, 123(5): 1964–1975
CrossRef
Pubmed
Google scholar
|
[91] |
ManettoV, SternbergerN H, PerryG, SternbergerL A, GambettiP (1988). Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 47(6): 642–653
CrossRef
Pubmed
Google scholar
|
[92] |
ManserE, LeungT, SalihuddinH, ZhaoZ S, LimL (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458): 40–46
CrossRef
Pubmed
Google scholar
|
[93] |
MatusA (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci, 11(1): 29–44
CrossRef
Pubmed
Google scholar
|
[94] |
MinamideL S, StrieglA M, BoyleJ A, MebergP J, BamburgJ R (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol, 2(9): 628–636
CrossRef
Pubmed
Google scholar
|
[95] |
MitchisonT J, CramerL P (1996). Actin-based cell motility and cell locomotion. Cell, 84(3): 371–379
CrossRef
Pubmed
Google scholar
|
[96] |
MockrinS C, KornE D (1980). Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry, 19(23): 5359–5362
CrossRef
Pubmed
Google scholar
|
[97] |
MorfiniG, PiginoG, MizunoN, KikkawaM, BradyS T (2007). Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 85(12): 2620–2630
CrossRef
Pubmed
Google scholar
|
[98] |
MoriwakiA, LuY F, TomizawaK, MatsuiH (1998). An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience, 86(3): 855–865
CrossRef
Pubmed
Google scholar
|
[99] |
MorrisonB M, ShuI W, WilcoxA L, GordonJ W, MorrisonJ H (2000). Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol, 165(2): 207–220
CrossRef
Pubmed
Google scholar
|
[100] |
MunozD G, GreeneC, PerlD P, SelkoeD J (1988). Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol, 47(1): 9–18
CrossRef
Pubmed
Google scholar
|
[101] |
Niebroj-DoboszI, DziewulskaD, JanikP (2006). Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS).Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre. Polish Academy of Sciences, 44: 191–196
|
[102] |
NishidaE, IidaK, YonezawaN, KoyasuS, YaharaI, SakaiH (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA, 84(15): 5262–5266
CrossRef
Pubmed
Google scholar
|
[103] |
NiwaR, Nagata-OhashiK, TakeichiM, MizunoK, UemuraT (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2): 233–246
CrossRef
Pubmed
Google scholar
|
[104] |
OkamotoK, NagaiT, MiyawakiA, HayashiY (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7(10): 1104–1112
CrossRef
Pubmed
Google scholar
|
[105] |
OuyangY, YangX F, HuX Y, Erbayat-AltayE, ZengL H, LeeJ M, WongM (2007). Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res, 1143: 238–246
CrossRef
Pubmed
Google scholar
|
[106] |
PatrickG N, ZukerbergL, NikolicM, de la MonteS, DikkesP, TsaiL H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622
CrossRef
Pubmed
Google scholar
|
[107] |
PavlikL L, MoshkovD A (1991). Actin in synaptic cytoskeleton during long-term potentiation in hippocampal slices. Acta Histochem Suppl, 41(Supp 41): 257–264
Pubmed
|
[108] |
Pérez-OlléR, López-ToledanoM A, GoryunovD, Cabrera-PochN, StefanisL, BrownK, LiemR K (2005). Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem, 93(4): 861–874
CrossRef
Pubmed
Google scholar
|
[109] |
PerrotR, BergesR, BocquetA, EyerJ (2008). Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol, 38(1): 27–65
CrossRef
Pubmed
Google scholar
|
[110] |
PowellK J, HoriS E, LeslieR, AndrieuxA, SchellinckH, ThorneM, RobertsonG S (2007). Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci, 121(5): 826–835
CrossRef
Pubmed
Google scholar
|
[111] |
PrineasJ W, OuvrierR A, WrightR G, WalshJ C, McLeodJ G (1976). Gian axonal neuropathy—a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol, 35(4): 458–470
CrossRef
Pubmed
Google scholar
|
[112] |
QiangL, YuW, AndreadisA, LuoM, BaasP W (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci, 26(12): 3120–3129
CrossRef
Pubmed
Google scholar
|
[113] |
RaoM V, MohanP S, KumarA, YuanA, MontagnaL, CampbellJ, Veeranna, EspreaficoE M, JulienJ P, NixonR A (2011). The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE, 6(2): e17087
CrossRef
Pubmed
Google scholar
|
[114] |
RenY, JiangH, YangF, NakasoK, FengJ (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem, 284(6): 4009–4017
CrossRef
Pubmed
Google scholar
|
[115] |
RenY, ZhaoJ, FengJ (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 23(8): 3316–3324
Pubmed
|
[116] |
RexC S, ChenL Y, SharmaA, LiuJ, BabayanA H, GallC M, LynchG (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol, 186(1): 85–97
CrossRef
Pubmed
Google scholar
|
[117] |
RossiterJ P, AndersonL L, YangF, ColeG M (2000). Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol, 26(4): 342–346
CrossRef
Pubmed
Google scholar
|
[118] |
RossollW, JablonkaS, AndreassiC, KröningA K, KarleK, MonaniU R, SendtnerM (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol, 163(4): 801–812
CrossRef
Pubmed
Google scholar
|
[119] |
Rovelet-LecruxA, CampionD (2012). Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans, 40(4): 672–676
CrossRef
Pubmed
Google scholar
|
[120] |
RoyS, ZhangB, LeeV M, TrojanowskiJ Q (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol, 109(1): 5–13
CrossRef
Pubmed
Google scholar
|
[121] |
RubioM D, HaroutunianV, Meador-WoodruffJ H (2012). Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry, 71(10): 906–914
CrossRef
Pubmed
Google scholar
|
[122] |
SánchezC, ArellanoJ I, Rodríguez-SánchezP, AvilaJ, DeFelipeJ, Díez-GuerraF J (2001). Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 107(1): 25–33
CrossRef
Pubmed
Google scholar
|
[123] |
SánchezC, Díaz-NidoJ, AvilaJ (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 61(2): 133–168
CrossRef
Pubmed
Google scholar
|
[124] |
ScheibelM E, CrandallP H, ScheibelA B (1974). The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15(1): 55–80
CrossRef
Pubmed
Google scholar
|
[125] |
SchevzovG, CurthoysN M, GunningP W, FathT (2012). Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. Int Rev Cell Mol Biol, 298: 33–94
CrossRef
Pubmed
Google scholar
|
[126] |
SchmidtM L, LeeV M, TrojanowskiJ Q (1989). Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest, 60(4): 513–522
Pubmed
|
[127] |
SchneiderA B J, BiernatJ, von BergenM, MandelkowE M, MandelkowE M (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 38(12): 3549–3558
CrossRef
Pubmed
Google scholar
|
[128] |
ScottW K, NanceM A, WattsR L, HubbleJ P, KollerW C, LyonsK, PahwaR, SternM B, ColcherA, HinerB C, JankovicJ, OndoW G, AllenF H Jr, GoetzC G, SmallG W, MastermanD, MastagliaF, LaingN G, StajichJ M, SlotterbeckB, BoozeM W, RibbleR C, RampersaudE, WestS G, GibsonR A, MiddletonL T, RosesA D, HainesJ L, ScottB L, VanceJ M, Pericak-VanceM A (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA, 286(18): 2239–2244
CrossRef
Pubmed
Google scholar
|
[129] |
SeitzA, KojimaH, OiwaK, MandelkowE M, SongY H, MandelkowE (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 21(18): 4896–4905
CrossRef
Pubmed
Google scholar
|
[130] |
ShimizuH, IwayamaY, YamadaK, ToyotaT, MinabeY, NakamuraK, NakajimaM, HattoriE, MoriN, OsumiN, YoshikawaT (2006). Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res, 84(2–3): 244–252
CrossRef
Pubmed
Google scholar
|
[131] |
SousaV L, BellaniS, GiannandreaM, YousufM, ValtortaF, MeldolesiJ, ChieregattiE (2009). alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell, 20(16): 3725–3739
CrossRef
Pubmed
Google scholar
|
[132] |
SternbergerL A, SternbergerN H (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA, 80(19): 6126–6130
CrossRef
Pubmed
Google scholar
|
[133] |
SudoH, BaasP W (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet, 20(4): 763–778
CrossRef
Pubmed
Google scholar
|
[134] |
SweetR A, HenteleffR A, ZhangW, SampsonA R, LewisD A (2009). Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 34(2): 374–389
CrossRef
Pubmed
Google scholar
|
[135] |
TakeuchiH, KobayashiY, YoshiharaT, NiwaJ, DoyuM, OhtsukaK, SobueG (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res, 949(1–2): 11–22
CrossRef
Pubmed
Google scholar
|
[136] |
TilocaC, TicozziN, PensatoV, CorradoL, Del BoR, BertolinC, FenoglioC, GagliardiS, CaliniD, LauriaG, CastellottiB, BagarottiA, CortiS, GalimbertiD, CagninA, GabelliC, RanieriM, CeroniM, SicilianoG, MazziniL, CeredaC, ScarpiniE, SoraruG, ComiGP, D'AlfonsoS, GelleraC, RattiA, LandersJE, SilaniV (2013). Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging, 34:1517 e1519–1510
|
[137] |
Torres-BenitoL, RuizR, TabaresL (2012). Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol, 72(1): 126–133
CrossRef
Pubmed
Google scholar
|
[138] |
TortelliR, RuggieriM, CorteseR, D’ErricoE, CapozzoR, LeoA, MastrapasquaM, ZoccolellaS, LeanteR, LivreaP, LogroscinoG, SimoneI L (2012). Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 19(12): 1561–1567
CrossRef
Pubmed
Google scholar
|
[139] |
TrojanowskiJ Q, LeeV M Y (2005). Rous-Whipple Award Lecture. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Am J Pathol, 167(5): 1183–1188
CrossRef
Pubmed
Google scholar
|
[140] |
TsengY, AnK M, EsueO, WirtzD (2004). The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem, 279(3): 1819–1826
CrossRef
Pubmed
Google scholar
|
[141] |
van BlitterswijkM, BakerMC, BieniekKF, KnopmanDS, JosephsKA, BoeveB, CaselliR, WszolekZK, PetersenR, Graff-RadfordNR, BoylanKB, DicksonDW, RademakersR (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener14:463–469
|
[142] |
WagnerU, UttonM, GalloJ M, MillerC C (1996). Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci, 109(Pt 6): 1537–1543
Pubmed
|
[143] |
WongN K, HeB P, StrongM J (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59(11): 972–982
Pubmed
|
[144] |
WuC H, FalliniC, TicozziN, KeagleP J, SappP C, PiotrowskaK, LoweP, KoppersM, McKenna-YasekD, BaronD M, KostJ E, Gonzalez-PerezP, FoxA D, AdamsJ, TaroniF, TilocaC, LeclercA L, ChafeS C, MangrooD, MooreM J, ZitzewitzJ A, XuZ S, van den BergL H, GlassJ D, SicilianoG, CirulliE T, GoldsteinD B, SalachasF, MeiningerV, RossollW, RattiA, GelleraC, BoscoD A, BassellG J, SilaniV, DroryV E, BrownR H Jr, LandersJ E (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412): 499–503
CrossRef
Pubmed
Google scholar
|
[145] |
XieZ, SrivastavaD P, PhotowalaH, KaiL, CahillM E, WoolfreyK M, ShumC Y, SurmeierD J, PenzesP (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56(4): 640–656
CrossRef
Pubmed
Google scholar
|
[146] |
XuZ, CorkL C, GriffinJ W, ClevelandD W (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 73(1): 23–33
CrossRef
Pubmed
Google scholar
|
[147] |
YangF, JiangQ, ZhaoJ, RenY, SuttonM D, FengJ (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 280(17): 17154–17162
CrossRef
Pubmed
Google scholar
|
[148] |
YangN, HiguchiO, OhashiK, NagataK, WadaA, KangawaK, NishidaE, MizunoK (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812
CrossRef
Pubmed
Google scholar
|
[149] |
YangS, FifitaJ A, WilliamsK L, WarraichST, PamphlettR, NicholsonG A, BlairI P (2013). Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 34:2235 e2237–2210
|
[150] |
YoshiharaT, YamamotoM, HattoriN, MisuK, MoriK, KoikeH, SobueG (2002). Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst, 7(4): 221–224
CrossRef
Pubmed
Google scholar
|
[151] |
ZengL H, XuL, RensingN R, SinatraP M, RothmanS M, WongM (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci, 27(43): 11604–11613
CrossRef
Pubmed
Google scholar
|
[152] |
ZhangB, CarrollJ, TrojanowskiJ Q, YaoY, IbaM, PotuzakJ S, HoganA M L, XieS X, BallatoreC, SmithA B 3rd, LeeV M L, BrundenK R (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci, 32(11): 3601–3611
CrossRef
Pubmed
Google scholar
|
[153] |
ZhangB, MaitiA, ShivelyS, LakhaniF, McDonald-JonesG, BruceJ, LeeE B, XieS X, JoyceS, LiC, ToleikisP M, LeeV M, TrojanowskiJ Q (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA, 102(1): 227–231
CrossRef
Pubmed
Google scholar
|
[154] |
ZhangW, BensonD L (2001). Stages of synapse development defined by dependence on F-actin. J Neurosci,21:5169–5181
|
[155] |
ZhuQ, Couillard-DesprésS, JulienJ P (1997). Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol, 148(1): 299–316
CrossRef
Pubmed
Google scholar
|
[156] |
ZouZY, SunQ, LiuMS, LiXG, CuiLY (2013). Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin. Neurobiol Aging, 34:1713 e1715–1716
|
/
〈 |
|
〉 |