Single-cell genomics: An overview
Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN
Single-cell genomics: An overview
The newly developed next-generation sequencing platforms, in combination with genome-scale amplification methods, provide a powerful tool to study genomics from a single cell. This mini-review summarizes the technologies of single cell genomics and their applications in several areas of biomedical research including stem cells, cancer biology and reproductive medicine. Particularly, it highlights recent advances in single cell exome sequencing, RNA-seq, and genome sequencing. The application of these powerful techniques will shed new light on the fundamental principles of gene transcription and genome organization at single-cell level and improve our understanding of cellular heterogeneity and diversity in multicellular organisms.
single-cell genomics / next-generation sequencing / RNA-seq / single-nucleotide variation / copy-number variation / DNA methylation
[1] |
Aird D, Ross M G, Chen W S, Danielsson M, Fennell T, Russ C, Jaffe D B, Nusbaum C, Gnirke A (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol, 12(2): R18
CrossRef
Pubmed
Google scholar
|
[2] |
Allen L Z, Ishoey T, Novotny M A, McLean J S, Lasken R S, Williamson S J (2011). Single virus genomics: a new tool for virus discovery. PLoS ONE, 6(3): e17722
CrossRef
Pubmed
Google scholar
|
[3] |
Bhutani N, Burns D M, Blau H M (2011). DNA demethylation dynamics. Cell, 146(6): 866-872
CrossRef
Pubmed
Google scholar
|
[4] |
Buganim Y, Faddah D A, Cheng A W, Itskovich E, Markoulaki S, Ganz K, Klemm S L, van Oudenaarden A, Jaenisch R (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6): 1209-1222
CrossRef
Pubmed
Google scholar
|
[5] |
Chaffer C L, Weinberg R A (2011). A perspective on cancer cell metastasis. Science, 331(6024): 1559-1564
CrossRef
Pubmed
Google scholar
|
[6] |
Clark M J, Homer N, O’Connor B D, Chen Z, Eskin A, Lee H, Merriman B, Nelson S F (2010). U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet, 6(1): e1000832
CrossRef
Pubmed
Google scholar
|
[7] |
Corneveaux J J, Kruer M C, Hu-Lince D, Ramsey K E, Zismann V L, Stephan D A, Craig D W, Huentelman M J (2007). SNP-based chromosomal copy number ascertainment following multiple displacement whole-genome amplification. Biotechniques, 42(1): 77-83
CrossRef
Pubmed
Google scholar
|
[8] |
Dalerba P, Kalisky T, Sahoo D, Rajendran P S, Rothenberg M E, Leyrat A A, Sim S, Okamoto J, Johnston D M, Qian D, Zabala M, Bueno J, Neff N F, Wang J, Shelton A A, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke M F, Quake S R (2011). Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol, 29(12): 1120-1127
CrossRef
Pubmed
Google scholar
|
[9] |
Dean F B, Hosono S, Fang L, Wu X, Faruqi A F, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore S F, Egholm M, Lasken R S (2002). Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA, 99(8): 5261-5266
CrossRef
Pubmed
Google scholar
|
[10] |
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910): 133-138
CrossRef
Pubmed
Google scholar
|
[11] |
Esteller M (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 8(4): 286-298
CrossRef
Pubmed
Google scholar
|
[12] |
Fan H C, Wang J, Potanina A, Quake S R (2011). Whole-genome molecular haplotyping of single cells. Nat Biotechnol, 29(1): 51-57
CrossRef
Pubmed
Google scholar
|
[13] |
Farago C, Chester I C (1961). Cancer in the Territory of Papua and New Guinea: a preliminary communication. Med J Aust, 48(2): 1033-1035
Pubmed
|
[14] |
Feng Z, Fang G, Korlach J, Clark T, Luong K, Zhang X, Wong W, Schadt E (2013). Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic. PLOS Comput Biol, 9(3): e1002935
CrossRef
Pubmed
Google scholar
|
[15] |
Frontera W R, Zayas A R, Rodriguez N (2012). Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am, 23(1): 201-207, xiii (xiii.)
CrossRef
Pubmed
Google scholar
|
[16] |
Galán A, Montaner D, Póo M E, Valbuena D, Ruiz V, Aguilar C, Dopazo J, Simón C (2010). Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis. PLoS ONE, 5(10): e13615
CrossRef
Pubmed
Google scholar
|
[17] |
Geschwind D H, Konopka G (2009). Neuroscience in the era of functional genomics and systems biology. Nature, 461(7266): 908-915
CrossRef
Pubmed
Google scholar
|
[18] |
Guo Y, Yang Y, Zhou J, Czajkowsky D M, Liu B, Shao Z (2012). Microdissection of spatially identified single nuclei in a solid tumor for single cell whole genome sequencing. Biotechniques, 0(0): 1-3
Pubmed
|
[19] |
Hamburger A W, Salmon S E (1977). Primary bioassay of human tumor stem cells. Science, 197(4302): 461-463
CrossRef
Pubmed
Google scholar
|
[20] |
Hanson E K, Ballantyne J (2005). Whole genome amplification strategy for forensic genetic analysis using single or few cell equivalents of genomic DNA. Anal Biochem, 346(2): 246-257
CrossRef
Pubmed
Google scholar
|
[21] |
Hashimshony, T., Wagner, F., Sher, N., and Yanai, I. (2012). CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell reports2, 666-673.
|
[22] |
He C (2010). Grand challenge commentary: RNA epigenetics? Nat Chem Biol, 6(12): 863-865
CrossRef
Pubmed
Google scholar
|
[23] |
Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann E M, Lax S, Waldispuehl-Geigl J, Mauermann O, Lackner C, Höfler G, Eisner F, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl J B, Speicher M R (2013). Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res, 73(10): 2965-2975
CrossRef
Pubmed
Google scholar
|
[24] |
Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, Lu Z, Gu N, Laurie G, Bolund L, Kristiansen K, Wang J, Yang H, Li Y, Zhang X, Wang J (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148(5): 873-885
CrossRef
Pubmed
Google scholar
|
[25] |
Hughes S, Jones J L (2007). The use of multiple displacement amplified DNA as a control for methylation specific PCR, pyrosequencing, bisulfite sequencing and methylation-sensitive restriction enzyme PCR. BMC Mol Biol, 8(1): 91
CrossRef
Pubmed
Google scholar
|
[26] |
Hutchison C A 3rd, Smith H O, Pfannkoch C, Venter J C (2005). Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci USA, 102(48): 17332-17336
CrossRef
Pubmed
Google scholar
|
[27] |
Iourov I Y, Vorsanova S G, Yurov Y B (2012). Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics, 13(6): 477-488
CrossRef
Pubmed
Google scholar
|
[28] |
Islam S, Kjällquist U, Moliner A, Zajac P, Fan J B, Lönnerberg P, Linnarsson S (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res, 21(7): 1160-1167
CrossRef
Pubmed
Google scholar
|
[29] |
Jones P A, Baylin S B (2007). The epigenomics of cancer. Cell, 128(4): 683-692
CrossRef
Pubmed
Google scholar
|
[30] |
Kleinsmith L J, Pierce G B Jr (1964). Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res, 24: 1544-1551
Pubmed
|
[31] |
Lecault V, Vaninsberghe M, Sekulovic S, Knapp D J, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, Falconnet D, White A K, Kent D G, Copley M R, Taghipour F, Eaves C J, Humphries R K, Piret J M, Hansen C L (2011). High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods, 8(7): 581-586
CrossRef
Pubmed
Google scholar
|
[32] |
Lee, J.Y., Dong, S.M., Kim, S.Y., Yoo, N.J., Lee, S.H., and Park, W.S. (1998). A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Archiv: an international journal of pathology 433, 305-309.
|
[33] |
Li L, Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542-545
CrossRef
Pubmed
Google scholar
|
[34] |
Ling J, Deng Y, Long X, Liu J, Du H, Cao B, Xu K (2012). Single-nucleotide polymorphism array coupled with multiple displacement amplification: accuracy and spatial resolution for analysis of chromosome copy numbers in few cells. Biotechnol Appl Biochem, 59(1): 35-44
CrossRef
Pubmed
Google scholar
|
[35] |
Lu S, Zong C, Fan W, Yang M, Li J, Chapman A R, Zhu P, Hu X, Xu L, Yan L, Bai F, Qiao J, Tang F, Li R, Xie X S (2012). Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science, 338(6114): 1627-1630
CrossRef
Pubmed
Google scholar
|
[36] |
Luthra R, Medeiros L J (2004). Isothermal multiple displacement amplification: a highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens. J Mol Diagn, 6(3): 236-242
CrossRef
Pubmed
Google scholar
|
[37] |
Mardis E R (2008). The impact of next-generation sequencing technology on genetics. Trends Genet, 24(3): 133-141
CrossRef
Pubmed
Google scholar
|
[38] |
McLean J S, Lombardo M J, Ziegler M G, Novotny M, Yee-Greenbaum J, Badger J H, Tesler G, Nurk S, Lesin V, Brami D, Hall A P, Edlund A, Allen L Z, Durkin S, Reed S, Torriani F, Nealson K H, Pevzner P A, Friedman R, Venter J C, Lasken R S (2013). Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res, 23(5): 867-877
CrossRef
Pubmed
Google scholar
|
[39] |
McVean G A, Myers S R, Hunt S, Deloukas P, Bentley D R, Donnelly P (2004). The fine-scale structure of recombination rate variation in the human genome. Science, 304(5670): 581-584
CrossRef
Pubmed
Google scholar
|
[40] |
McWilliam Leitch E C, McLauchlan J (2013). Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing. J Virol, 87(23): 12648-12655
CrossRef
Pubmed
Google scholar
|
[41] |
Metzker M L (2010). Sequencing technologies- the next generation. Nat Rev Genet, 11(1): 31-46
CrossRef
Pubmed
Google scholar
|
[42] |
Morozova O, Marra M A (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92(5): 255-264
CrossRef
Pubmed
Google scholar
|
[43] |
Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie W R, Hicks J, Wigler M (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341): 90-94
CrossRef
Pubmed
Google scholar
|
[44] |
Niedringhaus T P, Milanova D, Kerby M B, Snyder M P, Barron A E (2011). Landscape of next-generation sequencing technologies. Anal Chem, 83(12): 4327-4341
CrossRef
Pubmed
Google scholar
|
[45] |
Paez J G, Lin M, Beroukhim R, Lee J C, Zhao X, Richter D J, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers W R (2004). Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res, 32(9): e71
CrossRef
Pubmed
Google scholar
|
[46] |
Pan X, Durrett R E, Zhu H, Tanaka Y, Li Y, Zi X, Marjani S L, Euskirchen G, Ma C, Lamotte R H, Park I H, Snyder M P, Mason C E, Weissman S M (2013). Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci USA, 110(2): 594-599
CrossRef
Pubmed
Google scholar
|
[47] |
Pan X, Urban A E, Palejev D, Schulz V, Grubert F, Hu Y, Snyder M, Weissman S M (2008). A procedure for highly specific, sensitive, and unbiased whole-genome amplification. Proc Natl Acad Sci USA, 105(40): 15499-15504
CrossRef
Pubmed
Google scholar
|
[48] |
Park S Y, Gönen M, Kim H J, Michor F, Polyak K (2010). Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest, 120(2): 636-644
CrossRef
Pubmed
Google scholar
|
[49] |
Quenneville, S., Turelli, P., Bojkowska, K., Raclot, C., Offner, S., Kapopoulou, A., and Trono, D. (2012). The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell reports2, 766-773.
|
[50] |
Ramsköld D, Luo S, Wang Y C, Li R, Deng Q, Faridani O R, Daniels G A, Khrebtukova I, Loring J F, Laurent L C, Schroth G P, Sandberg R (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol, 30(8): 777-782
CrossRef
Pubmed
Google scholar
|
[51] |
Reya T, Morrison S J, Clarke M F, Weissman I L (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859): 105-111
CrossRef
Pubmed
Google scholar
|
[52] |
Rothberg J M, Hinz W, Rearick T M, Schultz J, Mileski W, Davey M, Leamon J H, Johnson K, Milgrew M J, Edwards M, Hoon J, Simons J F, Marran D, Myers J W, Davidson J F, Branting A, Nobile J R, Puc B P, Light D, Clark T A, Huber M, Branciforte J T, Stoner I B, Cawley S E, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza J A, Namsaraev E, McKernan K J, Williams A, Roth G T, Bustillo J (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475(7356): 348-352
CrossRef
Pubmed
Google scholar
|
[53] |
Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno K D, Imai T, Ueda H R (2013). Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol, 14(4): R31
CrossRef
Pubmed
Google scholar
|
[54] |
Schoenborn L, Yates P S, Grinton B E, Hugenholtz P, Janssen P H (2004). Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol, 70(7): 4363-4366
CrossRef
Pubmed
Google scholar
|
[55] |
Shalek A K, Satija R, Adiconis X, Gertner R S, Gaublomme J T, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta J J, Gennert D, Gnirke A, Goren A, Hacohen N, Levin J Z, Park H, Regev A (2013). Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498(7453): 236-240
CrossRef
Pubmed
Google scholar
|
[56] |
Shendure J, Ji H (2008). Next-generation DNA sequencing. Nat Biotechnol, 26(10): 1135-1145
CrossRef
Pubmed
Google scholar
|
[57] |
Simone N L, Bonner R F, Gillespie J W, Emmert-Buck M R, Liotta L A (1998). Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet, 14(7): 272-276
CrossRef
Pubmed
Google scholar
|
[58] |
Song C X, Clark T A, Lu X Y, Kislyuk A, Dai Q, Turner S W, He C, Korlach J (2012). Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods, 9(1): 75-77
CrossRef
Pubmed
Google scholar
|
[59] |
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930-935
CrossRef
Pubmed
Google scholar
|
[60] |
Tan D W, Jensen K B, Trotter M W, Connelly J T, Broad S, Watt F M (2013). Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development, 140(7): 1433-1444
CrossRef
Pubmed
Google scholar
|
[61] |
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch B B, Siddiqui A, Lao K, Surani M A (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 6(5): 377-382
CrossRef
Pubmed
Google scholar
|
[62] |
Tang F, Lao K, Surani M A (2011). Development and applications of single-cell transcriptome analysis. Nat Methods, 8(4 Suppl): S6-S11
Pubmed
|
[63] |
Torres L, Ribeiro F R, Pandis N, Andersen J A, Heim S, Teixeira M R (2007). Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat, 102(2): 143-155
CrossRef
Pubmed
Google scholar
|
[64] |
Tzvetkov M V, Becker C, Kulle B, Nürnberg P, Brockmöller J, Wojnowski L (2005). Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification. Electrophoresis, 26(3): 710-715
CrossRef
Pubmed
Google scholar
|
[65] |
Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 288(5463): 113-116
CrossRef
Pubmed
Google scholar
|
[66] |
Voet T, Kumar P, Van Loo P, Cooke S L, Marshall J, Lin M L, Zamani Esteki M, Van der Aa N, Mateiu L, McBride D J, Bignell G R, McLaren S, Teague J, Butler A, Raine K, Stebbings L A, Quail M A, D’Hooghe T, Moreau Y, Futreal P A, Stratton M R, Vermeesch J R, Campbell P J (2013). Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res, 41(12): 6119-6138
CrossRef
Pubmed
Google scholar
|
[67] |
Wang J, Fan H C, Behr B, Quake S R (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150(2): 402-412
CrossRef
Pubmed
Google scholar
|
[68] |
Wu A R, Neff N F, Kalisky T, Dalerba P, Treutlein B, Rothenberg M E, Mburu F M, Mantalas G L, Sim S, Clarke M F, Quake S R (2013). Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods,
CrossRef
Pubmed
Google scholar
|
[69] |
Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J (2012). Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148(5): 886-895
CrossRef
Pubmed
Google scholar
|
[70] |
Xue Z, Huang K, Cai C, Cai L, Jiang C Y, Feng Y, Liu Z, Zeng Q, Cheng L, Sun Y E, Liu J Y, Horvath S, Fan G (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature, 500(7464): 593-597
CrossRef
Pubmed
Google scholar
|
[71] |
Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol, 20(9): 1131-1139
CrossRef
Pubmed
Google scholar
|
[72] |
Zandi S, Ahsberg J, Tsapogas P, Stjernberg J, Qian H, Sigvardsson M (2012). Single-cell analysis of early B-lymphocyte development suggests independent regulation of lineage specification and commitment in vivo. Proc Natl Acad Sci USA, 109(39): 15871-15876
CrossRef
Pubmed
Google scholar
|
[73] |
Zhao Y, Gong X, Chen L, Li L, Liang Y, Chen S, Zhang Y (2013). Site-specific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur J Hum Genet,
CrossRef
Pubmed
Google scholar
|
[74] |
Zong C, Lu S, Chapman A R, Xie X S (2012). Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338(6114): 1622-1626
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |