A review of factors affecting the success of membrane protein crystallization using bicelles

Ann C. KIMBLE-HILL

Front. Biol. ›› 2013, Vol. 8 ›› Issue (3) : 261-272.

PDF(349 KB)
PDF(349 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (3) : 261-272. DOI: 10.1007/s11515-012-1208-0
REVIEW
REVIEW

A review of factors affecting the success of membrane protein crystallization using bicelles

Author information +
History +

Abstract

Several reports have been published detailing various platforms for obtaining crystals of membrane proteins to determine their structure including those that use disk shaped bilayers called bicelles. While these crystals have been readily grown and used for X-ray diffraction, the general understanding as to why bicelles are adequate for such a procedure or how to rationally choose conditions remains unknown. This review intends to discuss issues of protein stabilization and precipitation in the presence of lipids that may influence crystal formation.

Keywords

bicelle / membrane protein / crystallization

Cite this article

Download citation ▾
Ann C. KIMBLE-HILL. A review of factors affecting the success of membrane protein crystallization using bicelles. Front Biol, 2013, 8(3): 261‒272 https://doi.org/10.1007/s11515-012-1208-0

References

[1]
Afzal S, Tesler W J, Blessing S K, Collins J M, Lis L J (1984). Hydration force between phosphatidylcholine surfaces in aqueous electrolyte solutions. J Colloid Interface Sci, 97(2): 303–307
CrossRef Google scholar
[2]
Angelov B, Ollivon M, Angelova A (1999). X-Ray diffraction study of the effect of the detergent octyl glucoside on the structure of lamellar and nonlamellar lipid/water phases of use for membrane protein reconstitution. Langmuir, 15(23): 8225–8234
CrossRef Google scholar
[3]
Arnold A, Labrot T, Oda R, Dufourc E J (2002). Cation modulation of bicelle size and magnetic alignment as revealed by solid-state NMR and electron microscopy. Biophys J, 83(5): 2667–2680
CrossRef Pubmed Google scholar
[4]
Bandyopadhyay S, Shelley J C, Klein M L (2001). Molecular dynamics study of the effect of surfactant on a biomembrane. J Phys Chem B, 105(25): 5979–5986
CrossRef Google scholar
[5]
Benz R (1988). Structure and function of porins from gram-negative bacteria. Annu Rev Microbiol, 42(1): 359–393
CrossRef Pubmed Google scholar
[6]
Bokoch M P, Zou Y, Rasmussen S G F, Liu C W, Nygaard R, Rosenbaum D M (2010). Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature, 463(7277): 108–112 [10.1038/nature08650]
[7]
Boni L T, Stewart T P, Alderfer J L, Hui S W (1981). Lipid-polyethylene glycol interactions: II. formation of defects in bilayers. J Membr Biol, 62(1–2): 71–77
CrossRef Pubmed Google scholar
[8]
Boni L T, Stewart T P, Hui S W (1984). Alterations in phospholipid polymorphism by polyethylene glycol. J Membr Biol, 80(1): 91–104
CrossRef Pubmed Google scholar
[9]
Branden C, Tooze J (1999). Introduction to Protein Structure. New York: Garland Publisher
[11]
Caffrey M (2003). Membrane protein crystallization. J Struct Biol, 142(1): 108–132
CrossRef Pubmed Google scholar
[12]
Carion-Taravella B, Lesieur S, Chopineau J, Lesieur P, Ollivon M (2001). Phase behavior of mixed aqueous dispersions of dipalmitoylphosphatidylcholine and dodecyl glycosides: a differential scanning calorimetry and X-ray diffraction investigation. Langmuir, 18(2): 325–335
CrossRef Google scholar
[13]
Carpenter E P, Beis K, Cameron A D, Iwata S (2008). Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol, 18(5): 581–586
CrossRef Pubmed Google scholar
[14]
Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M (2002). Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J, 83(6): 3393–3407
CrossRef Pubmed Google scholar
[15]
Cherezov V, Clogston J, Papiz M Z, Caffrey M (2006). Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol, 357(5): 1605–1618
CrossRef Pubmed Google scholar
[16]
Cho H S, Dominick J L, Spence M M (2010). Lipid domains in bicelles containing unsaturated lipids and cholesterol. J Phys Chem B, 114(28): 9238–9245
CrossRef Pubmed Google scholar
[17]
Clarke S (1975). The size and detergent binding of membrane proteins. J Biol Chem, 250(14): 5459–5469
Pubmed
[18]
Cunningham B A, Shimotake J E, Tamura-Lis W, Mastran T, Kwok W M, Kauffman J W, Lis L J (1986). The influence of ion species on phosphatidylcholine bilayer structure and packing. Chem Phys Lipids, 39(1–2): 135–143
CrossRef Pubmed Google scholar
[19]
de Planque M R R, Greathouse D V, Koeppe R E 2nd, Schäfer H, Marsh D, Killian J A (1998). Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry, 37(26): 9333–9345
CrossRef Pubmed Google scholar
[20]
Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grélard A, Opella S J, Marassi F M, Dufourc E J (2009). Bicelles: a natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie, 91(6): 744–751
CrossRef Pubmed Google scholar
[21]
Dumas F, Sperotto M M, Lebrun M C, Tocanne J F, Mouritsen O G (1997). Molecular sorting of lipids by bacteriorhodopsin in dlpc/dspc lipid bilayers. Biophys J, 73(Oct): 1940–1953
CrossRef Pubmed Google scholar
[22]
Ericsson C A, Söderman O, Garamus V M, Bergström M, Ulvenlund S (2005). Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 2. n-Tetradecyl-beta-D-maltoside. Langmuir, 21(4): 1507–1515
CrossRef Pubmed Google scholar
[23]
Ericsson C A, Söderman O, Garamus V M, Bergström M, Ulvenlund S (2004). Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 1. n-nonyl-beta-D-glucoside. Langmuir, 20(4): 1401–1408
CrossRef Pubmed Google scholar
[24]
Faham S (2005). Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci, 14: 836–840 [10.1110/ps.041167605]
[25]
Faham S, Boulting G L, Massey E A, Yohannan S, Yang D, Bowie J U (2005). Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci, 14(3): 836–840
CrossRef Pubmed Google scholar
[26]
Faham S, Bowie J U (2002). Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol, 316(1): 1–6
CrossRef Pubmed Google scholar
[27]
Faham S, Ujwal R, Abramson J, Bowie J U (2009). Chapter 5 Practical Aspects of Membrane Proteins Crystallization in Bicelles. In: LarryD. (Ed.), Current Topics in Membranes (Volume 63, pp. 109–125), Academic Press.
[28]
Faham S, Yang D, Bare E, Yohannan S, Whitelegge J P, Bowie J U (2004). Side-chain contributions to membrane protein structure and stability. J Mol Biol, 335(1): 297–305
CrossRef Pubmed Google scholar
[29]
Garavito R M, Picot D (1990). The art of crystallizing membrane proteins. Methods, 1(1): 57–69
CrossRef Google scholar
[30]
Garavito R M, Picot D, Loll P J (1996). Strategies for crystallizing membrane proteins. J Bioenerg Biomembr, 28(1): 13–27
Pubmed
[31]
Giordano R, Maisano G, Teixeira J (1997). Sans studies of octyl-β-glucoside and glycine micellar solutions. J Appl Crystallography, 30(2): 761–764
[32]
Glaubitz C, Grobner G, Watts A (2000). Structural and orientational information of the membrane embedded M13 coat protein by 13c-mas Nmr spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1463(1): 151–161
CrossRef Google scholar
[33]
Harroun T A, Koslowsky M, Nieh M P, de Lannoy C F, Raghunathan V A, Katsaras J (2005). Comprehensive examination of mesophases formed by DMPC and DHPC mixtures. Langmuir, 21(12): 5356–5361
CrossRef Pubmed Google scholar
[34]
Hauser H, Paltauf F, Shipley G G (1982). Structure and thermotropic behavior of phosphatidylserine bilayer membranes. Biochemistry, 21(5): 1061–1067
CrossRef Pubmed Google scholar
[35]
Heerklotz H, Seelig J (2000). Titration calorimetry of surfactant–membrane partitioning and membrane solubilization. Biomembranes, 1508(1–2): 69–85
[36]
Helm C A, Tippmann-Krayer P, Möhwald H, Als-Nielsen J, Kjaer K (1991). Phases of phosphatidyl ethanolamine monolayers studied by synchrotron x-ray scattering. Biophys J, 60(6): 1457–1476
CrossRef Pubmed Google scholar
[37]
Hite R K, Gonen T, Harrison S C, Walz T (2008). Interactions of lipids with aquaporin-0 and other membrane proteins. Pflugers Arch, 456: 651–661 [10.1007/s00424-007-0353-9]
[38]
Hite R K, Li Z, Walz T (2010). Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2d crystals. EMBO J, 29(10): 1652–1658 [10.1038/emboj.2010.68]
[39]
Inoko Y, Yamaguchi T, Furuya K, Mitsui T (1975). Effects of cations on dipalmitoyl phosphatidylcholine/cholesterol/water systems. Biochimica et Biophysica Acta (BBA)–Biomembranes, 413(1): 24–32
CrossRef Google scholar
[40]
Jacobson K, Ishihara A, Inman R (1987). Lateral diffusion of proteins in membranes. Annu Rev Physiol, 49(1): 163–175
CrossRef Pubmed Google scholar
[41]
Jaehnig F, Vogel H, Best L (1982). Unifying description of the effect of membrane proteins on lipid order. vVerification for the melittin/dimyristoylphosphatidylcholine system. Biochem, 21(26): 6790–6798
CrossRef Google scholar
[42]
Jähnig F (1981). Critical effects from lipid-protein interaction in membranes. I. Theoretical description. Biophys J, 36(2): 329–345
CrossRef Pubmed Google scholar
[43]
Janiak M J, Small D M, Shipley G G (1976). Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry, 15(21): 4575–4580
CrossRef Pubmed Google scholar
[44]
Johnson S J, Bayerl T M, Weihan W, Noack H, Penfold J, Thomas R K, Kanellas D, Rennie A R, Sackmann E (1991). Coupling of spectrin and polylysine to phospholipid monolayers studied by specular reflection of neutrons. Biophys J, 60(5): 1017–1025
CrossRef Pubmed Google scholar
[45]
Kam Z, Shore H B, Feher G (1978). On the crystallization of proteins. J Mol Biol, 123(4): 539–555
CrossRef Pubmed Google scholar
[46]
Keller M, Kerth A, Blume A (1997). Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Biomembranes, 1326(2): 178–192
[47]
Kilic M S, Bazant M Z, Ajdari A (2007). Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E Stat Nonlin Soft Matter Phys, 75(2): 021502
CrossRef Pubmed Google scholar
[48]
Killian J A (1998). Hydrophobic mismatch between proteins and lipids in membranes. Biochimica et Biophysica Acta (BBA)–Biomembranes, 1376(3): 401–415
[49]
Kimble-Hill A C, Singh D, Laible P D, Hanson D K, Porcar L, Butler P, Perez-Salas U (2009). Detergent localization in model proteo-bicelles. Biophys J, 96(3): 453a
CrossRef Google scholar
[50]
Koehorst R B M, Spruijt R B, Vergeldt F J, Hemminga M A (2004). Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Biophys J, 87(3): 1445–1455
CrossRef Pubmed Google scholar
[51]
Kuhl T, Guo Y, Alderfer J L, Berman A D, Leckband D, Israelachvili J, Hui S W (1996). Direct measurement of polyethylene glycol induced depletion attraction between lipid bilayers. Langmuir, 12(12): 3003–3014
CrossRef Google scholar
[52]
Kühlbrandt W, Auer M, Scarborough G A (1998). Structure of the P-type ATPases. Curr Opin Struct Biol, 8(4): 510–516
CrossRef Pubmed Google scholar
[53]
Kwan C C, Rosen M (1978). The relationship of structure to properties in surfactants: VII. synthesis and properties of some sodium 1,4-and 2,6-alkoxynaphthalenesulfonates. Journal of the American Oil Chemists' Society, 55(8): 625–628
[54]
Lambert O, Levy D, Ranck J L, Leblanc G, Rigaud J L (1998). A new “gel-like” phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies. Biophys J, 74(2 Pt 1): 918–930
CrossRef Pubmed Google scholar
[55]
Landau E M, Rosenbusch J P (1996). Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA, 93(25): 14532–14535
CrossRef Pubmed Google scholar
[56]
Lee A G (2004). How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta, 1666: 62–87 [10.1016/j.bbamem.2004.05.012]
[57]
Lis L J, Lis W T, Parsegian V A, Rand R P (1981a). Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry, 20(7): 1771–1777
CrossRef Pubmed Google scholar
[58]
Lis L J, Parsegian V A, Rand R P (1981b). Binding of divalent cations of dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Biochemistry, 20(7): 1761–1770
CrossRef Pubmed Google scholar
[59]
Liu F, Lewis R N H, Hodges R S, Mcelhaney R N (2002). Effect of variations in the structure of a polyleucine-based α-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Biochem, 41(29): 9197–9207
CrossRef Google scholar
[60]
Lodish H, Berk A, Matsudaira P, Kaiser C, Krieger M, Scott M (2004). Molecular Cell Biology (5th Ed.). New York: Freeman Press
[61]
Lookman T, Pink D A, Grundke E W, Zuckermann M J, deVerteuil F (1982). Phase separation in lipid bilayers containing integral proteins. Computer simulation studies. Biochemistry, 21(22): 5593–5601
CrossRef Pubmed Google scholar
[62]
Loosley-Millman M E, Rand R P, Parsegian V A (1982). Effects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayers. Biophys J, 40(3): 221–232
CrossRef Pubmed Google scholar
[63]
Luecke H, Schobert B, Stagno J, Imasheva E S, Wang J M, Balashov S P, Lanyi J K (2008). Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci USA, 105(43): 16561–16565
CrossRef Pubmed Google scholar
[64]
MacDonald A L, Pink D A (1987). Thermodynamics of glycophorin in phospholipid bilayer membranes. Biochemistry, 26(7): 1909–1917
CrossRef Pubmed Google scholar
[65]
McLaughlin S (1989). The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem, 18(1): 113–136
CrossRef Pubmed Google scholar
[66]
Mcpherson A (1991). Useful Principles for the Crystallization of Proteins. Boca Raton: CRC Press
[67]
Michel H, Oesterhelt D (1980). Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc Natl Acad Sci USA, 77(3): 1283–1285
CrossRef Pubmed Google scholar
[68]
Mitchell D J, Tiddy G J T, Waring L, Bostock T, Mcdonald M P (1983). Phase behaviour of polyoxyethylene surfactants with water. mesophase structures and partial miscibility (cloud points). Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 79(4): 975–1000
[69]
Mouritsen O G, Bloom M (1984). Mattress model of lipid-protein interactions in membranes. Biophys J, 46(2): 141–153
CrossRef Pubmed Google scholar
[70]
Mouritsen O G, Bloom M (1993). Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct, 22: 145–171
[71]
Needham D, McIntosh T J, Evans E (1988). Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry, 27(13): 4668–4673
CrossRef Pubmed Google scholar
[72]
Nieh M P, Glinka C J, Krueger S, Prosser R S, Katsaras J (2002). SANS study on the effect of lanthanide ions and charged lipids on the morphology of phospholipid mixtures. Small-angle neutron scattering. Biophys J, 82(5): 2487–2498
CrossRef Pubmed Google scholar
[73]
Nilsson F, Söderman O, Johansson I (1996). Physical–chemical properties of the N-octyl B-D-glucoside/water system. a phase dDiagram, self-diffusion Nmr, and saxs study. Langmuir, 12(4): 902–908
CrossRef Google scholar
[74]
Nollert P (2004). Lipidic cubic phases as matrices for membrane protein crystallization. Methods, 34(3): 348–353
CrossRef Pubmed Google scholar
[75]
Owicki J C, Springgate M W, McConnell H M (1978). Theoretical study of protein—lipid interactions in bilayer membranes. Proc Natl Acad Sci USA, 75(4): 1616–1619
CrossRef Pubmed Google scholar
[76]
Pebay-Peyroula E, Garavito R M, Rosenbusch J P, Zulauf M, Timmins P A (1995). Detergent structure in tetragonal crystals of OmpF porin. Structure, 3(10): 1051–1059
CrossRef Pubmed Google scholar
[77]
Petrache H I, Tristram-Nagle S, Harries D, Kučerka N, Nagle J F, Parsegian V A (2006). Swelling of phospholipids by monovalent salt. J Lipid Res, 47(2): 302–309
CrossRef Pubmed Google scholar
[78]
Pink D A, Chapman D (1979). Protein-lipid interactions in bilayer membranes: a lattice model. Proc Natl Acad Sci USA, 76(4): 1542–1546
CrossRef Pubmed Google scholar
[79]
Pink D A, Green T J, Chapman D (1980). Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry, 19(2): 349–356
CrossRef Pubmed Google scholar
[80]
Raffard G, Steinbruckner S, Arnold A, Davis J H, Dufourc E J (2000). Temperature–composition diagram of dimyristoylphosphatidylcho-line–dicaproylphosphatidylcholine “bicelles” self-orienting in the magnetic field. a solid state 2h and 31p Nmr study. Langmuir, 16(20): 7655–7662
CrossRef Google scholar
[81]
Rasmussen S G F, Choi H-J, Rosenbaum D M, Kobilka T S, Thian F S, Edwards P C (2007). Crystal structure of the human [Bgr]2 adrenergic g-Protein-coupled receptor. Nature, 450(7168): 383– 387
[82]
Roth M, Lewit-Bentley A, Michel H, Deisenhofer J, Huber R, Oesterhelt D (1989). Detergent structure in crystals of a bacterial photosynthetic reaction centre. Nature, 340(6235): 659–662
[83]
Sabra M C, Mouritsen O G (1998). Steady-state compartmentalization of lipid membranes by active proteins. Biophys J, 74(2 Pt 1): 745–752
CrossRef Pubmed Google scholar
[84]
Santonicola M G L, Lenhoff A M, Kaler E W (2008). Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability. Biophys J, 94(9): 3647–3658
CrossRef Pubmed Google scholar
[85]
Seelig A, Seelig J (1977). Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry, 16(1): 45–50
CrossRef Pubmed Google scholar
[86]
Sharpe S, Barber K R, Grant C W M, Goodyear D, Morrow M R (2002). Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains. Biophys J, 83(1): 345–358
CrossRef Pubmed Google scholar
[87]
Stewart T P, Hui S W, Portis A R Jr, Papahadjopoulos D (1979). Complex Phase Mixing of Phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles. Biochimica et Biophysica Acta (BBA)–Biomembranes, 556(1): 1–16
CrossRef Google scholar
[88]
Strandberg E, Ozdirekcan S, Rijkers D T S, van der Wel P C A, Koeppe R E 2nd, Liskamp R M, Killian J A (2004). Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. Biophys J, 86(6): 3709–3721
CrossRef Pubmed Google scholar
[89]
Sukumaran S, Hauser K, Maier E, Benz R, Mäntele W (2006). Structure-function correlation of outer membrane protein porin from Paracoccus denitrificans. Biopolymers, 82(4): 344–348
CrossRef Pubmed Google scholar
[90]
Takeda K, Sato H, Hino T, Kono M, Fukuda K, Sakurai I, Okada T, Kouyama T (1998). A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J Mol Biol, 283(2): 463–474
CrossRef Pubmed Google scholar
[91]
Tamm I, Kikuchi T (1979). Early termination of heterogeneous nuclear RNA transcripts in mammalian cells: accentuation by 5,6-dichloro 1-beta-D-ribofuranosylbenzimidazole. Proc Natl Acad Sci USA, 76(11): 5750–5754
CrossRef Pubmed Google scholar
[92]
Tamura-Lis W, Reber E J, Cunningham B A, Collins J M, Lis L J (1986). Ca2+ induced phase separations in phospholipid mixtures. Chem Phys Lipids, 39(1-2): 119–124
CrossRef Pubmed Google scholar
[93]
Tatulian S A (1983). Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes. Biochimica et Biophysica Acta (BBA)–Biomembranes, 736(2): 189–195
CrossRef Google scholar
[94]
Tessier-Lavigne M, Boothroyd A, Zuckermann M J, Pink D A (1982). Lipid-mediated interactions between intrinsic molecules in bilayer membranes. J Chem Phys, 76(9): 4587–4599
CrossRef Google scholar
[95]
Tilcock C P, Fisher D (1979). Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta, 557(1): 53–61
CrossRef Pubmed Google scholar
[96]
Träuble H, Eibl H (1974). Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc Natl Acad Sci USA, 71(1): 214–219
CrossRef Pubmed Google scholar
[97]
Ujwal R, Bowie J U (2011). Crystallizing membrane proteins using lipidic bicelles. Methods, 55(4): 337–341
CrossRef Pubmed Google scholar
[98]
Ujwal R, Cascio D, Colletier J P, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008). The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA, 105(46): 17742–17747
CrossRef Pubmed Google scholar
[99]
van Dam L, Karlsson G, Edwards K (2004). Direct Observation and Characterization of Dmpc/Dhpc Aggregates under Conditions Relevant for Biological Solution Nmr. Biochimica et Biophysica Acta (BBA)–Biomembranes, 1664(2): 241–256
CrossRef Google scholar
[100]
van der Wel P C A, Strandberg E, Killian J A, Koeppe R E 2nd (2002). Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR. Biophys J, 83(3): 1479–1488
CrossRef Pubmed Google scholar
[101]
Venturoli M, Smit B, Sperotto M M (2005). Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J, 88(3): 1778–1798
CrossRef Pubmed Google scholar
[102]
Vinothkumar K R (2011). Structure of rhomboid protease in a lipid environment. J Mol Biol, 407(2): 232–247
CrossRef Pubmed Google scholar
[103]
Vinson P K, Talmon Y, Walter A (1989). Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J, 56(4): 669–681
CrossRef Pubmed Google scholar
[104]
Yamazaki M, Ito T (1990). Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry, 29(5): 1309–1314
CrossRef Pubmed Google scholar
[105]
Zhang Y P, Lewis R N H, McElhaney R N (1997). Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J, 72(2 Pt 1): 779–793
CrossRef Pubmed Google scholar

Acknowledgments

This work was supported, in whole or in part, by National Institutes of Health Grants R01-AA018123-S1 and Department of Energy Funding FWP 58701.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(349 KB)

Accesses

Citations

Detail

Sections
Recommended

/