Progress in
Xinghong YANG, Jerod A. SKYBERG, Ling CAO, Beata CLAPP, Theresa THORNBURG, David W. PASCUAL
Progress in
Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines.
Brucella / brucellosis / zoonosis / livestock vaccines
[1] |
Abu Shaqra Q M (2000). Epidemiological aspects of brucellosis in Jordan. Eur J Epidemiol, 16(6): 581-584
CrossRef
Pubmed
Google scholar
|
[2] |
Adone R, Ciuchini F, Marianelli C, Tarantino M, Pistoia C, Marcon G, Petrucci P, Francia M, Riccardi G, Pasquali P (2005). Protective properties of rifampin-resistant rough mutants of Brucella melitensis. Infect Immun, 73(7): 4198-4204
CrossRef
Pubmed
Google scholar
|
[3] |
Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godefroid J, Walravens K, Letesson J J (2001). Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect Immun, 69(8): 4816-4822
CrossRef
Pubmed
Google scholar
|
[4] |
Alcantara R B, Read R D, Valderas M W, Brown T D, Roop R M 2nd (2004). Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun, 72(8): 4911-4917
CrossRef
Pubmed
Google scholar
|
[5] |
Almirón M, Martínez M, Sanjuan N, Ugalde R A (2001). Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect Immun, 69(10): 6225-6230
CrossRef
Pubmed
Google scholar
|
[6] |
Alton G G (1966). Duration of the immunity produced in goats by the Rev. 1 Brucella melitensis vaccine. J Comp Pathol, 76(3): 241-253
CrossRef
Pubmed
Google scholar
|
[7] |
Alton G G (1968). Further studies on the duration of the immunity produced in goats by the Rev. 1 Brucella melitensis vaccine. J Comp Pathol, 78(2): 173-178
CrossRef
Pubmed
Google scholar
|
[8] |
Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini A E, Ugalde R, Moreno E, Moriyón I, Gorvel J P (2005). Cyclic β-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol, 6(6): 618-625
CrossRef
Pubmed
Google scholar
|
[9] |
Arenas-Gamboa A M, Ficht T A, Davis D S, Elzer P H, Kahl-McDonagh M, Wong-Gonzalez A, Rice-Ficht A C (2009a). Oral vaccination with microencapsuled strain 19 vaccine confers enhanced protection against Brucella abortus strain 2308 challenge in red deer (Cervus elaphus elaphus). J Wildl Dis, 45(4): 1021-1029
Pubmed
|
[10] |
Arenas-Gamboa A M, Ficht T A, Davis D S, Elzer P H, Wong-Gonzalez A, Rice-Ficht A C (2009b). Enhanced immune response of red deer (Cervus elaphus) to live rb51 vaccine strain using composite microspheres. J Wildl Dis, 45(1): 165-173
Pubmed
|
[11] |
Arenas-Gamboa A M, Ficht T A, Kahl-McDonagh M M, Gomez G, Rice-Ficht A C (2009c). The Brucella abortus S19 DeltavjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle. Infect Immun, 77(2): 877-884
CrossRef
Pubmed
Google scholar
|
[12] |
Arenas-Gamboa A M, Ficht T A, Kahl-McDonagh M M, Rice-Ficht A C (2008). Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun, 76(6): 2448-2455
CrossRef
Pubmed
Google scholar
|
[13] |
Arenas-Gamboa A M, Rice-Ficht A C, Kahl-McDonagh M M, Ficht T A (2011). Protective efficacy and safety of Brucella melitensis 16MΔmucR against intraperitoneal and aerosol challenge in BALB/c mice. Infect Immun, 79(9): 3653-3658
CrossRef
Pubmed
Google scholar
|
[14] |
Ascón M A, Ochoa-Repáraz J, Walters N, Pascual D W (2005). Partially assembled K99 fimbriae are required for protection. Infect Immun, 73(11): 7274-7280
CrossRef
Pubmed
Google scholar
|
[15] |
Ashford D A, di Pietra J, Lingappa J, Woods C, Noll H, Neville B, Weyant R, Bragg S L, Spiegel R A, Tappero J, Perkins B A (2004). Adverse events in humans associated with accidental exposure to the livestock brucellosis vaccine RB51. Vaccine, 22(25-26): 3435-3439
CrossRef
Pubmed
Google scholar
|
[16] |
Atluri V L, Xavier M N, de Jong M F, den Hartigh A B, Tsolis R E (2011). Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol, 65(1): 523-541
CrossRef
Pubmed
Google scholar
|
[17] |
Audic S, Lescot M, Claverie J M, Scholz H C (2009). Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics, 10(1): 352
CrossRef
Pubmed
Google scholar
|
[18] |
Bäckhed F, Normark S, Schweda E K, Oscarson S, Richter-Dahlfors A (2003). Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect, 5(12): 1057-1063
CrossRef
Pubmed
Google scholar
|
[19] |
Baldi, P.C., Wallach, J.C., Ferrero, M.C., Delpino, M.V., and Fossati, C.A. (2008). Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina. CMI, 14: 805-807
|
[20] |
Baloglu S, Boyle S M, Vemulapalli R, Sriranganathan N, Schurig G G, Toth T E (2005). Immune responses of mice to vaccinia virus recombinants expressing either Listeria monocytogenes partial listeriolysin or Brucella abortus ribosomal L7/L12 protein. Vet Microbiol, 109(1-2): 11-17
CrossRef
Pubmed
Google scholar
|
[21] |
Banai M (2002). Control of small ruminant brucellosis by use of Brucella melitensis Rev.1 vaccine: laboratory aspects and field observations. Vet Microbiol, 90(1-4): 497-519
CrossRef
Pubmed
Google scholar
|
[22] |
Bandara A B, Poff-Reichow S A, Nikolich M, Hoover D L, Sriranganathan N, Schurig G G, Dobrean V, Boyle S M (2009). Simultaneous expression of homologous and heterologous antigens in rough, attenuated Brucella melitensis. Microbes Infect, 11(3): 424-428
CrossRef
Pubmed
Google scholar
|
[23] |
Barquero-Calvo E, Chaves-Olarte E, Weiss D S, Guzmán-Verri C, Chacón-Díaz C, Rucavado A, Moriyón I, Moreno E (2007). Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE, 2(7): e631
CrossRef
Pubmed
Google scholar
|
[24] |
Barrio M B, Grilló M J, Muñoz P M, Jacques I, González D, de Miguel M J, Marín C M, Barberán M, Letesson J J, Gorvel J P, Moriyón I, Blasco J M, Zygmunt M S (2009). Rough mutants defective in core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infection of sheep. Vaccine, 27(11): 1741-1749
CrossRef
Pubmed
Google scholar
|
[25] |
Barrionuevo P, Delpino M V, Velásquez L N, García Samartino C, Coria L M, Ibañez A E, Rodríguez M E, Cassataro J, Giambartolomei G H (2011). Brucella abortus inhibits IFN-γ-induced FcγRI expression and FcγRI-restricted phagocytosis via toll-like receptor 2 on human monocytes/macrophages. Microbes Infect, 13(3): 239-250
CrossRef
Pubmed
Google scholar
|
[26] |
Beckett F W, MacDiarmid S C (1985). The effect of reduced-dose Brucella abortus strain 19 vaccination in accredited dairy herds. Br Vet J, 141(5): 507-514
Pubmed
|
[27] |
Bercovich Z (2000). The use of skin delayed-type hypersensitivity as an adjunct test to diagnose brucellosis in cattle: a review. Vet Q, 22(3): 123-130
CrossRef
Pubmed
Google scholar
|
[28] |
Bhattacharjee A K, Izadjoo M J, Zollinger W D, Nikolich M P, Hoover D L (2006). Comparison of protective efficacy of subcutaneous versus intranasal immunization of mice with a Brucella melitensis lipopolysaccharide subunit vaccine. Infect Immun, 74(10): 5820-5825
CrossRef
Pubmed
Google scholar
|
[29] |
Blasco J M, Díaz R (1993). Brucella melitensis Rev-1 vaccine as a cause of human brucellosis. Lancet, 342(8874): 805
CrossRef
Pubmed
Google scholar
|
[30] |
Blasco J M, Marín C, Jiménez de Bagüés M P, Barberán M (1993). Efficacy of Brucella suis strain 2 vaccine against Brucella ovis in rams. Vaccine, 11(13): 1291-1294
CrossRef
Pubmed
Google scholar
|
[31] |
Borts I H, McNUTT S H, Jordan C F (1946). Brucella melitensis isolated from swine tissues in Iowa. J Am Med Assoc, 130(14): 966-966
CrossRef
Pubmed
Google scholar
|
[32] |
Boschiroli M L, Cravero S L, Arese A I, Campos E, Rossetti O L (1997). Protection against infection in mice vaccinated with a Brucella abortus mutant. Infect Immun, 65(2): 798-800
Pubmed
|
[33] |
Bosseray N (1991). Brucella melitensis Rev. 1 living attenuated vaccine: stability of markers, residual virulence and immunogenicity in mice. Biologicals, 19(4): 355-363
CrossRef
Pubmed
Google scholar
|
[34] |
Bosseray N, Plommet M (1990). Brucella suis S2, brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice. Vaccine, 8(5): 462-468
CrossRef
Pubmed
Google scholar
|
[35] |
Briones G, Iñón de Iannino N, Roset M, Vigliocco A, Paulo P S, Ugalde R A (2001). Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun, 69(7): 4528-4535
CrossRef
Pubmed
Google scholar
|
[36] |
Burkhardt S, Jiménez de Bagüés M P, Liautard J P, Köhler S (2005). Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infect Immun, 73(10): 6782-6790
CrossRef
Pubmed
Google scholar
|
[37] |
Buyukcangaz E, Sen A (2007). The first isolation of Brucella melitensis from bovine aborted fetus in Turkey. J Biol Environ Sci, 1: 139-142
|
[38] |
Cabrera A, Sáez D, Céspedes S, Andrews E, Oñate A (2009). Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice. Immunobiology, 214(6): 467-474
CrossRef
Pubmed
Google scholar
|
[39] |
Caporale V, Bonfini B, Di Giannatale E, Di Provvido A, Forcella S, Giovannini A, Tittarelli M, Scacchia M (2010). Efficacy of Brucella abortus vaccine strain RB51 compared to the reference vaccine Brucella abortus strain 19 in water buffalo. Vet Ital, 46(1): 13-19, 5-11
Pubmed
|
[40] |
Cardena A P, Herrera D M, Zamora J L F, Pina F B, Sanchez B M, Ruiz E J G, Williams J J, Alvarez F M, Castro R F (2009). Evaluation of vaccination with Brucella abortus S19 vaccine in cattle naturally infected with brucellosis in productive systems found in the Mexican Tropic. Int J Dairy Sci, 4(4): 142-151
CrossRef
Google scholar
|
[41] |
Cassataro J, Estein S M, Pasquevich K A, Velikovsky C A, de la Barrera S, Bowden R, Fossati C A, Giambartolomei G H (2005). Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun, 73(12): 8079-8088
CrossRef
Pubmed
Google scholar
|
[42] |
Castaño M J, Solera J (2009). Chronic brucellosis and persistence of Brucella melitensis DNA. J Clin Microbiol, 47(7): 2084-2089
CrossRef
Pubmed
Google scholar
|
[43] |
Centers for Disease Control and Prevention (CDC) (1998). Human exposure to Brucella abortus strain RB51—Kansas, 1997. MMWR Morb Mortal Wkly Rep, 47(9): 172-175
Pubmed
|
[44] |
Cespedes S, Andrews E, Folch H, Oñate A (2000). Identification and partial characterisation of a new protective antigen of Brucella abortus. J Med Microbiol, 49(2): 165-170
Pubmed
|
[45] |
Chacón-Díaz C, Muñoz-Rodríguez M, Barquero-Calvo E, Guzmán-Verri C, Chaves-Olarte E, Grilló M J, Moreno E (2011). The use of green fluorescent protein as a marker for Brucella vaccines. Vaccine, 29(3): 577-582
CrossRef
Pubmed
Google scholar
|
[46] |
Chain P S, Comerci D J, Tolmasky M E, Larimer F W, Malfatti S A, Vergez L M, Aguero F, Land M L, Ugalde R A, Garcia E (2005). Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun, 73(12): 8353-8361
CrossRef
Pubmed
Google scholar
|
[47] |
Cheville N F, McCullough D R, Paulson L R (1998). Brucellosis in the greater Yellowstone area, Vol National Research Council (U.S.). Board on Agriculture. National Research Council (U.S.). Board on Environmental Studies and Toxicology, Washington, D.C., National Academy Press
|
[48] |
Cheville N F, Olsen S C, Jensen A E, Stevens M G, Florance A M, Houng H S, Drazek E S, Warren R L, Hadfield T L, Hoover D L (1996a). Bacterial persistence and immunity in goats vaccinated with a purE deletion mutant or the parental 16M strain of Brucella melitensis. Infect Immun, 64(7): 2431-2439
Pubmed
|
[49] |
Cheville N F, Olsen S C, Jensen A E, Stevens M G, Palmer M V, Florance A M (1996b). Effects of age at vaccination on efficacy of Brucella abortus strain RB51 to protect cattle against brucellosis. Am J Vet Res, 57(8): 1153-1156
Pubmed
|
[50] |
Cheville N F, Stevens M G, Jensen A E, Tatum F M, Halling S M (1993). Immune responses and protection against infection and abortion in cattle experimentally vaccinated with mutant strains of Brucella abortus. Am J Vet Res, 54(10): 1591-1597
Pubmed
|
[51] |
Clapp B, Skyberg J A, Yang X, Thornburg T, Walters N, Pascual D W (2011a). Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun, 79(10): 4165-4174
CrossRef
Pubmed
Google scholar
|
[52] |
Clapp B, Walters N, Thornburg T, Hoyt T, Yang X, Pascual D W (2011b). DNA vaccination of bison to brucellar antigens elicits elevated antibody and IFN-γ responses. J Wildl Dis, 47(3): 501-510
Pubmed
|
[53] |
Cloeckaert A, Debbarh H S, Vizcaíno N, Saman E, Dubray G, Zygmunt M S (1996). Cloning, nucleotide sequence, and expression of the Brucella melitensis bp26 gene coding for a protein immunogenic in infected sheep. FEMS Microbiol Lett, 140(2-3): 139-144
CrossRef
Pubmed
Google scholar
|
[54] |
Commander N J, Spencer S A, Wren B W, MacMillan A P (2007). The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine, 25(1): 43-54
CrossRef
Pubmed
Google scholar
|
[55] |
Conde-Alvarez R, Grilló M J, Salcedo S P, de Miguel M J, Fugier E, Gorvel J P, Moriyón I, Iriarte M (2006). Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol, 8(8): 1322-1335
CrossRef
Pubmed
Google scholar
|
[56] |
Confer A W, Hall S M, Faulkner C B, Espe B H, Deyoe B L, Morton R J, Smith R A (1985). Effects of challenge dose on the clinical and immune responses of cattle vaccinated with reduced doses of Brucella abortus strain 19. Vet Microbiol, 10(6): 561-575
CrossRef
Pubmed
Google scholar
|
[57] |
Contreras-Rodriguez A, Ramirez-Zavala B, Contreras A, Schurig G G, Sriranganathan N, Lopez-Merino A (2003). Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis. Infect Immun, 71(9): 5238-5244
CrossRef
Pubmed
Google scholar
|
[58] |
Cook, W.E., Williams, E.S., Thorne, E.T., Kreeger, T.J., Stout, G., Bardsley, K., Edwards, H., Schurig, G., Colby, L.A., Enright, F., et al. (2002). Brucella abortus strain RB51 vaccination in elk. I. Efficacy of reduced dosage. J Wildl Dis, 38: 18-26
|
[59] |
Corbel M J (1997). Brucellosis: an overview. Emerg Infect Dis, 3(2): 213-221
CrossRef
Pubmed
Google scholar
|
[60] |
Crasta O R, Folkerts O, Fei Z, Mane S P, Evans C, Martino-Catt S, Bricker B, Yu G, Du L, Sobral B W (2008). Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS ONE, 3(5): e2193
CrossRef
Pubmed
Google scholar
|
[61] |
Da Costa Martins R, Irache J M, Blasco J M, Muñoz M P, Marín C M, Jesús Grilló M, Jesús De Miguel M, Barberán M, Gamazo C (2010). Evaluation of particulate acellular vaccines against Brucella ovis infection in rams. Vaccine, 28(17): 3038-3046
CrossRef
Pubmed
Google scholar
|
[62] |
Davis D S, Elzer P H (2002). Brucella vaccines in wildlife. Vet Microbiol, 90(1-4): 533-544
CrossRef
Pubmed
Google scholar
|
[63] |
Davis D S, Templeton J W, Ficht T A, Huber J D, Angus R D, Adams L G (1991). Brucella abortus in Bison. II. Evaluation of strain 19 vaccination of pregnant cows. J Wildl Dis, 27(2): 258-264
Pubmed
|
[64] |
Delpino M V, Estein S M, Fossati C A, Baldi P C, Cassataro J (2007). Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine, 25(37-38): 6721-6729
CrossRef
Pubmed
Google scholar
|
[65] |
den Hartigh A B, Sun Y H, Sondervan D, Heuvelmans N, Reinders M O, Ficht T A, Tsolis R M (2004). Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun, 72(9): 5143-5149
CrossRef
Pubmed
Google scholar
|
[66] |
Diju I U (2009). Brucellosis—an under-estimated cause of arthralgia & muscular pains in general population. J Ayub Med Coll Abbottabad, 21(2): 128-131
Pubmed
|
[67] |
Diptee M D, Adesiyun A A, Asgarali Z, Campbell M, Adone R (2006). Serologic responses, biosafety and clearance of four dosages of Brucella abortus strain RB51 in 6-10 months old water buffalo (Bubalus bubalis). Vet Immunol Immunopathol, 109(1-2): 43-55
CrossRef
Pubmed
Google scholar
|
[68] |
Dornand J, Lafont V, Oliaro J, Terraza A, Castaneda-Roldan E, Liautard J P (2004). Impairment of intramacrophagic Brucella suis multiplication by human natural killer cells through a contact-dependent mechanism. Infect Immun, 72(4): 2303-2311
CrossRef
Pubmed
Google scholar
|
[69] |
Dueñas A I, Orduña A, Crespo M S, García-Rodríguez C (2004). Interaction of endotoxins with Toll-like receptor 4 correlates with their endotoxic potential and may explain the proinflammatory effect of Brucella spp. LPS. Int Immunol, 16(10): 1467-1475
CrossRef
Pubmed
Google scholar
|
[70] |
Dzata G K, Confer A W, Wyckoff J H 3rd (1991). The effects of adjuvants on immune responses in cattle injected with a Brucella abortus soluble antigen. Vet Microbiol, 29(1): 27-48
CrossRef
Pubmed
Google scholar
|
[71] |
Ebel E D, Williams M S, Tomlinson S M (2008). Estimating herd prevalence of bovine brucellosis in 46 USA states using slaughter surveillance. Prev Vet Med, 85(3-4): 295-316
CrossRef
Pubmed
Google scholar
|
[72] |
Edmonds M D, Cloeckaert A, Elzer P H (2002a). Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet Microbiol, 88(3): 205-221
CrossRef
Pubmed
Google scholar
|
[73] |
Edmonds M D, Cloeckaert A, Hagius S D, Samartino L E, Fulton W T, Walker J V, Enright F M, Booth N J, Elzer P H (2002b). Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Deltaomp25 deletion mutant. Res Vet Sci, 72(3): 235-239
CrossRef
Pubmed
Google scholar
|
[74] |
Eker A, Uzunca I, Tansel O, Birtane M (2011). A patient with brucellar cervical spondylodiscitis complicated by epidural abscess. J Clin Neurosci, 18(3): 428-430
CrossRef
Pubmed
Google scholar
|
[75] |
el Idrissi A H, Benkirane A, el Maadoudi M, Bouslikhane M, Berrada J, Zerouali A (2001). Comparison of the efficacy of Brucella abortus strain RB51 and Brucella melitensis Rev. 1 live vaccines against experimental infection with Brucella melitensis in pregnant ewes. Rev Sci Tech, 20(3): 741-747
Pubmed
|
[76] |
Elberg S S, Faunce K J Jr (1957). Immunization against Brucella infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. J Bacteriol, 73(2): 211-217
Pubmed
|
[77] |
Elzer P H, Edmonds M D, Hagius S D, Walker J V, Gilsdorf M J, Davis D S (1998). Safety of Brucella abortus strain RB51 in Bison. J Wildl Dis, 34(4): 825-829
Pubmed
|
[78] |
Entessar F, Ardalan A, Ebadi A, Jones L M (1967). Effect of living Rev. 1 vaccine in producing long-term immunity against Brucella melitensis infection in sheep in Iran. J Comp Pathol, 77(4): 367-376
CrossRef
Pubmed
Google scholar
|
[79] |
Eschenbrenner M, Horn T A, Wagner M A, Mujer C V, Miller-Scandle T L, DelVecchio V G (2006). Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M. J Proteome Res, 5(7): 1731-1740
CrossRef
Pubmed
Google scholar
|
[80] |
Fensterbank R, Pardon P, Marly J (1982). Efficacy of Brucella melitensis Rev. 1 vaccine against Brucella ovis infection in rams. Ann Rech Vet, 13(2): 185-190
Pubmed
|
[81] |
Ferguson G P, Datta A, Baumgartner J, Roop R M 2nd, Carlson R W, Walker G C (2004). Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci USA, 101(14): 5012-5017
CrossRef
Pubmed
Google scholar
|
[82] |
Ferrero M C, Fossati C A, Baldi P C (2009). Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death. Microbes Infect, 11(4): 476-483
CrossRef
Pubmed
Google scholar
|
[83] |
Fiorentino M A, Campos E, Cravero S, Arese A, Paolicchi F, Campero C, Rossetti O (2008). Protection levels in vaccinated heifers with experimental vaccines Brucella abortus M1-luc and INTA 2. Vet Microbiol, 132(3-4): 302-311
CrossRef
Pubmed
Google scholar
|
[84] |
Fosgate G T, Adesiyun A A, Hird D W, Johnson W O, Hietala S K, Schurig G G, Ryan J, Diptee M D (2003). Evaluation of brucellosis RB51 vaccine for domestic water buffalo (Bubalus bubalis) in Trinidad. Prev Vet Med, 58(3-4): 211-225
CrossRef
Pubmed
Google scholar
|
[85] |
Foulongne V, Walravens K, Bourg G, Boschiroli M L, Godfroid J, Ramuz M, O’Callaghan D (2001). Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun, 69(1): 547-550
CrossRef
Pubmed
Google scholar
|
[86] |
Franco M P, Mulder M, Gilman R H, Smits H L (2007). Human brucellosis. Lancet Infect Dis, 7(12): 775-786
CrossRef
Pubmed
Google scholar
|
[87] |
Galindo R C, Muñoz P M, de Miguel M J, Marin C M, Labairu J, Revilla M, Blasco J M, Gortazar C, de la Fuente J (2010). Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2. J Genet Genomics, 37(11): 725-736
CrossRef
Pubmed
Google scholar
|
[88] |
García-Carrillo C (1980). Comparison of B. melitensis Rev. 1 and B. abortus strain 19 as a vaccine against brucellosis in cattle. Zentralbl Veterinarmed B, 27(2): 131-138
CrossRef
Pubmed
Google scholar
|
[89] |
González D, Grilló M J, De Miguel M J, Ali T, Arce-Gorvel V, Delrue R M, Conde-Alvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín C M, Weintraub A, Widmalm G, Zygmunt M, Letesson J J, Gorvel J P, Blasco J M, Moriyón I (2008). Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS ONE, 3(7): e2760
CrossRef
Pubmed
Google scholar
|
[90] |
Graves R R (1943). The story of John M. Buck's and Matilda's contribution to the cattle industry. J Am Vet Med Assoc, 102: 193-195
|
[91] |
Gulsun S, Aslan S, Satici O, Gul T (2011). Brucellosis in pregnancy. Trop Doct, 41(2): 82-84
CrossRef
Pubmed
Google scholar
|
[92] |
Haag A F, Myka K K, Arnold M F, Caro-Hernández P, Ferguson G P (2010). Importance of lipopolysaccharide and cyclic β-1,2-glucans in Brucella-mammalian infections. Int J Microbiol, 2010: 1-12
CrossRef
Pubmed
Google scholar
|
[93] |
Hall W H (1990). Modern chemotherapy for brucellosis in humans. Rev Infect Dis, 12(6): 1060-1099
CrossRef
Pubmed
Google scholar
|
[94] |
Halling S M, Peterson-Burch B D, Bricker B J, Zuerner R L, Qing Z, Li L L, Kapur V, Alt D P, Olsen S C (2005). Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol, 187(8): 2715-2726
CrossRef
Pubmed
Google scholar
|
[95] |
Herrera E, Rivera A, Palomares E G, Hernández-Castro R, Díaz-Aparicio E (2011). Isolation of Brucella melitensis from a RB51-vaccinated seronegative goat. Trop Anim Health Prod, 43(6): 1069-1070
CrossRef
Pubmed
Google scholar
|
[96] |
Hofer E, Revilla-Fernández S, Al Dahouk S, Riehm J M, Nöckler K, Zygmunt M S, Cloeckaert A, Tomaso H, Scholz H C (2011). A potential novel Brucella species isolated from mandibular lymph nodes of red foxes in Austria. Vet Microbiol, (In press)
Pubmed
|
[97] |
Jelastopulu E, Bikas C, Petropoulos C, Leotsinidis M (2008). Incidence of human brucellosis in a rural area in Western Greece after the implementation of a vaccination programme against animal brucellosis. BMC Public Health, 8(1): 241-245
CrossRef
Pubmed
Google scholar
|
[98] |
Jiménez de Bagüés M P, Barberán M, Marín C M, Blasco J M (1995). The Brucella abortus RB51 vaccine does not confer protection against Brucella ovis in rams. Vaccine, 13(3): 301-304
CrossRef
Pubmed
Google scholar
|
[99] |
Jiménez de Bagués M P, Marín C M, Barberán M, Blasco J M (1989). Responses of ewes to B. melitensis Rev1 vaccine administered by subcutaneous or conjunctival routes at different stages of pregnancy. Ann Rech Vet, 20(2): 205-213
Pubmed
|
[100] |
Kaushik P, Singh D K, Kumar S V, Tiwari A K, Shukla G, Dayal S, Chaudhuri P (2010). Protection of mice against Brucella abortus 544 challenge by vaccination with recombinant OMP28 adjuvanted with CpG oligonucleotides. Vet Res Commun, 34(2): 119-132
CrossRef
Pubmed
Google scholar
|
[101] |
Keller R, Hilton T D, Rios H, Boedeker E C, Kaper J B (2010). Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector. Microb Pathog, 48(1): 1-8
CrossRef
Pubmed
Google scholar
|
[102] |
Kim S, Lee D S, Watanabe K, Furuoka H, Suzuki H, Watarai M (2005). Interferon-γ promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol, 5(1): 1-11
CrossRef
Pubmed
Google scholar
|
[103] |
Kojouri G A, Gholami M (2009). Post vaccination follow-up of Brucella melitensis in blood stream of sheep by PCR assay. Comp Clin Pathol, 18(4): 439-442
CrossRef
Google scholar
|
[104] |
Kolar J (1977). Brucella vaccines production in Mongolia. World Health Organization, Assignment Report on WHO Project MOG BLG 001, SEA/Vaccine/89, 40
|
[105] |
Kreeger T J, Cook W E, Edwards W H, Elzer P H, Olsen S C (2002). Brucella abortus strain RB51 vaccination in elk. II. Failure of high dosage to prevent abortion. J Wildl Dis, 38(1): 27-31
Pubmed
|
[106] |
Kreeger T J, Miller M W, Wild M A, Elzer P H, Olsen S C (2000). Safety and efficacy of Brucella abortus strain RB51 vaccine in captive pregnant elk. J Wildl Dis, 36(3): 477-483
Pubmed
|
[107] |
Kurar E, Splitter G A (1997). Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine, 15(17-18): 1851-1857
CrossRef
Pubmed
Google scholar
|
[108] |
Lavigne J P, Patey G, Sangari F J, Bourg G, Ramuz M, O’Callaghan D, Michaux-Charachon S (2005). Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun, 73(9): 5524-5529
CrossRef
Pubmed
Google scholar
|
[109] |
Levine M M, Ferreccio C, Abrego P, Martin O S, Ortiz E, Cryz S (1999). Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine. Vaccine, 17(Suppl 2): S22-S27
CrossRef
Pubmed
Google scholar
|
[110] |
Li Y K (1988). [A study on one strain of Brucella canis isolated from a cow at the first time]. Zhonghua Liu Xing Bing Xue Za Zhi, 9(6): 342-344
Pubmed
|
[111] |
Loisel-Meyer S, Jiménez de Bagüés M P, Bassères E, Dornand J, Köhler S, Liautard J P, Jubier-Maurin V (2006). Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun, 74(3): 1973-1976
CrossRef
Pubmed
Google scholar
|
[112] |
Lord V R, Schurig G G, Cherwonogrodzky J W, Marcano M J, Melendez G E (1998). Field study of vaccination of cattle with Brucella abortus strains RB51 and 19 under high and low disease prevalence. Am J Vet Res, 59(8): 1016-1020
Pubmed
|
[113] |
Manthei C A (1959). Summary of controlled research with strain 19. Proc Annu Meet US Livest Sanit Assoc, 63: 91-97
|
[114] |
Marín C M, Moreno E, Moriyón I, Díaz R, Blasco J M (1999). Performance of competitive and indirect enzyme-linked immunosorbent assays, gel immunoprecipitation with native hapten polysaccharide, and standard serological tests in diagnosis of sheep brucellosis. Clin Diagn Lab Immunol, 6(2): 269-272
Pubmed
|
[115] |
Martínez de Tejada G, Pizarro-Cerdá J, Moreno E, Moriyón I (1995). The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun, 63(8): 3054-3061
Pubmed
|
[116] |
Memish Z, Mah M W, Al Mahmoud S, Al Shaalan M, Khan M Y (2000). Brucella bacteraemia: clinical and laboratory observations in 160 patients. J Infect, 40(1): 59-63
CrossRef
Pubmed
Google scholar
|
[117] |
Minas A, Minas M, Stournara A, Tselepidis S (2004). The “effects” of Rev-1 vaccination of sheep and goats on human brucellosis in Greece. Prev Vet Med, 64(1): 41-47
CrossRef
Pubmed
Google scholar
|
[118] |
Mingle C K, Manthei C A, Jasmin A M (1941). The stability of reduced virulence exhibited by Brucella abortus strain 19. J Am Vet Med Assoc, 99: 203-204
|
[119] |
Moreno E, Moriyón I (2001). Genus Brucella. In Dworkin (ed.), The procaryotes: an evolving microbiological resource for the microbiological community. Springer, New York, NY
|
[120] |
Moriyón I, Grilló M J, Monreal D, González D, Marín C, López-Goñi I, Mainar-Jaime R C, Moreno E, Blasco J M (2004). Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res, 35(1): 1-38
CrossRef
Pubmed
Google scholar
|
[121] |
Mukherjee F, Jain J, Grilló M J, Blasco J M, Nair M (2005). Evaluation of Brucella abortus S19 vaccine strains by bacteriological tests, molecular analysis of ery loci and virulence in BALB/c mice. Biologicals, 33(3): 153-160
CrossRef
Pubmed
Google scholar
|
[122] |
Muñoz P M, de Miguel M J, Grilló M J, Marín C M, Barberán M, Blasco J M (2008). Immunopathological responses and kinetics of Brucella melitensis Rev 1 infection after subcutaneous or conjunctival vaccination in rams. Vaccine, 26(21): 2562-2569
CrossRef
Pubmed
Google scholar
|
[123] |
Muñoz-Montesino C, Andrews E, Rivers R, González-Smith A, Moraga-Cid G, Folch H, Céspedes S, Oñate A A (2004). Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun, 72(4): 2081-2087
CrossRef
Pubmed
Google scholar
|
[124] |
O’Callaghan D, Maskell D, Liew F Y, Easmon C S, Dougan G (1988). Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun, 56(2): 419-423
Pubmed
|
[125] |
Olsen S C (2010). Brucellosis in the United States: role and significance of wildlife reservoirs. Vaccine, 28(Suppl 5): F73-F76
CrossRef
Pubmed
Google scholar
|
[126] |
Olsen S C, Boyle S M, Schurig G G, Sriranganathan N N (2009). Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strain RB51 or RB51 overexpressing superoxide dismutase and glycosyltransferase genes. Clin Vaccine Immunol, 16(4): 535-540
CrossRef
Pubmed
Google scholar
|
[127] |
Olsen S C, Fach S J, Palmer M V, Sacco R E, Stoffregen W C, Waters W R (2006). Immune responses of elk to initial and booster vaccinations with Brucella abortus strain RB51 or 19. Clin Vaccine Immunol, 13(10): 1098-1103
CrossRef
Pubmed
Google scholar
|
[128] |
Olsen S C, Hennager S G (2010). Immune responses and protection against experimental Brucella suis biovar 1 challenge in nonvaccinated or B. abortus strain RB51-vaccinated cattle. Clin Vaccine Immunol, 17(12): 1891-1895
CrossRef
Pubmed
Google scholar
|
[129] |
Olsen S C, Holland S D (2003). Safety of revaccination of pregnant bison with Brucella abortus strain RB51. J Wildl Dis, 39(4): 824-829
Pubmed
|
[130] |
Olsen S C, Jensen A E, Stoffregen W C, Palmer M V (2003). Efficacy of calfhood vaccination with Brucella abortus strain RB51 in protecting bison against brucellosis. Res Vet Sci, 74(1): 17-22
CrossRef
Pubmed
Google scholar
|
[131] |
Oñate A A, Donoso G, Moraga-Cid G, Folch H, Céspedes S, Andrews E (2005). An RNA vaccine based on recombinant Semliki Forest virus particles expressing the Cu,Zn superoxide dismutase protein of Brucella abortus induces protective immunity in BALB/c mice. Infect Immun, 73(6): 3294-3300
CrossRef
Pubmed
Google scholar
|
[132] |
Osorio M, Wu Y, Singh S, Merkel T J, Bhattacharyya S, Blake M S, Kopecko D J (2009). Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infect Immun, 77(4): 1475-1482
CrossRef
Pubmed
Google scholar
|
[133] |
Palmer M V, Cheville N F, Jensen A E (1996a). Experimental infection of pregnant cattle with the vaccine candidate Brucella abortus strain RB51: pathologic, bacteriologic, and serologic findings. Vet Pathol, 33(6): 682-691
CrossRef
Pubmed
Google scholar
|
[134] |
Palmer M V, Olsen S C, Gilsdorf M J, Philo L M, Clarke P R, Cheville N F (1996b). Abortion and placentitis in pregnant bison (Bison bison) induced by the vaccine candidate, Brucella abortus strain RB51. Am J Vet Res, 57(11): 1604-1607
Pubmed
|
[135] |
Pappas G, Akritidis N, Bosilkovski M, Tsianos E (2005). Brucellosis. N Engl J Med, 352(22): 2325-2336
CrossRef
Pubmed
Google scholar
|
[136] |
Pappas G, Panagopoulou P, Christou L, Akritidis N (2006a). Brucella as a biological weapon. Cell Mol Life Sci, 63(19-20): 2229-2236
CrossRef
Pubmed
Google scholar
|
[137] |
Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos E V (2006b). The new global map of human brucellosis. Lancet Infect Dis, 6(2): 91-99
CrossRef
Pubmed
Google scholar
|
[138] |
Pasquevich K A, Estein S M, García Samartino C, Zwerdling A, Coria L M, Barrionuevo P, Fossati C A, Giambartolomei G H, Cassataro J (2009). Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect Immun, 77(1): 436-445
CrossRef
Pubmed
Google scholar
|
[139] |
Petrovska L, Hewinson R G, Dougan G, Maskell D J, Woodward M J (1999). Brucella melitensis 16M: characterisation of the galE gene and mouse immunisation studies with a galE deficient mutant. Vet Microbiol, 65(1): 21-36
CrossRef
Pubmed
Google scholar
|
[140] |
Phillips R W, Elzer P H, Robertson G T, Hagius S D, Walker J V, Fatemi M B, Enright F M, Roop R M 2nd (1997). A Brucella melitensis high-temperature-requirement A (htrA) deletion mutant is attenuated in goats and protects against abortion. Res Vet Sci, 63(2): 165-167
CrossRef
Pubmed
Google scholar
|
[141] |
Pishva E, Salehi M (2008). First report of isolation of Brucella melitensis, vaccine strain Rev.1 as a source of cattle infection in Iran. J Sci Islam Repub Iran, 19: 19-23
|
[142] |
Poester, F.P., Goncalves, V.S., Paixao, T.A., Santos, R.L., Olsen, S.C., Schurig, G.G., and Lage, A.P. (2006). Efficacy of strain RB51 vaccine in heifers against experimental brucellosis. Vaccine, 24: 5327-5334
|
[143] |
Pontes D S, Dorella F A, Ribeiro L A, Miyoshi A, Le Loir Y, Gruss A, Oliveira S C, Langella P, Azevedo V (2003). Induction of partial protection in mice after oral administration of Lactococcus lactis producing Brucella abortus L7/L12 antigen. J Drug Target, 11(8-10): 489-493
CrossRef
Pubmed
Google scholar
|
[144] |
Pourbagher M A, Pourbagher A, Savas L, Turunc T, Demiroglu Y Z, Erol I, Yalcintas D (2006). Clinical pattern and abdominal sonographic findings in 251 cases of brucellosis in southern Turkey. AJR Am J Roentgenol, 187(2): W191-4
CrossRef
Pubmed
Google scholar
|
[145] |
Pugh G W J Jr, Tabatabai L B, Bricker B J, Mayfield J E, Phillips M, Zehr E S, Belzer C A (1990). Immunogenicity of Brucella-extracted and recombinant protein vaccines in CD-1 and BALB/c mice. Am J Vet Res, 51(9): 1413-1420
Pubmed
|
[146] |
Radwan A I, Bekairi S I, Mukayel A A, al-Bokmy A M, Prasad P V, Azar F N, Coloyan E R (1995). Control of Brucella melitensis infection in a large camel herd in Saudi Arabia using antibiotherapy and vaccination with Rev. 1 vaccine. Rev Sci Tech, 14(3): 719-732
Pubmed
|
[147] |
Rafiei A, Ardestani S K, Kariminia A, Keyhani A, Mohraz M, Amirkhani A (2006). Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease. J Infect, 53(5): 315-324
CrossRef
Pubmed
Google scholar
|
[148] |
Rajasekaran P, Surendran N, Seleem M N, Sriranganathan N, Schurig G G, Boyle S M (2011). Over-expression of homologous antigens in a leucine auxotroph of Brucella abortus strain RB51 protects mice against a virulent B. suis challenge. Vaccine, 29(17): 3106-3110
CrossRef
Pubmed
Google scholar
|
[149] |
Rajashekara G, Krepps M, Eskra L, Mathison A, Montgomery A, Ishii Y, Splitter G (2005). Unraveling Brucella genomics and pathogenesis in immunocompromised IRF-1-/- mice. Am J Reprod Immunol, 54(6): 358-368
CrossRef
Pubmed
Google scholar
|
[150] |
Robertson G T, Elzer P H, Roop R M 2nd (1996). In vitro and in vivo phenotypes resulting from deletion of the high temperature requirement A (htrA) gene from the bovine vaccine strain Brucella abortus S19. Vet Microbiol, 49(3-4): 197-207
CrossRef
Pubmed
Google scholar
|
[151] |
Roop R M 2nd, Jeffers G, Bagchi T, Walker J, Enright F M, Schurig G G (1991). Experimental infection of goat fetuses in utero with a stable, rough mutant of Brucella abortus. Res Vet Sci, 51(2): 123-127
CrossRef
Pubmed
Google scholar
|
[152] |
Roop R M 2nd, Phillips R W, Hagius S, Walker J V, Booth N J, Fulton W T, Edmonds M D, Elzer P H (2001). Re-examination of the role of the Brucella melitensis HtrA stress response protease in virulence in pregnant goats. Vet Microbiol, 82(1): 91-95
CrossRef
Pubmed
Google scholar
|
[153] |
Roth F, Zinsstag J, Orkhon D, Chimed-Ochir G, Hutton G, Cosivi O, Carrin G, Otte J (2003). Human health benefits from livestock vaccination for brucellosis: case study. Bull World Health Organ, 81(12): 867-876
Pubmed
|
[154] |
Sangari F J, Agüero J (1994). Identification of Brucella abortus B19 vaccine strain by the detection of DNA polymorphism at the ery locus. Vaccine, 12(5): 435-438
CrossRef
Pubmed
Google scholar
|
[155] |
Sangari F J, García-Lobo J M, Agüero J (1994). The Brucella abortus vaccine strain B19 carries a deletion in the erythritol catabolic genes. FEMS Microbiol Lett, 121(3): 337-342
CrossRef
Pubmed
Google scholar
|
[156] |
Schlabritz-Loutsevitch N E, Whatmore A M, Quance C R, Koylass M S, Cummins L B, Dick E J Jr, Snider C L, Cappelli D, Ebersole J L, Nathanielsz P W, Hubbard G B (2009). A novel Brucella isolate in association with two cases of stillbirth in non-human primates- first report. J Med Primatol, 38(1): 70-73
CrossRef
Pubmed
Google scholar
|
[157] |
Schurig G G, Roop R M 2nd, Bagchi T, Boyle S, Buhrman D, Sriranganathan N (1991). Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol, 28(2): 171-188
CrossRef
Pubmed
Google scholar
|
[158] |
SCOFCAH (2011). Portugal: Results of the implementation of the sheep and goat brucellosis eradication programme 2010 Standing Committee on the Food Chain and Animal Health (SCOFCAH), Brusselshttp://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/presentations/0708092011_brucellosis_portugal.pdf
|
[159] |
Scurlock B M, Edwards W H (2010). Status of brucellosis in free-ranging elk and bison in Wyoming. J Wildl Dis, 46(2): 442-449
Pubmed
|
[160] |
Shi D, Song Y, Li Y J (2006). [Progress on lactococcus lactis expressing heterologous antigens as live mucosal vaccines]. Wei Sheng Wu Xue Bao, 46(4): 680-683
Pubmed
|
[161] |
Silva T M, Costa E A, Paixão T A, Tsolis R M, Santos R L (2011a). Laboratory animal models for brucellosis research. J Biomed Biotechnol, 2011: 518323
CrossRef
Pubmed
Google scholar
|
[162] |
Silva T M, Paixão T A, Costa E A, Xavier M N, Sá J C, Moustacas V S, den Hartigh A B, Carvalho Neta A V, Oliveira S C, Tsolis R, Santos R L (2011b). Putative ATP-binding cassette transporter is essential for Brucella ovis pathogenesis in mice. Infect Immun, 79(4): 1706-1717
CrossRef
Pubmed
Google scholar
|
[163] |
Smith L D, Ficht T A (1990). Pathogenesis of Brucella. Crit Rev Microbiol, 17(3): 209-230
CrossRef
Pubmed
Google scholar
|
[164] |
Smither S J, Perkins S D, Davies C, Stagg A J, Nelson M, Atkins H S (2009). Development and characterization of mouse models of infection with aerosolized Brucella melitensis and Brucella suis. Clin Vaccine Immunol, 16(5): 779-783
CrossRef
Pubmed
Google scholar
|
[165] |
Spink W W, Hall J W 3rd, Finstad J, Mallet E (1962). Immunization with viable Brucella organisms. Results of a safety test in humans. Bull World Health Organ, 26: 409-419
Pubmed
|
[166] |
Stabel T J, Mayfield J E, Morfitt D C, Wannemuehler M J (1993). Oral immunization of mice and swine with an attenuated Salmonella choleraesuis [delta cya-12 delta(crp-cdt)19] mutant containing a recombinant plasmid. Infect Immun, 61(2): 610-618
Pubmed
|
[167] |
Stabel T J, Mayfield J E, Tabatabai L B, Wannemuehler M J (1990). Oral immunization of mice with attenuated Salmonella typhimurium containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 58(7): 2048-2055
Pubmed
|
[168] |
Stabel T J, Mayfield J E, Tabatabai L B, Wannemuehler M J (1991). Swine immunity to an attenuated Salmonella typhimurium mutant containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 59(9): 2941-2947
Pubmed
|
[169] |
Stevens M G, Hennager S G, Olsen S C, Cheville N F (1994). Serologic responses in diagnostic tests for brucellosis in cattle vaccinated with Brucella abortus 19 or RB51. J Clin Microbiol, 32(4): 1065-1066
Pubmed
|
[170] |
Stevens M G, Olsen S C (1996). Antibody responses to Brucella abortus 2308 in cattle vaccinated with B. abortus RB51. Infect Immun, 64(3): 1030-1034
Pubmed
|
[171] |
Stevens M G, Olsen S C, Cheville N F (1995a). Comparative analysis of immune responses in cattle vaccinated with Brucella abortus strain 19 or strain RB51. Vet Immunol Immunopathol, 44(3-4): 223-235
CrossRef
Pubmed
Google scholar
|
[172] |
Stevens M G, Olsen S C, Pugh G W Jr, Brees D (1995b). Comparison of immune responses and resistance to brucellosis in mice vaccinated with Brucella abortus 19 or RB51. Infect Immun, 63(1): 264-270
Pubmed
|
[173] |
Taylor A W, McDiarmid A (1949). The stability of the avirulent characters of Brucella abortus, strain 19 and strain 45/20 in lactating and pregnant cows. Vet Rec, 61: 317-318
|
[174] |
Teske S S, Huang Y, Tamrakar S B, Bartrand T A, Weir M H, Haas C N (2011). Animal and human dose-response models for Brucella species. Risk Anal, 31(10): 1576-1596
CrossRef
Pubmed
Google scholar
|
[175] |
Thorne E T (1997). Brucellosis, bison, elk, and cattle in the Greater Yellowstone area: defining the problem, exploring solutions. Cheyenne, Wyoming Game and Fish Dept. for Greater Yellowstone Interagency Brucellosis Committee
|
[176] |
Tibor A, Jacques I, Guilloteau L, Verger J M, Grayon M, Wansard V, Letesson J J (1998). Effect of P39 gene deletion in live Brucella vaccine strains on residual virulence and protective activity in mice. Infect Immun, 66(11): 5561-5564
Pubmed
|
[177] |
Trant C G, Lacerda T L, Carvalho N B, Azevedo V, Rosinha G M, Salcedo S P, Gorvel J P, Oliveira S C (2010). The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice. Infect Immun, 78(5): 2283-2291
CrossRef
Pubmed
Google scholar
|
[178] |
Treanor J J, Johnson J S, Wallen R L, Cilles S, Crowley P H, Cox J J, Maehr D S, White P J, Plumb G E (2010). Vaccination strategies for managing brucellosis in Yellowstone bison. Vaccine, 28(Suppl 5): F64-F72
CrossRef
Pubmed
Google scholar
|
[179] |
Ugalde J E, Comerci D J, Leguizamón M S, Ugalde R A (2003). Evaluation of Brucella abortus phosphoglucomutase (pgm) mutant as a new live rough-phenotype vaccine. Infect Immun, 71(11): 6264-6269
CrossRef
Pubmed
Google scholar
|
[180] |
Valderas M W, Barrow W W (2008). Establishment of a method for evaluating intracellular antibiotic efficacy in Brucella abortus-infected Mono Mac 6 monocytes. J Antimicrob Chemother, 61(1): 128-134
CrossRef
Pubmed
Google scholar
|
[181] |
Van Campen H, Rhyan J (2010). The role of wildlife in diseases of cattle. Vet Clin North Am Food Anim Pract, 26(1): 147-161
CrossRef
Pubmed
Google scholar
|
[182] |
Velikovsky C A, Cassataro J, Giambartolomei G H, Goldbaum F A, Estein S, Bowden R A, Bruno L, Fossati C A, Spitz M (2002). A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infect Immun, 70(5): 2507-2511
CrossRef
Pubmed
Google scholar
|
[183] |
Vemulapalli R, Contreras A, Sanakkayala N, Sriranganathan N, Boyle S M, Schurig G G (2004). Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice. Vet Microbiol, 102(3-4): 237-245
CrossRef
Pubmed
Google scholar
|
[184] |
Verger J M, Grayon M, Zundel E, Lechopier P, Olivier-Bernardin V (1995). Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis Rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes. Vaccine, 13(2): 191-196
CrossRef
Pubmed
Google scholar
|
[185] |
Walker, G.C., LeVier, K., Phillips, R.W., Grippe, V.K., and Roop, R.M., 2nd. (2000). Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science, 287: 2492-2493
|
[186] |
Wang Y, Bai Y, Qu Q, Xu J, Chen Y, Zhong Z, Qiu Y, Wang T, Du X, Wang Z, Yu S, Fu S, Yuan J, Zhen Q, Yu Y, Chen Z, Huang L (2011). The 16MΔvjbR as an ideal live attenuated vaccine candidate for differentiation between Brucella vaccination and infection. Vet Microbiol, 151(3-4): 354-362
CrossRef
Pubmed
Google scholar
|
[187] |
Ward D, Jackson, R., Karomatullo H, Khakimov T, Kurbonov K, Amirbekov M, Stack J, El-Idrissi A, Heuer C (2011). Brucellosis control in Tajikistan using Rev 1 vaccine: change in seroprevalence in small ruminants from 2004 to 2009. Vet Rec
|
[188] |
Whatmore A M (2009). Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect Genet Evol, 9(6): 1168-1184
CrossRef
Pubmed
Google scholar
|
[189] |
Winter A J, Rowe G E, Duncan J R, Eis M J, Widom J, Ganem B, Morein B (1988). Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against Brucella abortus in mice. Infect Immun, 56(11): 2808-2817
Pubmed
|
[190] |
Wise R I (1980). Brucellosis in the United States. Past, present, and future. JAMA, 244(20): 2318-2322
CrossRef
Pubmed
Google scholar
|
[191] |
Wyckoff J H 3rd, Howland J L, Scott C M, Smith R A, Confer A W (2005). Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle. Vet Microbiol, 111(1-2): 77-87
CrossRef
Pubmed
Google scholar
|
[192] |
Xavier M N, Paixão T A, Poester F P, Lage A P, Santos R L (2009). Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J Comp Pathol, 140(2-3): 149-157
CrossRef
Pubmed
Google scholar
|
[193] |
Xin X (1986). Orally administrable brucellosis vaccine: Brucella suis strain 2 vaccine. Vaccine, 4(4): 212-216
CrossRef
Pubmed
Google scholar
|
[194] |
Yang X, Becker T, Walters N, Pascual D W (2006). Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infect Immun, 74(7): 3874-3879
CrossRef
Pubmed
Google scholar
|
[195] |
Yang X, Hinnebusch B J, Trunkle T, Bosio C M, Suo Z, Tighe M, Harmsen A, Becker T, Crist K, Walters N, Avci R, Pascual D W (2007). Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague. J Immunol, 178(2): 1059-1067
Pubmed
|
[196] |
Yang X, Hudson M, Walters N, Bargatze R F, Pascual D W (2005). Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun, 73(11): 7297-7303
CrossRef
Pubmed
Google scholar
|
[197] |
Yang X, Thornburg T, Walters N, Pascual D W (2010). DeltaznuADeltapurE Brucella abortus 2308 mutant as a live vaccine candidate. Vaccine, 28(4): 1069-1074
CrossRef
Pubmed
Google scholar
|
[198] |
Yang Y, Yin J, Guo D, Lang X, Wang X (2011). Immunization of mice with recombinant S-adenosyl-L-homocysteine hydrolase protein confers protection against Brucella melitensis infection. FEMS Immunol Med Microbiol, 61(2): 159-167
CrossRef
Pubmed
Google scholar
|
[199] |
Young E J (1989). Clinical manifestations of human brucellosis, p. 97-126. In E. J. Young and M. J. Corbel (ed.), Brucellosis: clinical and laboratory aspects. CRC Press, Inc, Boca Raton, Fla
|
[200] |
Yu D H, Hu X D, Cai H, Li M (2007). A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses. DNA Cell Biol, 26(6): 435-443
CrossRef
Pubmed
Google scholar
|
[201] |
Zhan Y, Cheers C (1993). Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect Immun, 61(11): 4899-4901
Pubmed
|
[202] |
Zhao Z, Li M, Luo D, Xing L, Wu S, Duan Y, Yang P, Wang X (2009). Protection of mice from Brucella infection by immunization with attenuated Salmonella enterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella. Vaccine, 27(38): 5214-5219
CrossRef
Pubmed
Google scholar
|
[203] |
Zinsstag J, Roth F, Orkhon D, Chimed-Ochir G, Nansalmaa M, Kolar J, Vounatsou P (2005). A model of animal-human brucellosis transmission in Mongolia. Prev Vet Med, 69(1-2): 77-95
CrossRef
Pubmed
Google scholar
|
[204] |
Zowghi E, Ebadi A (1985). Naturally occurring Brucella melitensis infection in cattle in Iran. Rev Sci Tech Off Int Epiz, 4: 811-814
|
/
〈 | 〉 |