Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing

Jorge A. LARIOS, Maria-Paz MARZOLO

Front. Biol. ›› 2012, Vol. 7 ›› Issue (2) : 113-143.

PDF(939 KB)
PDF(939 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (2) : 113-143. DOI: 10.1007/s11515-011-1186-7
REVIEW
REVIEW

Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing

Author information +
History +

Abstract

Studies related to the functional and regulatory aspects of proteolytic processing are of interest to cell biologists, developmental biologists and investigators who work on human diseases. Much of what is known about this topic derives from the study of the proteolytic processing of the amyloid precursor protein (APP), which is involved in the pathology of Alzheimer’s disease, and of the Notch protein and its Delta ligand, which play roles during embryonic development and in biologic processes in the adult. The proteolytic processing of plasma membrane receptor proteins is under the control of different enzymes that are responsible for releasing the ectodomain into the extracellular environment, where it has the potential to function as a signaling molecule and/or regulate the availability of the receptor’s ligand. Following shedding of the ectodomain, the γ-secretase enzymatic complex cleaves the transmembrane domain and releases the cytoplasmic domain (ICD) of the receptor. The ICD can function in the cytoplasm and/or at the nucleus.

Members of the low-density lipoprotein receptor (LDLR) family are endocytic-signaling proteins that perform a wide variety of physiologic functions during development and in the adult life. In addition these receptors have been implicated in a variety of diseases in adults. The prototypic receptor for this family of proteins is the LDLR itself. Besides their binding to apolipoproteins, these receptors bind many ligands that are destined for internalization and degradation. Some ligands have signaling properties. The proteolytic processing of certain members of the LDLR family not only controls receptor availability at the cell surface but also has functional consequences that amplify the spectrum of roles that these receptors perform. In addition, many complex regulatory mechanisms control the proteolytic processing of these receptors.

Keywords

ADAM / APP / LDLR / LRP / metalloproteinase / secretase

Cite this article

Download citation ▾
Jorge A. LARIOS, Maria-Paz MARZOLO. Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. Front Biol, 2012, 7(2): 113‒143 https://doi.org/10.1007/s11515-011-1186-7

References

[1]
Abe J, Deguchi J, Matsumoto T, Takuwa N, Noda M, Ohno M, Makuuchi M, Kurokawa K, Takuwa Y (1997). Stimulated activation of platelet-derived growth factor receptor in vivo in balloon-injured arteries: a link between angiotensin II and intimal thickening. Circulation, 96(6): 1906–1913
Pubmed
[2]
Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 16(13): 3797–3804
CrossRef Pubmed Google scholar
[3]
Agholme F, Aspenberg P (2011). Wnt signaling and orthopedics, an overview. Acta Orthop, 82(2): 125–130
CrossRef Pubmed Google scholar
[4]
Alvira-Botero X, Pérez-Gonzalez R, Spuch C, Vargas T, Antequera D, Garzón M, Bermejo-Pareja F, Carro E (2010). Megalin interacts with APP and the intracellular adapter protein FE65 in neurons. Mol Cell Neurosci, 45(3): 306–315
CrossRef Pubmed Google scholar
[5]
Ambjørn M, Asmussen J W, Lindstam M, Gotfryd K, Jacobsen C, Kiselyov V V, Moestrup S K, Penkowa M, Bock E, Berezin V (2008). Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family. J Neurochem, 104(1): 21–37
Pubmed
[6]
An J, Zhang C, Polavarapu R, Zhang X, Zhang X, Yepes M (2008). Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein induce Akt phosphorylation in the ischemic brain. Blood, 112(7): 2787–2794
CrossRef Pubmed Google scholar
[7]
Andrade N, Komnenovic V, Blake S M, Jossin Y, Howell B, Goffinet A, Schneider W J, Nimpf J (2007). ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci USA, 104(20): 8508–8513
CrossRef Pubmed Google scholar
[8]
Andreasen P A, Sottrup-Jensen L, Kjøller L, Nykjaer A, Moestrup S K, Petersen C M, Gliemann J (1994). Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett, 338(3): 239–245
CrossRef Pubmed Google scholar
[9]
Arnaud L, Ballif B A, Förster E, Cooper J A (2003). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol, 13(1): 9–17
CrossRef Pubmed Google scholar
[10]
Assadi A H, Zhang G, Beffert U, McNeil R S, Renfro A L, Niu S, Quattrocchi C C, Antalffy B A, Sheldon M, Armstrong D D, Wynshaw-Boris A, Herz J, D’Arcangelo G, Clark G D (2003). Interaction of reelin signaling and Lis1 in brain development. Nat Genet, 35(3): 270–276. Epub 2003 Oct 2026.
[11]
Assémat E, Châtelet F, Chandellier J, Commo F, Cases O, Verroust P, Kozyraki R (2005). Overlapping expression patterns of the multiligand endocytic receptors cubilin and megalin in the CNS, sensory organs and developing epithelia of the rodent embryo. Gene Expr Patterns, 6(1): 69–78
CrossRef Pubmed Google scholar
[12]
Bachinsky D R, Zheng G, Niles J L, McLaughlin M, Abbate M, Andres G, Brown D, McCluskey R T (1993). Detection of two forms of GP330. Their role in Heymann nephritis. Am J Pathol, 143(2): 598–611
Pubmed
[13]
Baker R N, Cancilla P A, Pollock P S, Frommes S P (1971). The movement of exogenous protein in experimental cerebral edema. An electron microscopic study after freeze-injury. J Neuropathol Exp Neurol, 30(4): 668–679
CrossRef Pubmed Google scholar
[14]
Ballif B A, Arnaud L, Arthur W T, Guris D, Imamoto A, Cooper J A (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr Biol, 14(7): 606–610
CrossRef Pubmed Google scholar
[15]
Ballif B A, Arnaud L, Cooper J A (2003). Tyrosine phosphorylation of Disabled-1 is essential for Reelin-stimulated activation of Akt and Src family kinases. Brain Res Mol Brain Res, 117(2): 152–159
CrossRef Pubmed Google scholar
[16]
Bansal A, Gierasch L M (1991). The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell, 67(6): 1195–1201
CrossRef Pubmed Google scholar
[17]
Bar I, Goffinet A M (1999). Developmental neurobiology. Decoding the Reelin signal. Nature, 399(6737): 645–646
CrossRef Pubmed Google scholar
[18]
Barker T H, Pallero M A, MacEwen M W, Tilden S G, Woods A, Murphy-Ullrich J E, Hagood J S (2004). Thrombospondin-1-induced focal adhesion disassembly in fibroblasts requires Thy-1 surface expression, lipid raft integrity, and Src activation. J Biol Chem, 279(22): 23510–23516
CrossRef Pubmed Google scholar
[19]
Barnes H, Ackermann E J, van der Geer P (2003). v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. Oncogene, 22(23): 3589–3597
CrossRef Pubmed Google scholar
[20]
Barnes H, Larsen B, Tyers M, van Der Geer P (2001). Tyrosine-phosphorylated low density lipoprotein receptor-related protein 1 (Lrp1) associates with the adaptor protein SHC in SRC-transformed cells. J Biol Chem, 276(22): 19119–19125
Pubmed
[21]
Barth J L, Argraves W S (2001). Cubilin and megalin: partners in lipoprotein and vitamin metabolism. Trends Cardiovasc Med, 11(1): 26–31
CrossRef Pubmed Google scholar
[22]
Basu S, Binder R J, Ramalingam T, Srivastava P K (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 14(3): 303–313
CrossRef Pubmed Google scholar
[23]
Beagle B, Mi K, Johnson G V (2009). Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity. J Cell Biochem, 108(4): 886–895
CrossRef Pubmed Google scholar
[24]
Beffert U, Durudas A, Weeber E J, Stolt P C, Giehl K M, Sweatt J D, Hammer R E, Herz J (2006). Functional dissection of Reelin signaling by site-directed disruption of disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J Neurosci, 26(7): 2041–2052
CrossRef Pubmed Google scholar
[25]
Beffert U, Morfini G, Bock H H, Reyna H, Brady S T, Herz J (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem, 277(51): 49958–49964
CrossRef Pubmed Google scholar
[26]
Beffert U, Weeber E J, Durudas A, Qiu S, Masiulis I, Sweatt J D, Li W P, Adelmann G, Frotscher M, Hammer R E, Herz J (2005). Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron, 47(4): 567–579
CrossRef Pubmed Google scholar
[27]
Behrens J, Lustig B (2004). The Wnt connection to tumorigenesis. Int J Dev Biol, 48(5-6): 477–487
CrossRef Pubmed Google scholar
[28]
Beisiegel U, Weber W, Ihrke G, Herz J, Stanley K K (1989). The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature, 341(6238): 162–164
CrossRef Pubmed Google scholar
[29]
Betts G N, van der Geer P, Komives E A (2008). Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. J Biol Chem, 283(23): 15656–15664
CrossRef Pubmed Google scholar
[30]
Biemesderfer D (2006). Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int, 69(10): 1717–1721
CrossRef Pubmed Google scholar
[31]
Bilic J, Huang Y L, Davidson G, Zimmermann T, Cruciat C M, Bienz M, Niehrs C (2007). Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science, 316(5831): 1619–1622
CrossRef Pubmed Google scholar
[32]
Binder R J, Han D K, Srivastava P K (2000). CD91: a receptor for heat shock protein gp96. Nat Immunol, 1(2): 151–155
CrossRef Pubmed Google scholar
[33]
Binder R J, Srivastava P K (2004). Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA, 101(16): 6128–6133
CrossRef Pubmed Google scholar
[34]
Birk H W, Piberhofer S, Schütterle G, Haase W, Kötting J, Koepsell H (1991). Analysis of Na+-D-glucose cotransporter and other renal brush border proteins in human urine. Kidney Int, 40(5): 823–837
CrossRef Pubmed Google scholar
[35]
Blake S M, Strasser V, Andrade N, Duit S, Hofbauer R, Schneider W J, Nimpf J (2008). Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J, 27(22): 3069–3080
CrossRef Pubmed Google scholar
[36]
Blaumueller C M, Qi H, Zagouras P, Artavanis-Tsakonas S (1997). Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell, 90(2): 281–291
CrossRef Pubmed Google scholar
[37]
Bock H H, Herz J (2003). Reelin activates SRC family tyrosine kinases in neurons. Curr Biol, 13(1): 18–26
CrossRef Pubmed Google scholar
[38]
Bock H H, Jossin Y, Liu P, Forster E, May P, Goffinet A M, Herz J (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem, 278(40): 38772–38779
[39]
Boucher P, Gotthardt M, Li W P, Anderson R G, Herz J (2003). LRP: role in vascular wall integrity and protection from atherosclerosis. Science, 300(5617): 329–332
CrossRef Pubmed Google scholar
[40]
Boucher P, Liu P, Gotthardt M, Hiesberger T, Anderson R G, Herz J (2002). Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low Density lipoprotein receptor-related protein in caveolae. J Biol Chem, 277(18): 15507–15513
CrossRef Pubmed Google scholar
[41]
Boutros M, Paricio N, Strutt D I, Mlodzik M (1998). Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell, 94(1): 109–118
CrossRef Pubmed Google scholar
[42]
Bovenschen N, Mertens K, Hu L, Havekes L M, van Vlijmen B J (2005). LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood, 106(3): 906–912
CrossRef Pubmed Google scholar
[43]
Brannon M, Gomperts M, Sumoy L, Moon R T, Kimelman D (1997). A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev, 11(18): 2359–2370
CrossRef Pubmed Google scholar
[44]
Brown M S, Goldstein J L (1986). A receptor-mediated pathway for cholesterol homeostasis. Science, 232(4746): 34–47
CrossRef Pubmed Google scholar
[45]
Bryja V, Andersson E R, Schambony A, Esner M, Bryjová L, Biris K K, Hall A C, Kraft B, Cajanek L, Yamaguchi T P, Buckingham M, Arenas E (2008). The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell, 20(3): 924–936
CrossRef Pubmed Google scholar
[46]
Bu G, Cam J, Zerbinatti C (2006). LRP in amyloid-beta production and metabolism. Ann N Y Acad Sci, 1086(1): 35–53
CrossRef Pubmed Google scholar
[47]
Bu G, Maksymovitch E A, Schwartz A L (1993). Receptor-mediated endocytosis of tissue-type plasminogen activator by low density lipoprotein receptor-related protein on human hepatoma HepG2 cells. J Biol Chem, 268(17): 13002–13009
Pubmed
[48]
Bu G, Marzolo M P (2000). Role of rap in the biogenesis of lipoprotein receptors. Trends Cardiovasc Med, 10(4): 148–155
CrossRef Pubmed Google scholar
[49]
Bu G, Morton P A, Schwartz A L (1992a). Identification and partial characterization by chemical cross-linking of a binding protein for tissue-type plasminogen activator (t-PA) on rat hepatoma cells. A plasminogen activator inhibitor type 1-independent t-PA receptor. J Biol Chem, 267(22): 15595–15602
Pubmed
[50]
Bu G, Schwartz A L (1998). RAP, a novel type of ER chaperone. Trends Cell Biol, 8(7): 272–276
CrossRef Pubmed Google scholar
[51]
Bu G, Warshawsky I, Schwartz A L (1994). Cellular receptors for the plasminogen activators. Blood, 83(12): 3427–3436
Pubmed
[52]
Bu G, Williams S, Strickland D K, Schwartz A L (1992b). Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci USA, 89(16): 7427–7431
CrossRef Pubmed Google scholar
[53]
Burstyn-Cohen T, Frumkin A, Xu Y T, Scherer S S, Klar A (1998). Accumulation of F-spondin in injured peripheral nerve promotes the outgrowth of sensory axons. J Neurosci, 18(21): 8875–8885
Pubmed
[54]
Buxbaum J D, Liu K N, Luo Y, Slack J L, Stocking K L, Peschon J J, Johnson R S, Castner B J, Cerretti D P, Black R A (1998). Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem, 273(43): 27765–27767
CrossRef Pubmed Google scholar
[55]
Cajánek L, Ribeiro D, Liste I, Parish C L, Bryja V, Arenas E (2009). Wnt/beta-catenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells. Stem Cells, 27(12): 2917–2927
Pubmed
[56]
Cam J A, Zerbinatti C V, Knisely J M, Hecimovic S, Li Y, Bu G (2004). The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production. J Biol Chem, 279(28): 29639–29646
CrossRef Pubmed Google scholar
[57]
Cao C, Lawrence D A, Li Y, Von Arnim C A, Herz J, Su E J, Makarova A, Hyman B T, Strickland D K, Zhang L (2006). Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. EMBO J, 25(9): 1860–1870
CrossRef Pubmed Google scholar
[58]
Cao X, Südhof T C (2001). A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science, 293(5527): 115–120
CrossRef Pubmed Google scholar
[59]
Caporaso G L, Gandy S E, Buxbaum J D, Ramabhadran T V, Greengard P (1992). Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc Natl Acad Sci USA, 89(7): 3055–3059
CrossRef Pubmed Google scholar
[60]
Carro E, Spuch C, Trejo J L, Antequera D, Torres-Aleman I (2005). Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci, 25(47): 10884–10893
CrossRef Pubmed Google scholar
[61]
Caruso-Neves C, Pinheiro A A, Cai H, Souza-Menezes J, Guggino W B (2006). PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci USA, 103(49): 18810–18815
CrossRef Pubmed Google scholar
[62]
Cerpa W, Toledo E M, Varela-Nallar L, Inestrosa N C (2009). The role of Wnt signaling in neuroprotection. Drug News Perspect, 22(10): 579–591
CrossRef Pubmed Google scholar
[63]
Chai X, Förster E, Zhao S, Bock H H, Frotscher M (2009a). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299
CrossRef Pubmed Google scholar
[64]
Chai X, Förster E, Zhao S, Bock H H, Frotscher M (2009b). Reelin acts as a stop signal for radially migrating neurons by inducing phosphorylation of n-cofilin at the leading edge. Commun Integr Biol, 2(4): 375–377
CrossRef Pubmed Google scholar
[65]
Chazaud B, Ricoux R, Christov C, Plonquet A, Gherardi R K, Barlovatz-Meimon G (2002). Promigratory effect of plasminogen activator inhibitor-1 on invasive breast cancer cell populations. Am J Pathol, 160(1): 237–246
CrossRef Pubmed Google scholar
[66]
Chen C D, Podvin S, Gillespie E, Leeman S E, Abraham C R (2007). Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA, 104(50): 19796–19801
CrossRef Pubmed Google scholar
[67]
Cho S Y, Jeon J W, Lee S H, Park S S (2000). p67 isoform of mouse disabled 2 protein acts as a transcriptional activator during the differentiation of F9 cells. Biochem J, 352(3): 645–650
CrossRef Pubmed Google scholar
[68]
Christ A, Terryn S, Schmidt V, Christensen E I, Huska M R, Andrade-Navarro M A, Hübner N, Devuyst O, Hammes A, Willnow T E (2010). The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo. Kidney Int, 78(5): 473–477
CrossRef Pubmed Google scholar
[69]
Christensen E I, Birn H, Verroust P, Moestrup S K (1998). Megalin-mediated endocytosis in renal proximal tubule. Ren Fail, 20(2): 191–199
CrossRef Pubmed Google scholar
[70]
Christensen E I, Moskaug J O, Vorum H, Jacobsen C, Gundersen T E, Nykjaer A, Blomhoff R, Willnow T E, Moestrup S K (1999). Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol, 10(4): 685–695
Pubmed
[71]
Christian J L, Gavin B J, McMahon A P, Moon R T (1991). Isolation of cDNAs partially encoding four Xenopus Wnt-1/int-1-related proteins and characterization of their transient expression during embryonic development. Dev Biol, 143(2): 230–234
CrossRef Pubmed Google scholar
[72]
Christie R H, Chung H, Rebeck G W, Strickland D, Hyman B T (1996). Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer’s disease. J Neuropathol Exp Neurol, 55(4): 491–498
CrossRef Pubmed Google scholar
[73]
Christoffersen C, Dahlbäck B, Nielsen L B (2006). Apolipoprotein M: progress in understanding its regulation and metabolic functions. Scand J Clin Lab Invest, 66(7): 631–638
CrossRef Pubmed Google scholar
[74]
Chun J T, Wang L, Pasinetti G M, Finch C E, Zlokovic B V (1999). Glycoprotein 330/megalin (LRP-2) has low prevalence as mRNA and protein in brain microvessels and choroid plexus. Exp Neurol, 157(1): 194–201
CrossRef Pubmed Google scholar
[75]
Chung R S, Penkowa M, Dittmann J, King C E, Bartlett C, Asmussen J W, Hidalgo J, Carrasco J, Leung Y K, Walker A K, Fung S J, Dunlop S A, Fitzgerald M, Beazley L D, Chuah M I, Vickers J C, West A K (2008). Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury. J Biol Chem, 283(22): 15349–15358
CrossRef Pubmed Google scholar
[76]
Congote L F (2007). Serpin A1 and CD91 as host instruments against HIV-1 infection: are extracellular antiviral peptides acting as intracellular messengers? Virus Res, 125(2): 119–134
CrossRef Pubmed Google scholar
[77]
Cselenyi C S, Jernigan K K, Tahinci E, Thorne C A, Lee L A, Lee E (2008). LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci USA, 105(23): 8032–8037
CrossRef Pubmed Google scholar
[78]
Cui S, Verroust P J, Moestrup S K, Christensen E I (1996). Megalin/gp330 mediates uptake of albumin in renal proximal tubule. Am J Physiol, 271(4 Pt 2): F900–F907
Pubmed
[79]
Cuitino L, Matute R, Retamal C, Bu G, Inestrosa N C, Marzolo M P (2005). ApoER2 is endocytosed by a clathrin-mediated process involving the adaptor protein Dab2 independent of its Rafts’ association. Traffic, 6(9): 820–838
CrossRef Pubmed Google scholar
[80]
Culi J, Mann R S (2003). Boca, an endoplasmic reticulum protein required for wingless signaling and trafficking of LDL receptor family members in Drosophila. Cell, 112(3): 343–354
CrossRef Pubmed Google scholar
[81]
Culi J, Springer T A, Mann R S (2004). Boca-dependent maturation of beta-propeller/EGF modules in low-density lipoprotein receptor proteins. EMBO J, 23(6): 1372–1380
CrossRef Pubmed Google scholar
[82]
Czekay R P, Aertgeerts K, Curriden S A, Loskutoff D J (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol, 160(5): 781–791
CrossRef Pubmed Google scholar
[83]
Czekay R P, Orlando R A, Woodward L, Lundstrom M, Farquhar M G (1997). Endocytic trafficking of megalin/RAP complexes: dissociation of the complexes in late endosomes. Mol Biol Cell, 8(3): 517–532
Pubmed
[84]
D’Arcangelo G, Homayouni R, Keshvara L, Rice D S, Sheldon M, Curran T (1999). Reelin is a ligand for lipoprotein receptors. Neuron, 24(2): 471–479
CrossRef Pubmed Google scholar
[85]
Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C (2005). Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature, 438(7069): 867–872
CrossRef Pubmed Google scholar
[86]
De Ferrari G V, Inestrosa N C (2000). Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev, 33(1): 1–12
CrossRef Pubmed Google scholar
[87]
Dedieu S, Langlois B, Devy J, Sid B, Henriet P, Sartelet H, Bellon G, Emonard H, Martiny L (2008). LRP-1 silencing prevents malignant cell invasion despite increased pericellular proteolytic activities. Mol Cell Biol, 28(9): 2980–2995
CrossRef Pubmed Google scholar
[88]
Del Río J A, Heimrich B, Borrell V, Förster E, Drakew A, Alcántara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature, 385(6611): 70–74
CrossRef Pubmed Google scholar
[89]
Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos J M (2011). The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem, 286(4): 2596–2606
CrossRef Pubmed Google scholar
[90]
Díaz-Rodríguez E, Montero J C, Esparís-Ogando A, Yuste L, Pandiella A (2002). Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell, 13(6): 2031–2044
CrossRef Pubmed Google scholar
[91]
Dietrich M F, van der Weyden L, Prosser H M, Bradley A, Herz J, Adams D J (2010). Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo. PLoS ONE, 5(4): e9960
CrossRef Pubmed Google scholar
[92]
Duit S, Mayer H, Blake S M, Schneider W J, Nimpf J (2010). Differential functions of ApoER2 and very low density lipoprotein receptor in Reelin signaling depend on differential sorting of the receptors. J Biol Chem, 285(7): 4896–4908
CrossRef Pubmed Google scholar
[93]
Edwards D R, Handsley M M, Pennington C J (2008). The ADAM metalloproteinases. Mol Aspects Med, 29(5): 258–289
CrossRef Pubmed Google scholar
[94]
Emonard H, Bellon G, de Diesbach P, Mettlen M, Hornebeck W, Courtoy P J (2005). Regulation of matrix metalloproteinase (MMP) activity by the low-density lipoprotein receptor-related protein (LRP). A new function for an “old friend”. Biochimie, 87(3-4): 369–376
CrossRef Pubmed Google scholar
[95]
Emonard H, Bellon G, Troeberg L, Berton A, Robinet A, Henriet P, Marbaix E, Kirkegaard K, Patthy L, Eeckhout Y, Nagase H, Hornebeck W, Courtoy P J (2004). Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2.TIMP-2 complex through a thrombospondin-independent mechanism. J Biol Chem, 279(52): 54944–54951
CrossRef Pubmed Google scholar
[96]
Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M, Sato H (2003). Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem, 278(42): 40764–40770
CrossRef Pubmed Google scholar
[97]
Erdmann K S, Mao Y, McCrea H J, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007). A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell, 13(3): 377–390
CrossRef Pubmed Google scholar
[98]
Erranz B, Miquel J F, Argraves W S, Barth J L, Pimentel F, Marzolo M P (2004). Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids. J Lipid Res, 45(12): 2185–2198
CrossRef Pubmed Google scholar
[99]
Espirito Santo S M, Pires N M, Boesten L S, Gerritsen G, Bovenschen N, van Dijk K W, Jukema J W, Princen H M, Bensadoun A, Li W P, Herz J, Havekes L M, van Vlijmen B J (2004). Hepatic low-density lipoprotein receptor-related protein deficiency in mice increases atherosclerosis independent of plasma cholesterol. Blood, 103(10): 3777–3782
CrossRef Pubmed Google scholar
[100]
Facciponte J G, MacDonald I J, Wang X Y, Kim H, Manjili M H, Subjeck J R (2005). Heat shock proteins and scavenger receptors: role in adaptive immune responses. Immunol Invest, 34(3): 325–342
CrossRef Pubmed Google scholar
[101]
Fan H, Turck C W, Derynck R (2003). Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem, 278(20): 18617–18627
CrossRef Pubmed Google scholar
[102]
Fayard B, Bianchi F, Dey J, Moreno E, Djaffer S, Hynes N E, Monard D (2009). The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression. Cancer Res, 69(14): 5690–5698
CrossRef Pubmed Google scholar
[103]
Fears C Y, Gladson C L, Woods A (2006). Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem, 281(21): 14533–14536
CrossRef Pubmed Google scholar
[104]
Feinstein Y, Borrell V, Garcia C, Burstyn-Cohen T, Tzarfaty V, Frumkin A, Nose A, Okamoto H, Higashijima S, Soriano E, Klar A (1999). F-spondin and mindin: two structurally and functionally related genes expressed in the hippocampus that promote outgrowth of embryonic hippocampal neurons. Development, 126(16): 3637–3648
Pubmed
[105]
Fisher C E, Howie S E (2006). The role of megalin (LRP-2/Gp330) during development. Dev Biol, 296(2): 279–297
CrossRef Pubmed Google scholar
[106]
Fitzgerald M, Nairn P, Bartlett C A, Chung R S, West A K, Beazley L D (2007). Metallothionein-IIA promotes neurite growth via the megalin receptor. Exp Brain Res, 183(2): 171–180
CrossRef Pubmed Google scholar
[107]
Fleming C E, Mar F M, Franquinho F, Saraiva M J, Sousa M M (2009). Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J Neurosci, 29(10): 3220–3232
CrossRef Pubmed Google scholar
[108]
Fortini M E (2002). Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol, 3(9): 673–684
CrossRef Pubmed Google scholar
[109]
Fortini M E (2009). Notch signaling: the core pathway and its posttranslational regulation. Dev Cell, 16(5): 633–647
CrossRef Pubmed Google scholar
[110]
Frykman P K, Brown M S, Yamamoto T, Goldstein J L, Herz J (1995). Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci USA, 92(18): 8453–8457
CrossRef Pubmed Google scholar
[111]
Fuentealba R A, Barría M I, Lee J, Cam J, Araya C, Escudero C A, Inestrosa N C, Bronfman F C, Bu G, Marzolo M P (2007). ApoER2 expression increases Abeta production while decreasing Amyloid Precursor Protein (APP) endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of gamma-secretase activity. Mol Neurodegener, 2(1): 14
CrossRef Pubmed Google scholar
[112]
Fuentealba R A, Farias G, Scheu J, Bronfman M, Marzolo M P, Inestrosa N C (2004). Signal transduction during amyloid-beta-peptide neurotoxicity: role in Alzheimer disease. Brain Res Brain Res Rev, 47(1-3): 275–289
CrossRef Pubmed Google scholar
[113]
Fuentealba R A, Liu Q, Kanekiyo T, Zhang J, Bu G (2009). Low density lipoprotein receptor-related protein 1 promotes anti-apoptotic signaling in neurons by activating Akt survival pathway. J Biol Chem, 284(49): 34045–34053
CrossRef Pubmed Google scholar
[114]
Gajera C R, Emich H, Lioubinski O, Christ A, Beckervordersandforth-Bonk R, Yoshikawa K, Bachmann S, Christensen E I, Götz M, Kempermann G, Peterson A S, Willnow T E, Hammes A (2010). LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci, 123(11): 1922–1930
CrossRef Pubmed Google scholar
[115]
Gallagher H, Oleinikov A V, Fenske C, Newman D J (2004). The adaptor disabled-2 binds to the third psi xNPxY sequence on the cytoplasmic tail of megalin. Biochimie, 86(3): 179–182
CrossRef Pubmed Google scholar
[116]
Garcia J H, Lossinsky A S, Kauffman F C, Conger K A (1978). Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol, 43(1-2): 85–95
CrossRef Pubmed Google scholar
[117]
García-Miranda P, Peral M J, Ilundain A A (2010). Rat small intestine expresses the reelin-Disabled-1 signalling pathway. Exp Physiol, 95(4): 498–507
CrossRef Pubmed Google scholar
[118]
Gardai S J, McPhillips K A, Frasch S C, Janssen W J, Starefeldt A, Murphy-Ullrich J E, Bratton D L, Oldenborg P A, Michalak M, Henson P M (2005). Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 123(2): 321–334
CrossRef Pubmed Google scholar
[119]
Garton K J, Gough P J, Blobel C P, Murphy G, Greaves D R, Dempsey P J, Raines E W (2001). Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem, 276(41): 37993–38001
Pubmed
[120]
Gaultier A, Arandjelovic S, Li X, Janes J, Dragojlovic N, Zhou G P, Dolkas J, Myers R R, Gonias S L, Campana W M (2008). A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. J Clin Invest, 118(1): 161–172
CrossRef Pubmed Google scholar
[121]
Gaultier A, Wu X, Le Moan N, Takimoto S, Mukandala G, Akassoglou K, Campana W M, Gonias S L (2009). Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci, 122(8): 1155–1162
CrossRef Pubmed Google scholar
[122]
Gessert S, Kühl M (2010). The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res, 107(2): 186–199
CrossRef Pubmed Google scholar
[123]
Gil C, Cubí R, Aguilera J (2007). Shedding of the p75NTR neurotrophin receptor is modulated by lipid rafts. FEBS Lett, 581(9): 1851–1858
CrossRef Pubmed Google scholar
[124]
Goldstein J L, Brown M S, Anderson R G W, Russell D W, Schneider W J (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol, 1(1): 1–39
CrossRef Pubmed Google scholar
[125]
Gonzalez-Villalobos R, Klassen R B, Allen P L, Johanson K, Baker C B, Kobori H, Navar L G, Hammond T G (2005). Megalin binds and internalizes angiotensin-(1-7). Am J Physiol Renal Physiol, 290(5): F1270–F1275
CrossRef Pubmed Google scholar
[126]
Gonzalez-Villalobos R, Klassen R B, Allen P L, Navar L G, Hammond T G (2005). Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol, 288(2): F420–F427
CrossRef Pubmed Google scholar
[127]
Gorovoy M, Gaultier A, Campana W M, Firestein G S, Gonias S L (2010). Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages. J Leukoc Biol, 88(4): 769–778
CrossRef Pubmed Google scholar
[128]
Gotthardt M, Trommsdorff M, Nevitt M F, Shelton J, Richardson J A, Stockinger W, Nimpf J, Herz J (2000). Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem, 275(33): 25616–25624
CrossRef Pubmed Google scholar
[129]
Greenwood J A, Murphy-Ullrich J E (1998). Signaling of de-adhesion in cellular regulation and motility. Microsc Res Tech, 43(5): 420–432
CrossRef Pubmed Google scholar
[130]
Guénette S, Chang Y, Hiesberger T, Richardson J A, Eckman C B, Eckman E A, Hammer R E, Herz J (2006). Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J, 25(2): 420–431
CrossRef Pubmed Google scholar
[131]
Guénette S Y, Chang Y, Hyman B T, Tanzi R E, Rebeck G W (2002). Low-density lipoprotein receptor-related protein levels and endocytic function are reduced by overexpression of the FE65 adaptor protein, FE65L1. J Neurochem, 82(4): 755–762
CrossRef Pubmed Google scholar
[132]
Guo N, Hawkins C, Nathans J (2004). Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci USA, 101(25): 9277–9281
CrossRef Pubmed Google scholar
[133]
Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe R F, Hoang B H (2007). Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res, 25(7): 964–971
CrossRef Pubmed Google scholar
[134]
Guttman M, Betts G N, Barnes H, Ghassemian M, van der Geer P, Komives E A (2009). Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics, 9(22): 5016–5028
CrossRef Pubmed Google scholar
[135]
Haas J, Beer A G, Widschwendter P, Oberdanner J, Salzmann K, Sarg B, Lindner H, Herz J, Patsch J R, Marschang P (2011). LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE—carrying lipoproteins. Atherosclerosis, 216(2): 342–347
CrossRef Pubmed Google scholar
[136]
Hack I, Hellwig S, Junghans D, Brunne B, Bock H H, Zhao S, Frotscher M (2007). Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development, 134(21): 3883–3891
CrossRef Pubmed Google scholar
[137]
Hahn-Dantona E, Ruiz J F, Bornstein P, Strickland D K (2001). The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem, 276(18): 15498–15503
CrossRef Pubmed Google scholar
[138]
Hama H, Saito A, Takeda T, Tanuma A, Xie Y, Sato K, Kazama J J, Gejyo F (2004). Evidence indicating that renal tubular metabolism of leptin is mediated by megalin but not by the leptin receptors. Endocrinology, 145(8): 3935–3940
CrossRef Pubmed Google scholar
[139]
Hammad S M, Barth J L, Knaak C, Argraves W S (2000). Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem, 275(16): 12003–12008
CrossRef Pubmed Google scholar
[140]
Hammad S M, Ranganathan S, Loukinova E, Twal W O, Argraves W S (1997). Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J Biol Chem, 272(30): 18644–18649
CrossRef Pubmed Google scholar
[141]
Harris B, Pereira I, Parkin E (2009). Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein. Brain Res, 1296: 203–215
CrossRef Pubmed Google scholar
[142]
Hashimoto Y, Jiang H, Niikura T, Ito Y, Hagiwara A, Umezawa K, Abe Y, Murayama Y, Nishimoto I (2000). Neuronal apoptosis by apolipoprotein E4 through low-density lipoprotein receptor-related protein and heterotrimeric GTPases. J Neurosci, 20(22): 8401–8409
Pubmed
[143]
Hay E, Faucheu C, Suc-Royer I, Touitou R, Stiot V, Vayssière B, Baron R, Roman-Roman S, Rawadi G (2005). Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. J Biol Chem, 280(14): 13616–13623
CrossRef Pubmed Google scholar
[144]
Hayashida K, Bartlett A H, Chen Y, Park P W (2010). Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken), 293(6): 925–937
CrossRef Pubmed Google scholar
[145]
He X, Cooley K, Chung C H, Dashti N, Tang J (2007). Apolipoprotein receptor 2 and X11 alpha/beta mediate apolipoprotein E-induced endocytosis of amyloid-beta precursor protein and beta-secretase, leading to amyloid-beta production. J Neurosci, 27(15): 4052–4060
CrossRef Pubmed Google scholar
[146]
Hermo L, Lustig M, Lefrancois S, Argraves W S, Morales C R (1999). Expression and regulation of LRP-2/megalin in epithelial cells lining the efferent ducts and epididymis during postnatal development. Mol Reprod Dev, 53(3): 282–293
CrossRef Pubmed Google scholar
[147]
Herz J, Chen Y (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci, 7(11): 850–859
CrossRef Pubmed Google scholar
[148]
Herz J, Clouthier D E, Hammer R E (1992a). LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell, 71(3): 411–421
CrossRef Pubmed Google scholar
[149]
Herz J, Clouthier D E, Hammer R E (1992b). LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell, 71(3): 411–421
CrossRef Pubmed Google scholar
[150]
Herz J, Willnow T E (1994). Functions of the LDL receptor gene family. Ann N Y Acad Sci, 737: 14–19
CrossRef Pubmed Google scholar
[151]
Hiesberger T, Trommsdorff M, Howell B W, Goffinet A, Mumby M C, Cooper J A, Herz J (1999). Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron, 24(2): 481–489
CrossRef Pubmed Google scholar
[152]
Higashijima S, Nose A, Eguchi G, Hotta Y, Okamoto H (1997). Mindin/F-spondin family: novel ECM proteins expressed in the zebrafish embryonic axis. Dev Biol, 192(2): 211–227
CrossRef Pubmed Google scholar
[153]
Higashiyama S, Nanba D (2005). ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta, 1751(1): 110–117
Pubmed
[154]
Hocevar B A, Mou F, Rennolds J L, Morris S M, Cooper J A, Howe P H (2003). Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J, 22(12): 3084–3094
CrossRef Pubmed Google scholar
[155]
Hocevar B A, Smine A, Xu X X, Howe P H (2001). The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. EMBO J, 20(11): 2789–2801
CrossRef Pubmed Google scholar
[156]
Hoe H S, Cooper M J, Burns M P, Lewis P A, van der Brug M, Chakraborty G, Cartagena C M, Pak D T, Cookson M R, Rebeck G W (2007). The metalloprotease inhibitor TIMP-3 regulates amyloid precursor protein and apolipoprotein E receptor proteolysis. J Neurosci, 27(40): 10895–10905
CrossRef Pubmed Google scholar
[157]
Hoe H S, Magill L A, Guenette S, Fu Z, Vicini S, Rebeck G W (2006a). FE65 interaction with the ApoE receptor ApoEr2. J Biol Chem, 281(34): 24521–24530
CrossRef Pubmed Google scholar
[158]
Hoe H S, Minami S S, Makarova A, Lee J, Hyman B T, Matsuoka Y, Rebeck G W (2008). Fyn modulation of Dab1 effects on amyloid precursor protein and ApoE receptor 2 processing. J Biol Chem, 283(10): 6288–6299
CrossRef Pubmed Google scholar
[159]
Hoe H S, Pocivavsek A, Chakraborty G, Fu Z, Vicini S, Ehlers M D, Rebeck G W (2006b). Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J Biol Chem, 281(6): 3425–3431
CrossRef Pubmed Google scholar
[160]
Hoe H S, Rebeck G W (2005). Regulation of ApoE receptor proteolysis by ligand binding. Brain Res Mol Brain Res, 137(1-2): 31–39
CrossRef Pubmed Google scholar
[161]
Hoe H S, Tran T S, Matsuoka Y, Howell B W, Rebeck G W (2006c). DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem, 281(46): 35176–35185
CrossRef Pubmed Google scholar
[162]
Hoe H S, Wessner D, Beffert U, Becker A G, Matsuoka Y, Rebeck G W (2005). F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol, 25(21): 9259–9268
CrossRef Pubmed Google scholar
[163]
Hofmann S M, Zhou L, Perez-Tilve D, Greer T, Grant E, Wancata L, Thomas A, Pfluger P T, Basford J E, Gilham D, Herz J, Tschöp M H, Hui D Y (2007). Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice. J Clin Invest, 117(11): 3271–3282
CrossRef Pubmed Google scholar
[164]
Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov S A, Mankani M, Robey P G, Poole A R, Pidoux I, Ward J M, Birkedal-Hansen H (1999). MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell, 99(1): 81–92
CrossRef Pubmed Google scholar
[165]
Homayouni R, Rice D S, Sheldon M, Curran T (1999). Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J Neurosci, 19(17): 7507–7515
Pubmed
[166]
Hsieh J C, Lee L, Zhang L, Wefer S, Brown K, DeRossi C, Wines M E, Rosenquist T, Holdener B C (2003). Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell, 112(3): 355–367
CrossRef Pubmed Google scholar
[167]
Hu L, Boesten L S, May P, Herz J, Bovenschen N, Huisman M V, Berbée J F, Havekes L M, van Vlijmen B J, Tamsma J T (2006). Macrophage low-density lipoprotein receptor-related protein deficiency enhances atherosclerosis in ApoE/LDLR double knockout mice. Arterioscler Thromb Vasc Biol, 26(12): 2710–2715
CrossRef Pubmed Google scholar
[168]
Huang S S, Ling T Y, Tseng W F, Huang Y H, Tang F M, Leal S M, Huang J S (2003). Cellular growth inhibition by IGFBP-3 and TGF-beta1 requires LRP-1. FASEB J, 17(14): 2068–2081
CrossRef Pubmed Google scholar
[169]
Huovila A P, Turner A J, Pelto-Huikko M, Kärkkäinen I, Ortiz R M (2005). Shedding light on ADAM metalloproteinases. Trends Biochem Sci, 30(7): 413–422
CrossRef Pubmed Google scholar
[170]
Iijima H, Miyazawa M, Sakai J, Magoori K, Ito M R, Suzuki H, Nose M, Kawarabayasi Y, Yamamoto T T (1998). Expression and characterization of a very low density lipoprotein receptor variant lacking the O-linked sugar region generated by alternative splicing. J Biochem, 124(4): 747–755
Pubmed
[171]
Inestrosa N, De Ferrari G V, Garrido J L, Alvarez A, Olivares G H, Barría M I, Bronfman M, Chacón M A (2002). Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem Int, 41(5): 341–344
CrossRef Pubmed Google scholar
[172]
Inestrosa N C, Varela-Nallar L, Grabowski C P, Colombres M (2007). Synaptotoxicity in Alzheimer’s disease: the Wnt signaling pathway as a molecular target. IUBMB Life, 59(4): 316–321
CrossRef Pubmed Google scholar
[173]
Izumi Y, Hirata M, Hasuwa H, Iwamoto R, Umata T, Miyado K, Tamai Y, Kurisaki T, Sehara-Fujisawa A, Ohno S, Mekada E (1998). A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J, 17(24): 7260–7272
CrossRef Pubmed Google scholar
[174]
Jacobsen K T, Adlerz L, Multhaup G, Iverfeldt K (2010). Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem, 285(14): 10223–10231
CrossRef Pubmed Google scholar
[175]
Jones C, Hammer R E, Li W P, Cohen J C, Hobbs H H, Herz J (2003). Normal sorting but defective endocytosis of the low density lipoprotein receptor in mice with autosomal recessive hypercholesterolemia. J Biol Chem, 278(31): 29024–29030
CrossRef Pubmed Google scholar
[176]
Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel C P, Glatzel M, De Strooper B, Saftig P (2010). The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci, 30(14): 4833–4844
CrossRef Pubmed Google scholar
[177]
Jung F F, Bachinsky D R, Tang S S, Zheng G, Diamant D, Haveran L, McCluskey R T, Ingelfinger J R (1998). Immortalized rat proximal tubule cells produce membrane bound and soluble megalin. Kidney Int, 53(2): 358–366
CrossRef Pubmed Google scholar
[178]
Jung H O, Uhm J S, Seo S M, Kim J H, Youn H J, Baek S H, Chung W S, Seung K B (2010). Angiotensin II-induced smooth muscle cell migration is mediated by LDL receptor-related protein 1 via regulation of matrix metalloproteinase 2 expression. Biochem Biophys Res Commun, 402(4): 577–582
CrossRef Pubmed Google scholar
[179]
Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M (2001). Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol, 153(5): 893–904
CrossRef Pubmed Google scholar
[180]
Kalani M Y, Cheshier S H, Cord B J, Bababeygy S R, Vogel H, Weissman I L, Palmer T D, Nusse R (2008). Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci USA, 105(44): 16970–16975
CrossRef Pubmed Google scholar
[181]
Kanning K C, Hudson M, Amieux P S, Wiley J C, Bothwell M, Schecterson L C (2003). Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci, 23(13): 5425–5436
Pubmed
[182]
Karsdal M A, Larsen L, Engsig M T, Lou H, Ferreras M, Lochter A, Delaissé J M, Foged N T (2002). Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem, 277(46): 44061–44067
CrossRef Pubmed Google scholar
[183]
Kasza A, Petersen H H, Heegaard C W, Oka K, Christensen A, Dubin A, Chan L, Andreasen P A (1997). Specificity of serine proteinase/serpin complex binding to very-low-density lipoprotein receptor and alpha2-macroglobulin receptor/low-density-lipoprotein-receptor-related protein. Eur J Biochem, 248(2): 270–281
CrossRef Pubmed Google scholar
[184]
Keller R (2002). Shaping the vertebrate body plan by polarized embryonic cell movements. Science, 298(5600): 1950–1954
CrossRef Pubmed Google scholar
[185]
Keshvara L, Benhayon D, Magdaleno S, Curran T (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J Biol Chem, 276(19): 16008–16014
CrossRef Pubmed Google scholar
[186]
Killock D J, Ivetić A (2010). The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and L-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding. Biochem J, 428(2): 293–304
CrossRef Pubmed Google scholar
[187]
Kim D H, Iijima H, Goto K, Sakai J, Ishii H, Kim H J, Suzuki H, Kondo H, Saeki S, Yamamoto T (1996). Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J Biol Chem, 271(14): 8373–8380
Pubmed
[188]
Kim H S, Kim E M, Lee J P, Park C H, Kim S, Seo J H, Chang K A, Yu E, Jeong S J, Chong Y H, Suh Y H (2003). C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J, 17(13): 1951–1953
Pubmed
[189]
Klassen R B, Crenshaw K, Kozyraki R, Verroust P J, Tio L, Atrian S, Allen P L, Hammond T G (2004). Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol, 287(3): F393–F403
CrossRef Pubmed Google scholar
[190]
Knauer M F, Kridel S J, Hawley S B, Knauer D J (1997). The efficient catabolism of thrombin-protease nexin 1 complexes is a synergistic mechanism that requires both the LDL receptor-related protein and cell surface heparins. J Biol Chem, 272(46): 29039–29045
CrossRef Pubmed Google scholar
[191]
Knauer M F, Orlando R A, Glabe C G (1996). Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res, 740(1-2): 6–14
CrossRef Pubmed Google scholar
[192]
Knisely J M, Li Y, Griffith J M, Geuze H J, Schwartz A L, Bu G (2007). Slow endocytosis of the LDL receptor-related protein 1B: implications for a novel cytoplasmic tail conformation. Exp Cell Res, 313(15): 3298–3307
CrossRef Pubmed Google scholar
[193]
Koch S, Strasser V, Hauser C, Fasching D, Brandes C, Bajari T M, Schneider W J, Nimpf J (2002). A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits Reelin signaling. EMBO J, 21(22): 5996–6004
CrossRef Pubmed Google scholar
[194]
Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA, 98(10): 5815–5820
CrossRef Pubmed Google scholar
[195]
König O, Rüttiger L, Müller M, Zimmermann U, Erdmann B, Kalbacher H, Gross M, Knipper M (2007). Estrogen and the inner ear: megalin knockout mice suffer progressive hearing loss. FASEB J, 22(2): 410–417
CrossRef Pubmed Google scholar
[196]
Kounnas M Z, Church F C, Argraves W S, Strickland D K (1996). Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem, 271(11): 6523–6529
CrossRef Pubmed Google scholar
[197]
Kounnas M Z, Henkin J, Argraves W S, Strickland D K (1993). Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J Biol Chem, 268(29): 21862–21867
Pubmed
[198]
Kounnas M Z, Moir R D, Rebeck G W, Bush A I, Argraves W S, Tanzi R E, Hyman B T, Strickland D K (1995). LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell, 82(2): 331–340
CrossRef Pubmed Google scholar
[199]
Kristensen T, Moestrup S K, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L (1990). Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the alpha 2-macroglobulin receptor. FEBS Lett, 276(1-2): 151–155
CrossRef Pubmed Google scholar
[200]
Kühl M, Sheldahl L C, Park M, Miller J R, Moon R T (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 16(7): 279–283
Pubmed
[201]
Kuhn P H, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart J W, Kremmer E, Rossner S, Lichtenthaler S F (2010). ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J, 29(17): 3020–3032
CrossRef Pubmed Google scholar
[202]
Kuro-o M (2008). Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab, 19(7): 239–245
CrossRef Pubmed Google scholar
[203]
Kwon O Y, Hwang K, Kim J A, Kim K, Kwon I C, Song H K, Jeon H (2010). Dab1 binds to Fe65 and diminishes the effect of Fe65 or LRP1 on APP processing. J Cell Biochem, 111(2): 508–519
CrossRef Pubmed Google scholar
[204]
Lanske B, Razzaque M S (2007). Vitamin D and aging: old concepts and new insights. J Nutr Biochem, 18(12): 771–777
CrossRef Pubmed Google scholar
[205]
Larsson M, Hjälm G, Sakwe A M, Engström A, Höglund A S, Larsson E, Robinson R C, Sundberg C, Rask L (2003). Selective interaction of megalin with postsynaptic density-95 (PSD-95)-like membrane-associated guanylate kinase (MAGUK) proteins. Biochem J, 373(2): 381–391
CrossRef Pubmed Google scholar
[206]
Leheste J R, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Müller I, Andreassen T T, Wolf E, Bachmann S, Nykjaer A, Willnow T E (2003). Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J, 17(2): 247–249
Pubmed
[207]
Leheste J R, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug J O, Otto A, Christensen E I, Willnow T E (1999). Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol, 155(4): 1361–1370
CrossRef Pubmed Google scholar
[208]
Lehti K, Rose N F, Valavaara S, Weiss S J, Keski-Oja J (2009). MT1-MMP promotes vascular smooth muscle dedifferentiation through LRP1 processing. J Cell Sci, 122(1): 126–135
CrossRef Pubmed Google scholar
[209]
Lemjabbar-Alaoui H, Sidhu S S, Mengistab A, Gallup M, Basbaum C (2011). TACE/ADAM-17 phosphorylation by PKC-epsilon mediates premalignant changes in tobacco smoke-exposed lung cells. PLoS ONE, 6(3): e17489
CrossRef Pubmed Google scholar
[210]
Lenting P J, Neels J G, van den Berg B M, Clijsters P P, Meijerman D W, Pannekoek H, van Mourik J A, Mertens K, van Zonneveld A J (1999). The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem, 274(34): 23734–23739
CrossRef Pubmed Google scholar
[211]
Li Y, Bu G (2005). LRP5/6 in Wnt signaling and tumorigenesis. Future Oncol, 1(5): 673–681
CrossRef Pubmed Google scholar
[212]
Li Y, Cong R, Biemesderfer D (2008). The COOH terminus of megalin regulates gene expression in opossum kidney proximal tubule cells. Am J Physiol Cell Physiol, 295(2): C529–C537
CrossRef Pubmed Google scholar
[213]
Li Y, Knisely J M, Lu W, McCormick L M, Wang J, Henkin J, Schwartz A L, Bu G (2002). Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J Biol Chem, 277(44): 42366–42371
CrossRef Pubmed Google scholar
[214]
Li Y, Lu W, Bu G (2005). Striking differences of LDL receptor-related protein 1B expression in mouse and human. Biochem Biophys Res Commun, 333(3): 868–873
CrossRef Pubmed Google scholar
[215]
Li Y, Marzolo M P, van Kerkhof P, Strous G J, Bu G (2000). The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem, 275(22): 17187–17194
CrossRef Pubmed Google scholar
[216]
Li Y, Wood N, Donnelly P, Yellowlees D (1998a). Cell density and oestrogen both stimulate alpha 2-macroglobulin receptor expression in breast cancer cell T-47D. Anticancer Res, 18(2A): 1197–1202
Pubmed
[217]
Li Y, Wood N, Grimsley P, Yellowlees D, Donnelly P K (1998b). In vitro invasiveness of human breast cancer cells is promoted by low density lipoprotein receptor-related protein. Invasion Metastasis, 18(5-6): 240–251
CrossRef Pubmed Google scholar
[218]
Li Y, Wood N, Yellowlees D, Donnelly P (1997). Expression of alpha 2 macroglobulin receptor/low density lipoprotein receptor-related protein is cell culture density-dependent in human breast cancer cell line BT-20. Biochem Biophys Res Commun, 240(1): 122–127
CrossRef Pubmed Google scholar
[219]
Lichtenthaler S F, Haass C, Steiner H (2011). Regulated intramembrane proteolysis—lessons from amyloid precursor protein processing. J Neurochem, 117(5): 779–796
CrossRef Pubmed Google scholar
[220]
Lighthouse J K, Zhang L, Hsieh J C, Rosenquist T, Holdener B C (2010). MESD is essential for apical localization of megalin/LRP2 in the visceral endoderm. Dev Dyn: Lillis A P, Van Duyn L B, Murphy-Ullrich J E, Strickland D K (2008). LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev, 88(3): 887–918
CrossRef Google scholar
[221]
Lillis K P, Enga A, White J A, Mertz J (2008). Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. Journal of Neuroscience Methods, 172: 178–184
[222]
Lin D C, Quevedo C, Brewer N E, Bell A, Testa J R, Grimes M L, Miller F D, Kaplan D R (2006). APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Mol Cell Biol, 26(23): 8928–8941
CrossRef Pubmed Google scholar
[223]
Liu C X, Li Y, Obermoeller-McCormick L M, Schwartz A L, Bu G (2001). The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J Biol Chem, 276(31): 28889–28896
CrossRef Pubmed Google scholar
[224]
Liu C X, Musco S, Lisitsina N M, Yaklichkin S Y, Lisitsyn N A (2000). Genomic organization of a new candidate tumor suppressor gene, LRP1B. Genomics, 69(2): 271–274
CrossRef Pubmed Google scholar
[225]
Liu C X, Ranganathan S, Robinson S, Strickland D K (2006). gamma-Secretase-mediated release of the low density lipoprotein receptor-related protein 1B intracellular domain suppresses anchorage-independent growth of neuroglioma cells. J Biol Chem, 282(10): 7504–7511
CrossRef Pubmed Google scholar
[226]
Liu Q, Zhang J, Tran H, Verbeek M M, Reiss K, Estus S, Bu G (2009). LRP1 shedding in human brain: roles of ADAM10 and ADAM17. Mol Neurodegener, 4(1): 17
CrossRef Pubmed Google scholar
[227]
Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah N G, Israël A (1998). The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA, 95(14): 8108–8112
CrossRef Pubmed Google scholar
[228]
Lou X, McQuistan T, Orlando R A, Farquhar M G (2002). GAIP, GIPC and Galphai3 are concentrated in endocytic compartments of proximal tubule cells: putative role in regulating megalin’s function. J Am Soc Nephrol, 13(4): 918–927
Pubmed
[229]
Loukinova E, Ranganathan S, Kuznetsov S, Gorlatova N, Migliorini M M, Loukinov D, Ulery P G, Mikhailenko I, Lawrence D A, Strickland D K (2002). Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF. J Biol Chem, 277(18): 15499–15506
CrossRef Pubmed Google scholar
[230]
Lu W, Yamamoto V, Ortega B, Baltimore D (2004). Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell, 119(1): 97–108
CrossRef Pubmed Google scholar
[231]
Lu Y J, Wu C S, Li H P, Liu H P, Lu C Y, Leu Y W, Wang C S, Chen L C, Lin K H, Chang Y S (2010). Aberrant methylation impairs low density lipoprotein receptor-related protein 1B tumor suppressor function in gastric cancer. Genes Chromosomes Cancer, 49(5): 412–424
Pubmed
[232]
Lundgren S, Carling T, Hjälm G, Juhlin C, Rastad J, Pihlgren U, Rask L, Akerström G, Hellman P (1997). Tissue distribution of human gp330/megalin, a putative Ca(2+)-sensing protein. J Histochem Cytochem, 45(3): 383–392
CrossRef Pubmed Google scholar
[233]
MacDonald B T, Semenov M V, Huang H, He X (2011). Dissecting Molecular Differences between Wnt Coreceptors LRP5 and LRP6. PLoS ONE, 6(8): e23537
CrossRef Pubmed Google scholar
[234]
Magrané J, Casaroli-Marano R P, Reina M, Gåfvels M, Vilaró S (1999). The role of O-linked sugars in determining the very low density lipoprotein receptor stability or release from the cell. FEBS Lett, 451(1): 56–62
CrossRef Pubmed Google scholar
[235]
Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias S L, Campana W M (2008). The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci, 28(45): 11571–11582
CrossRef Pubmed Google scholar
[236]
Mao J, Wang J, Liu B, Pan W, Farr G H 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D (2001). Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell, 7(4): 801–809
CrossRef Pubmed Google scholar
[237]
Mao X, Kikani C K, Riojas R A, Langlais P, Wang L, Ramos F J, Fang Q, Christ-Roberts C Y, Hong J Y, Kim R Y, Liu F, Dong L Q (2006). APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol, 8(5): 516–523
CrossRef Pubmed Google scholar
[238]
Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M (2007). Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci, 27(7): 1682–1691
CrossRef Pubmed Google scholar
[239]
Marinò M, Zheng G, McCluskey R T (1999). Megalin (gp330) is an endocytic receptor for thyroglobulin on cultured fisher rat thyroid cells. J Biol Chem, 274(18): 12898–12904
CrossRef Pubmed Google scholar
[240]
Marschang P, Brich J, Weeber E J, Sweatt J D, Shelton J M, Richardson J A, Hammer R E, Herz J (2004). Normal development and fertility of knockout mice lacking the tumor suppressor gene LRP1b suggest functional compensation by LRP1. Mol Cell Biol, 24(9): 3782–3793
CrossRef Pubmed Google scholar
[241]
Martensen P M, Oka K, Christensen L, Rettenberger P M, Petersen H H, Christensen A, Chan L, Heegaard C W, Andreasen P A (1997). Breast carcinoma epithelial cells express a very low-density lipoprotein receptor variant lacking the O-linked glycosylation domain encoded by exon 16, but with full binding activity for serine proteinase/serpin complexes and Mr-40,000 receptor-associated protein. Eur J Biochem, 248(2): 583–591
CrossRef Pubmed Google scholar
[242]
Martin A M, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, Roebroek A, Luhmann H J, Laatsch A, Weggen S, Lessmann V, Pietrzik C U (2008). The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. J Biol Chem, 283(18): 12004–12013
CrossRef Pubmed Google scholar
[243]
Marzolo M P, Bu G (2009). Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer’s disease. Semin Cell Dev Biol, 20(2): 191–200
CrossRef Pubmed Google scholar
[244]
Marzolo M P, Farfán P (2011). New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res, 44(1): 89–105
CrossRef Pubmed Google scholar
[245]
Marzolo M P, Yuseff M I, Retamal C, Donoso M, Ezquer F, Farfán P, Li Y, Bu G (2003). Differential distribution of low-density lipoprotein-receptor-related protein (LRP) and megalin in polarized epithelial cells is determined by their cytoplasmic domains. Traffic, 4(4): 273–288
CrossRef Pubmed Google scholar
[246]
Massova I, Kotra L P, Fridman R, Mobashery S (1998). Matrix metalloproteinases: structures, evolution, and diversification. FASEB J, 12(12): 1075–1095
Pubmed
[247]
Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T (2001). Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol, 28(1): 22–28
Pubmed
[248]
Matthews V, Schuster B, Schütze S, Bussmeyer I, Ludwig A, Hundhausen C, Sadowski T, Saftig P, Hartmann D, Kallen K J, Rose-John S (2003). Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem, 278(40): 38829–38839
CrossRef Pubmed Google scholar
[249]
May P, Bock H H, Herz J (2003a). Integration of endocytosis and signal transduction by lipoprotein receptors. Sci STKE, 2003(176): 12pe
CrossRef Pubmed Google scholar
[250]
May P, Bock H H, Nimpf J, Herz J (2003b). Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J Biol Chem, 278(39): 37386–37392
CrossRef Pubmed Google scholar
[251]
May P, Reddy Y K, Herz J (2002). Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J Biol Chem, 277(21): 18736–18743
CrossRef Pubmed Google scholar
[252]
May P, Rohlmann A, Bock H H, Zurhove K, Marth J D, Schomburg E D, Noebels J L, Beffert U, Sweatt J D, Weeber E J, Herz J (2004). Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol, 24(20): 8872–8883
CrossRef Pubmed Google scholar
[253]
McCarthy R A, Barth J L, Chintalapudi M R, Knaak C, Argraves W S (2002). Megalin functions as an endocytic sonic hedgehog receptor. J Biol Chem, 277(28): 25660–25667
CrossRef Pubmed Google scholar
[254]
McKendry R, Hsu S C, Harland R M, Grosschedl R (1997). LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol, 192(2): 420–431
CrossRef Pubmed Google scholar
[255]
McLoughlin D M, Miller C C (2008). The FE65 proteins and Alzheimer’s disease. J Neurosci Res, 86(4): 744–754
CrossRef Pubmed Google scholar
[256]
Merlos-Suárez A, Ruiz-Paz S, Baselga J, Arribas J (2001). Metalloprotease-dependent protransforming growth factor-alpha ectodomain shedding in the absence of tumor necrosis factor-alpha-converting enzyme. J Biol Chem, 276(51): 48510–48517
Pubmed
[257]
Mi K, Dolan P J, Johnson G V (2005). The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem, 281(8): 4787–4794
CrossRef Pubmed Google scholar
[258]
Mi K, Johnson G V (2005). Role of the intracellular domains of LRP5 and LRP6 in activating the Wnt canonical pathway. J Cell Biochem, 95(2): 328–338
CrossRef Pubmed Google scholar
[259]
Mi K, Johnson G V (2007). Regulated proteolytic processing of LRP6 results in release of its intracellular domain. J Neurochem, 101(2): 517–529
CrossRef Pubmed Google scholar
[260]
Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton R G, Zerial M (2004). APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell, 116(3): 445–456
CrossRef Pubmed Google scholar
[261]
Miller J R, Hocking A M, Brown J D, Moon R T (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene, 18(55): 7860–7872
CrossRef Pubmed Google scholar
[262]
Miller S I, Ernst R K, Bader M W (2005). LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol, 3(1): 36–46
CrossRef Pubmed Google scholar
[263]
Minami Y, Oishi I, Endo M, Nishita M (2010). Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn, 239(1): 1–15
Pubmed
[264]
Mizuta K, Saito A, Watanabe T, Nagura M, Arakawa M, Shimizu F, Hoshino T (1999). Ultrastructural localization of megalin in the rat cochlear duct. Hear Res, 129(1-2): 83–91
CrossRef Pubmed Google scholar
[265]
Moestrup S K, Gliemann J (1989). Purification of the rat hepatic alpha 2-macroglobulin receptor as an approximately 440-kDa single chain protein. J Biol Chem, 264(26): 15574–15577
Pubmed
[266]
Moestrup S K, Kozyraki R, Kristiansen M, Kaysen J H, Rasmussen H H, Brault D, Pontillon F, Goda F O, Christensen E I, Hammond T G, Verroust P J (1998). The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J Biol Chem, 273(9): 5235–5242
CrossRef Pubmed Google scholar
[267]
Moestrup S K, Verroust P J (2001). Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr, 21(1): 407–428
CrossRef Pubmed Google scholar
[268]
Montcouquiol M, Rachel R A, Lanford P J, Copeland N G, Jenkins N A, Kelley M W (2003). Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature, 423(6936): 173–177
CrossRef Pubmed Google scholar
[269]
Morales C R, Igdoura S A, Wosu U A, Boman J, Argraves W S (1996). Low density lipoprotein receptor-related protein-2 expression in efferent duct and epididymal epithelia: evidence in rats for its In vivo role in endocytosis of apolipoprotein J/clusterin. Biol Reprod, 55(3): 676–683
CrossRef Pubmed Google scholar
[270]
Morris S M, Arden S D, Roberts R C, Kendrick-Jones J, Cooper J A, Luzio J P, Buss F (2002a). Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic, 3(5): 331–341
CrossRef Pubmed Google scholar
[271]
Morris S M, Cooper J A (2001). Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic, 2(2): 111–123
CrossRef Pubmed Google scholar
[272]
Morris S M, Tallquist M D, Rock C O, Cooper J A (2002b). Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport. EMBO J, 21(7): 1555–1564
CrossRef Pubmed Google scholar
[273]
Mu D, Cambier S, Fjellbirkeland L, Baron J L, Munger J S, Kawakatsu H, Sheppard D, Broaddus V C, Nishimura S L (2002). The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol, 157(3): 493–507
CrossRef Pubmed Google scholar
[274]
Møller T, Concannon C G, Ward M W, Walsh C M, Tirniceriu A L, Tribl F, Kögel D, Prehn J H, Egensperger R (2006). Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). Mol Biol Cell, 18(1): 201–210
CrossRef Pubmed Google scholar
[275]
Murphy G (2009). Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol, 20(2): 138–145
CrossRef Pubmed Google scholar
[276]
Murphy-Ullrich J E, Höök M (1989). Thrombospondin modulates focal adhesions in endothelial cells. J Cell Biol, 109(3): 1309–1319
CrossRef Pubmed Google scholar
[277]
Myers D C, Sepich D S, Solnica-Krezel L (2002). Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet, 18(9): 447–455
CrossRef Pubmed Google scholar
[278]
Naccache S N, Hasson T, Horowitz A (2006). Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc Natl Acad Sci USA, 103(34): 12735–12740
CrossRef Pubmed Google scholar
[279]
Nagai M, Meerloo T, Takeda T, Farquhar M G (2003). The adaptor protein ARH escorts megalin to and through endosomes. Mol Biol Cell, 14(12): 4984–4996
CrossRef Pubmed Google scholar
[280]
Nakagawa T, Pimkhaokham A, Suzuki E, Omura K, Inazawa J, Imoto I (2006). Genetic or epigenetic silencing of low density lipoprotein receptor-related protein 1B expression in oral squamous cell carcinoma. Cancer Sci, 97(10): 1070–1074
CrossRef Pubmed Google scholar
[281]
Nakamura Y, Yamamoto M, Kumamaru E (1998). A variant very low density lipoprotein receptor lacking 84 base pairs of O-linked sugar domain in the human brain myelin. Brain Res, 793(1-2): 47–53
CrossRef Pubmed Google scholar
[282]
Neels J G, van Den Berg B M, Lookene A, Olivecrona G, Pannekoek H, van Zonneveld A J (1999). The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J Biol Chem, 274(44): 31305–31311 (In Process Citation)
CrossRef Pubmed Google scholar
[283]
Nielsen R, Birn H, Moestrup S K, Nielsen M, Verroust P, Christensen E I (1998). Characterization of a kidney proximal tubule cell line, LLC-PK1, expressing endocytotic active megalin. J Am Soc Nephrol, 9(10): 1767–1776
Pubmed
[284]
Nielsen R, Courtoy P J, Jacobsen C, Dom G, Lima W R, Jadot M, Willnow T E, Devuyst O, Christensen E I (2007). Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci USA, 104(13): 5407–5412
CrossRef Pubmed Google scholar
[285]
Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M (2011). Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an In vitro blood-brain barrier model. J Biol Chem, 286(20): 17536–17542
CrossRef Pubmed Google scholar
[286]
Niu X, Shi H, Peng J (2010). The role of mesodermal signals during liver organogenesis in zebrafish. Sci China Life Sci, 53(4): 455–461
CrossRef Pubmed Google scholar
[287]
Norden A G, Lapsley M, Igarashi T, Kelleher C L, Lee P J, Matsuyama T, Scheinman S J, Shiraga H, Sundin D P, Thakker R V, Unwin R J, Verroust P, Moestrup S K (2002). Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J Am Soc Nephrol, 13(1): 125–133
Pubmed
[288]
Novak S, Hiesberger T, Schneider W J, Nimpf J (1996). A new low density lipoprotein receptor homologue with 8 ligand binding repeats in brain of chicken and mouse. J Biol Chem, 271(20): 11732–11736
CrossRef Pubmed Google scholar
[289]
Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen E I, Willnow T E (1999). An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell, 96(4): 507–515
CrossRef Pubmed Google scholar
[290]
Nykjaer A, Petersen C M, Møller B, Jensen P H, Moestrup S K, Holtet T L, Etzerodt M, Thøgersen H C, Munch M, Andreasen P A (1992). Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem, 267(21): 14543–14546
Pubmed
[291]
Ogawa M (2000). Corticohistogenesis and Reelin signal cascade. Nihon Shinkei Seishin Yakurigaku Zasshi, 20(4): 169–174
Pubmed
[292]
Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron, 14(5): 899–912
CrossRef Pubmed Google scholar
[293]
Ogden C A, deCathelineau A, Hoffmann P R, Bratton D, Ghebrehiwet B, Fadok V A, Henson P M (2001). C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med, 194(6): 781–796
CrossRef Pubmed Google scholar
[294]
Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997). Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem, 272(4): 2446–2451
CrossRef Pubmed Google scholar
[295]
Oka K, Ishimura-Oka K, Chu M J, Sullivan M, Krushkal J, Li W H, Chan L (1994). Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. Eur J Biochem, 224(3): 975–982
CrossRef Pubmed Google scholar
[296]
Okada S S, Grobmyer S R, Barnathan E S (1996). Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol, 16(10): 1269–1276
CrossRef Pubmed Google scholar
[297]
Oleinikov A V, Zhao J, Makker S P (2000). Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem J, 347(3): 613–621
CrossRef Pubmed Google scholar
[298]
Orford K, Crockett C, Jensen J P, Weissman A M, Byers S W (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem, 272(40): 24735–24738
CrossRef Pubmed Google scholar
[299]
Orlando R A, Rader K, Authier F, Yamazaki H, Posner B I, Bergeron J J, Farquhar M G (1998). Megalin is an endocytic receptor for insulin. J Am Soc Nephrol, 9(10): 1759–1766
Pubmed
[300]
Orr A W, Elzie C A, Kucik D F, Murphy-Ullrich J E (2003). Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci, 116(14): 2917–2927
CrossRef Pubmed Google scholar
[301]
Orr A W, Pallero M A, Murphy-Ullrich J E (2002). Thrombospondin stimulates focal adhesion disassembly through Gi- and phosphoinositide 3-kinase-dependent ERK activation. J Biol Chem, 277(23): 20453–20460
CrossRef Pubmed Google scholar
[302]
Osono Y, Woollett L A, Herz J, Dietschy J M (1995). Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Invest, 95(3): 1124–1132
CrossRef Pubmed Google scholar
[303]
Overton C D, Yancey P G, Major A S, Linton M F, Fazio S (2007). Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ Res, 100(5): 670–677
CrossRef Pubmed Google scholar
[304]
Parr B A, McMahon A P (1994). Wnt genes and vertebrate development. Curr Opin Genet Dev, 4(4): 523–528
CrossRef Pubmed Google scholar
[305]
Patrie K M, Drescher A J, Goyal M, Wiggins R C, Margolis B (2001). The membrane-associated guanylate kinase protein MAGI-1 binds megalin and is present in glomerular podocytes. J Am Soc Nephrol, 12(4): 667–677
Pubmed
[306]
Pedersen M O, Hansen P B, Nielsen S L, Penkowa M (2010). Metallothionein-I + II and receptor megalin are altered in relation to oxidative stress in cerebral lymphomas. Leuk Lymphoma, 51(2): 314–328
CrossRef Pubmed Google scholar
[307]
Peiretti F, Deprez-Beauclair P, Bonardo B, Aubert H, Juhan-Vague I, Nalbone G (2003). Identification of SAP97 as an intracellular binding partner of TACE. J Cell Sci, 116(10): 1949–1957
CrossRef Pubmed Google scholar
[308]
Petersen H H, Hilpert J, Militz D, Zandler V, Jacobsen C, Roebroek A J, Willnow T E (2003). Functional interaction of megalin with the megalinbinding protein (MegBP), a novel tetratrico peptide repeat-containing adaptor molecule. J Cell Sci, 116(3): 453–461
CrossRef Pubmed Google scholar
[309]
Piao S, Lee S H, Kim H, Yum S, Stamos J L, Xu Y, Lee S J, Lee J, Oh S, Han J K, Park B J, Weis W I, Ha N C (2008). Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS ONE, 3(12): e4046
CrossRef Pubmed Google scholar
[310]
Pietrzik C U, Busse T, Merriam D E, Weggen S, Koo E H (2002). The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J, 21(21): 5691–5700
CrossRef Pubmed Google scholar
[311]
Pietrzik C U, Yoon I S, Jaeger S, Busse T, Weggen S, Koo E H (2004). FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci, 24(17): 4259–4265
CrossRef Pubmed Google scholar
[312]
Pilecka I, Banach-Orlowska M, Miaczynska M (2007). Nuclear functions of endocytic proteins. Eur J Cell Biol, 86(9): 533–547
CrossRef Pubmed Google scholar
[313]
Pinson K I, Brennan J, Monkley S, Avery B J, Skarnes W C (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407(6803): 535–538 (In Process Citation)
CrossRef Pubmed Google scholar
[314]
Polavarapu R, An J, Zhang C, Yepes M (2008). Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death. Am J Pathol, 172(5): 1355–1362
CrossRef Pubmed Google scholar
[315]
Polavarapu R, Gongora M C, Yi H, Ranganthan S, Lawrence D A, Strickland D, Yepes M (2007). Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood, 109(8): 3270–3278
CrossRef Pubmed Google scholar
[316]
Pompili V J, Gordon D, San H, Yang Z, Muller D W, Nabel G J, Nabel E G (1995). Expression and function of a recombinant PDGF B gene in porcine arteries. Arterioscler Thromb Vasc Biol, 15(12): 2254–2264
CrossRef Pubmed Google scholar
[317]
Pujadas L, Gruart A, Bosch C, Delgado L, Teixeira C M, Rossi D, de Lecea L, Martínez A, Delgado-García J M, Soriano E (2010). Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci, 30(13): 4636–4649
CrossRef Pubmed Google scholar
[318]
Quinn K A, Grimsley P G, Dai Y P, Tapner M, Chesterman C N, Owensby D A (1997). Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. J Biol Chem, 272(38): 23946–23951
CrossRef Pubmed Google scholar
[319]
Quinn K A, Pye V J, Dai Y P, Chesterman C N, Owensby D A (1999). Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp Cell Res, 251(2): 433–441
CrossRef Pubmed Google scholar
[320]
Rader K, Orlando R A, Lou X, Farquhar M G (2000). Characterization of ANKRA, a novel ankyrin repeat protein that interacts with the cytoplasmic domain of megalin. J Am Soc Nephrol, 11(12): 2167–2178
Pubmed
[321]
Reiss K, Ludwig A, Saftig P (2006). Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther, 111(3): 985–1006
CrossRef Pubmed Google scholar
[322]
Rice D S, Sheldon M, D’Arcangelo G, Nakajima K, Goldowitz D, Curran T (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development, 125(18): 3719–3729
Pubmed
[323]
Riddell D R, Sun X M, Stannard A K, Soutar A K, Owen J S (2001). Localization of apolipoprotein E receptor 2 to caveolae in the plasma membrane. J Lipid Res, 42(6): 998–1002
Pubmed
[324]
Riddell D R, Vinogradov D V, Stannard A K, Chadwick N, Owen J S (1999). Identification and characterization of LRP8 (apoER2) in human blood platelets. J Lipid Res, 40(10): 1925–1930
Pubmed
[325]
Rohlmann A, Gotthardt M, Hammer R E, Herz J (1998). Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J Clin Invest, 101(3): 689–695
CrossRef Pubmed Google scholar
[326]
Rowling M J, Kemmis C M, Taffany D A, Welsh J (2006). Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells. J Nutr, 136(11): 2754–2759
Pubmed
[327]
Rozanov D V, Hahn-Dantona E, Strickland D K, Strongin A Y (2003). The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem, 279(6): 4260–4268
CrossRef Pubmed Google scholar
[328]
Rubera I, Poujeol C, Bertin G, Hasseine L, Counillon L, Poujeol P, Tauc M (2004). Specific Cre/Lox recombination in the mouse proximal tubule. J Am Soc Nephrol, 15(8): 2050–2056
CrossRef Pubmed Google scholar
[329]
Ruiz J, Kouiavskaia D, Migliorini M, Robinson S, Saenko E L, Gorlatova N, Li D, Lawrence D, Hyman B T, Weisgraber K H, Strickland D K (2005). The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res, 46(8): 1721–1731
CrossRef Pubmed Google scholar
[330]
Saenko E L, Yakhyaev A V, Mikhailenko I, Strickland D K, Sarafanov A G (1999). Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem, 274(53): 37685–37692
CrossRef Pubmed Google scholar
[331]
Saito A, Pietromonaco S, Loo A K, Farquhar M G (1994). Complete cloning and sequencing of rat gp330/”megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA, 91(21): 9725–9729
CrossRef Pubmed Google scholar
[332]
Saitoh T, Mine T, Katoh M (2002). Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med, 9(5): 515–519
Pubmed
[333]
Sakai K, Tiebel O, Ljungberg M C, Sullivan M, Lee H J, Terashima T, Li R, Kobayashi K, Lu H C, Chan L, Oka K (2009). A neuronal VLDLR variant lacking the third complement-type repeat exhibits high capacity binding of apoE containing lipoproteins. Brain Res, 1276: 11–21
CrossRef Pubmed Google scholar
[334]
Salicioni A M, Gaultier A, Brownlee C, Cheezum M K, Gonias S L (2003). Low density lipoprotein receptor-related protein-1 promotes beta1 integrin maturation and transport to the cell surface. J Biol Chem, 279(11): 10005–10012
CrossRef Pubmed Google scholar
[335]
Schlöndorff J, Lum L, Blobel C P (2001). Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. J Biol Chem, 276(18): 14665–14674
CrossRef Pubmed Google scholar
[336]
Seiki M (2003). Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett, 194(1): 1–11
CrossRef Pubmed Google scholar
[337]
Seki N, Bujo H, Jiang M, Tanaga K, Takahashi K, Yagui K, Hashimoto N, Schneider W J, Saito Y (2005). LRP1B is a negative modulator of increased migration activity of intimal smooth muscle cells from rabbit aortic plaques. Biochem Biophys Res Commun, 331(4): 964–970
CrossRef Pubmed Google scholar
[338]
Selvais C, D’Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, Dedieu S, Noël A, Nagase H, Henriet P, Courtoy P J, Marbaix E, Emonard H (2011). Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J, 25(8): 2770–2781
CrossRef Pubmed Google scholar
[339]
Selvais C, Gaide Chevronnay H P, Lemoine P, Dedieu S, Henriet P, Courtoy P J, Marbaix E, Emonard H (2009). Metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 ectodomain decreases endocytic clearance of endometrial matrix metalloproteinase-2 and -9 at menstruation. Endocrinology, 150(8): 3792–3799
CrossRef Pubmed Google scholar
[340]
Sentürk A, Pfennig S, Weiss A, Burk K, Acker-Palmer A (2011). Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature, 472(7343): 356–360
CrossRef Pubmed Google scholar
[341]
Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A (2001). Roles of Meltrin beta /ADAM19 in the processing of neuregulin. J Biol Chem, 276(12): 9352–9358
CrossRef Pubmed Google scholar
[342]
Shiroshima T, Oka C, Kawaichi M (2009). Identification of LRP1B-interacting proteins and inhibition of protein kinase Calpha-phosphorylation of LRP1B by association with PICK1. FEBS Lett, 583(1): 43–48
CrossRef Pubmed Google scholar
[343]
Simó S, Pujadas L, Segura M F, La Torre A, Del Río J A, Ureña J M, Comella J X, Soriano E (2006). Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erk1/2 activation. Cereb Cortex, 17(2): 294–303
CrossRef Pubmed Google scholar
[344]
Skovronsky D M, Moore D B, Milla M E, Doms R W, Lee V M (2000). Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. J Biol Chem, 275(4): 2568–2575
CrossRef Pubmed Google scholar
[345]
Slusarski D C, Corces V G, Moon R T (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658): 410–413
CrossRef Pubmed Google scholar
[346]
Song H, Bu G (2009). MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1. Biochem Biophys Res Commun, 388(2): 400–405
CrossRef Pubmed Google scholar
[347]
Song H, Li Y, Lee J, Schwartz A L, Bu G (2009). Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res, 69(3): 879–886
CrossRef Pubmed Google scholar
[348]
Soond S M, Everson B, Riches D W, Murphy G (2005). ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J Cell Sci, 118(11): 2371–2380
CrossRef Pubmed Google scholar
[349]
Spoelgen R, Hammes A, Anzenberger U, Zechner D, Andersen O M, Jerchow B, Willnow T E (2005). LRP2/megalin is required for patterning of the ventral telencephalon. Development, 132(2): 405–414
CrossRef Pubmed Google scholar
[350]
Stefansson S, Lawrence D A, Argraves W S (1996). Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2. J Biol Chem, 271(14): 8215–8220
CrossRef Pubmed Google scholar
[351]
Stockinger W, Brandes C, Fasching D, Hermann M, Gotthardt M, Herz J, Schneider W J, Nimpf J (2000). The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and-2. J Biol Chem, 275(33): 25625–25632
CrossRef Pubmed Google scholar
[352]
Stockinger W, Hengstschläger-Ottnad E, Novak S, Matus A, Hüttinger M, Bauer J, Lassmann H, Schneider W J, Nimpf J (1998). The low density lipoprotein receptor gene family. Differential expression of two alpha2-macroglobulin receptors in the brain. J Biol Chem, 273(48): 32213–32221
CrossRef Pubmed Google scholar
[353]
Stockinger W, Sailler B, Strasser V, Recheis B, Fasching D, Kahr L, Schneider W J, Nimpf J (2002). The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J, 21(16): 4259–4267
CrossRef Pubmed Google scholar
[354]
Strickland D K, Ashcom J D, Williams S, Burgess W H, Migliorini M, Argraves W S (1990). Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem, 265(29): 17401–17404
Pubmed
[355]
Strickland D K, Kounnas M Z, Argraves W S (1995). LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J, 9(10): 890–898
Pubmed
[356]
Strickland D K, Ranganathan S (2003). Diverse role of LDL receptor-related protein in the clearance of proteases and in signaling. J Thromb Haemost, 1(7): 1663–1670
CrossRef Pubmed Google scholar
[357]
Su H P, Nakada-Tsukui K, Tosello-Trampont A C, Li Y, Bu G, Henson P M, Ravichandran K S (2002). Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem, 277(14): 11772–11779
CrossRef Pubmed Google scholar
[358]
Sundberg C, Thodeti C K, Kveiborg M, Larsson C, Parker P, Albrechtsen R, Wewer U M (2004). Regulation of ADAM12 cell-surface expression by protein kinase C epsilon. J Biol Chem, 279(49): 51601–51611
CrossRef Pubmed Google scholar
[359]
Suzuki M, Raab G, Moses M A, Fernandez C A, Klagsbrun M (1997). Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem, 272(50): 31730–31737
CrossRef Pubmed Google scholar
[360]
Suzuki Y, Nagai N, Yamakawa K, Kawakami J, Lijnen H R, Umemura K (2009). Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor-related protein. Blood, 114(15): 3352–3358
CrossRef Pubmed Google scholar
[361]
Takaguri A, Shirai H, Kimura K, Hinoki A, Eguchi K, Carlile-Klusacek M, Yang B, Rizzo V, Eguchi S (2011). Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol, 50(3): 545–551
CrossRef Pubmed Google scholar
[362]
Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T (1992). Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci USA, 89(19): 9252–9256
CrossRef Pubmed Google scholar
[363]
Takayama Y, May P, Anderson R G, Herz J (2004). Low density lipoprotein receptor-related protein 1 (LRP1) controls endocytosis and c-CBL-mediated ubiquitination of the platelet-derived growth factor receptor beta (PDGFR beta). J Biol Chem, 280(18): 18504–18510
CrossRef Pubmed Google scholar
[364]
Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet J P, He X (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature, 407(6803): 530–535 (In Process Citation)
CrossRef Pubmed Google scholar
[365]
Tarr J, Eggleton P (2005). Immune function of C1q and its modulators CD91 and CD93. Crit Rev Immunol, 25(4): 305–330
CrossRef Pubmed Google scholar
[366]
Tellier E, Canault M, Rebsomen L, Bonardo B, Juhan-Vague I, Nalbone G, Peiretti F (2006). The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res, 312(20): 3969–3980
CrossRef Pubmed Google scholar
[367]
Thiel K W, Carpenter G (2006). ErbB-4 and TNF-alpha converting enzyme localization to membrane microdomains. Biochem Biophys Res Commun, 350(3): 629–633
CrossRef Pubmed Google scholar
[368]
Toledo E M, Colombres M, Inestrosa N C (2008). Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol, 86(3): 281–296
CrossRef Pubmed Google scholar
[369]
Trommsdorff M, Borg J P, Margolis B, Herz J (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem, 273(50): 33556–33560
CrossRef Pubmed Google scholar
[370]
Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer R E, Richardson J A, Herz J (1999). Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell, 97(6): 689–701
CrossRef Pubmed Google scholar
[371]
Tsaroucha A K, Chatzaki E, Lambropoulou M, Despoudi K, Laftsidis P, Charsou C, Polychronidis A, Papadopoulos N, Simopoulos C E (2008). Megalin and cubilin in the human gallbladder epithelium. Clin Exp Med, 8(3): 165–170
CrossRef Pubmed Google scholar
[372]
Tseng W F, Huang S S, Huang J S (2004). LRP-1/TbetaR-V mediates TGF-beta1-induced growth inhibition in CHO cells. FEBS Lett, 562(1-3): 71–78
CrossRef Pubmed Google scholar
[373]
Ulery P G, Beers J, Mikhailenko I, Tanzi R E, Rebeck G W, Hyman B T, Strickland D K (2000). Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer’s disease. J Biol Chem, 275(10): 7410–7415 (In Process Citation)
CrossRef Pubmed Google scholar
[374]
Vainio S, Heikkilä M, Kispert A, Chin N, McMahon A P (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature, 397(6718): 405–409
CrossRef Pubmed Google scholar
[375]
van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous G J, Klumperman J, Bu G (2005). Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J, 24(16): 2851–2861
CrossRef Pubmed Google scholar
[376]
Vandivier R W, Ogden C A, Fadok V A, Hoffmann P R, Brown K K, Botto M, Walport M J, Fisher J H, Henson P M, Greene K E (2002). Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells In vivo and In vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol, 169(7): 3978–3986
Pubmed
[377]
Vassar R (2001). The beta-secretase, BACE: a prime drug target for Alzheimer’s disease. J Mol Neurosci, 17(2): 157–170
CrossRef Pubmed Google scholar
[378]
Vassar R, Bennett B D, Babu-Khan S, Kahn S, Mendiaz E A, Denis P, Teplow D B, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski M A, Biere A L, Curran E, Burgess T, Louis J C, Collins F, Treanor J, Rogers G, Citron M (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286(5440): 735–741
CrossRef Pubmed Google scholar
[379]
von Arnim C A, Kinoshita A, Peltan I D, Tangredi M M, Herl L, Lee B M, Spoelgen R, Hshieh T T, Ranganathan S, Battey F D, Liu C X, Bacskai B J, Sever S, Irizarry M C, Strickland D K, Hyman B T (2004). The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem, 280(18): 17777–17785
CrossRef Pubmed Google scholar
[380]
von Tresckow B, Kallen K J, von Strandmann E P, Borchmann P, Lange H, Engert A, Hansen H P (2004). Depletion of cellular cholesterol and lipid rafts increases shedding of CD30. J Immunol, 172(7): 4324–4331
Pubmed
[381]
Wakabayashi T, De Strooper B (2008). Presenilins: members of the gamma-secretase quartets, but part-time soloists too. Physiology (Bethesda), 23(4): 194–204
CrossRef Pubmed Google scholar
[382]
Wakatsuki S, Kurisaki T, Sehara-Fujisawa A (2004). Lipid rafts identified as locations of ectodomain shedding mediated by Meltrin beta/ADAM19. J Neurochem, 89(1): 119–123
CrossRef Pubmed Google scholar
[383]
Wang X, Lee S R, Arai K, Lee S R, Tsuji K, Rebeck G W, Lo E H (2003). Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med, 9(10): 1313–1317
CrossRef Pubmed Google scholar
[384]
Weaver A M, Hussaini I M, Mazar A, Henkin J, Gonias S L (1997). Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptor-related protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin. J Biol Chem, 272(22): 14372–14379
CrossRef Pubmed Google scholar
[385]
Weeber E J, Beffert U, Jones C, Christian J M, Forster E, Sweatt J D, Herz J (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem, 277(42): 39944–39952
CrossRef Pubmed Google scholar
[386]
Weeraratna A T, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent J M (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1(3): 279–288
CrossRef Pubmed Google scholar
[387]
Wehrli M, Dougan S T, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S (2000). arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407(6803): 527–530 (In Process Citation)
CrossRef Pubmed Google scholar
[388]
Wicher G, Aldskogius H (2008). Megalin deficiency induces critical changes in mouse spinal cord development. Neuroreport, 19(5): 559–563
CrossRef Pubmed Google scholar
[389]
Wicher G, Larsson M, Fex Svenningsen A, Gyllencreutz E, Rask L, Aldskogius H (2006). Low density lipoprotein receptor-related protein-2/megalin is expressed in oligodendrocytes in the mouse spinal cord white matter. J Neurosci Res, 83(5): 864–873
CrossRef Pubmed Google scholar
[390]
Wicher G, Larsson M, Rask L, Aldskogius H (2005). Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord. J Comp Neurol, 492(2): 123–131
CrossRef Pubmed Google scholar
[391]
Willert K, Nusse R (1998). Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev, 8(1): 95–102
CrossRef Pubmed Google scholar
[392]
Willnow T E (1999). The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med (Berl), 77(3): 306–315 (see comments)
CrossRef Pubmed Google scholar
[393]
Willnow T E, Hilpert J, Armstrong S A, Rohlmann A, Hammer R E, Burns D K, Herz J (1996a). Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA, 93(16): 8460–8464
CrossRef Pubmed Google scholar
[394]
Willnow T E, Moehring J M, Inocencio N M, Moehring T J, Herz J (1996b). The low-density-lipoprotein receptor-related protein (LRP) is processed by furin In vivo and In vitro. Biochem J, 313(Pt 1): 71–76
Pubmed
[395]
Willnow T E, Nykjaer A, Herz J (1999). Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol, 1(6): E157–E162
CrossRef Pubmed Google scholar
[396]
Willnow T E, Rohlmann A, Horton J, Otani H, Braun J R, Hammer R E, Herz J (1996c). RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J, 15(11): 2632–2639
Pubmed
[397]
Wodarz A, Nusse R (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 14(1): 59–88
CrossRef Pubmed Google scholar
[398]
Wolff N A, Abouhamed M, Verroust P J, Thévenod F (2006). Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther, 318(2): 782–791
CrossRef Pubmed Google scholar
[399]
Wu G, Huang H, Garcia Abreu J, He X (2009). Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS ONE, 4(3): e4926
CrossRef Pubmed Google scholar
[400]
Wygrecka M, Wilhelm J, Jablonska E, Zakrzewicz D, Preissner K T, Seeger W, Guenther A, Markart P (2011). Shedding of Low Density Lipoprotein Receptor-related Protein-1 in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med: Xu X X, Yi T, Tang B, Lambeth J D (1998). Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene, 16(12): 1561–1569
[401]
Yang D H, Cai K Q, Roland I H, Smith E R, Xu X X (2007). Disabled-2 is an epithelial surface positioning gene. J Biol Chem, 282(17): 13114–13122
CrossRef Pubmed Google scholar
[427]
Xu X X, Yi T, Tang B, Lambeth J D (1998). Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene, 16(12): 1561–1569
[402]
Yang M, Huang H, Li J, Li D, Wang H (2004). Tyrosine phosphorylation of the LDL receptor-related protein (LRP) and activation of the ERK pathway are required for connective tissue growth factor to potentiate myofibroblast differentiation. FASEB J, 18(15): 1920–1921
Pubmed
[403]
Yang Z, Cool B H, Martin G M, Hu Q (2006). A dominant role for FE65 (APBB1) in nuclear signaling. J Biol Chem, 281(7): 4207–4214
CrossRef Pubmed Google scholar
[404]
Yang Z, Strickland D K, Bornstein P (2001). Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem, 276(11): 8403–8408
CrossRef Pubmed Google scholar
[405]
Yasui N, Nogi T, Takagi J (2010). Structural basis for specific recognition of reelin by its receptors. Structure, 18(3): 320–331
CrossRef Pubmed Google scholar
[406]
Yepes M, Sandkvist M, Moore E G, Bugge T H, Strickland D K, Lawrence D A (2003). Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest, 112(10): 1533–1540
Pubmed
[407]
Yokozeki T, Wakatsuki S, Hatsuzawa K, Black R A, Wada I, Sehara-Fujisawa A (2007). Meltrin beta (ADAM19) mediates ectodomain shedding of Neuregulin beta1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells, 12(3): 329–343
CrossRef Pubmed Google scholar
[408]
Yoshikawa S, McKinnon R D, Kokel M, Thomas J B (2003). Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature, 422(6932): 583–588
CrossRef Pubmed Google scholar
[409]
Young H M, Anderson R B, Anderson C R (2004). Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci, 112(1-2): 1–14
CrossRef Pubmed Google scholar
[410]
Yuseff M I, Farfan P, Bu G, Marzolo M P (2007). A cytoplasmic PPPSP motif determines megalin’s phosphorylation and regulates receptor’s recycling and surface expression. Traffic, 8(9): 1215–1230
CrossRef Pubmed Google scholar
[411]
Zambrano N, Minopoli G, de Candia P, Russo T (1998). The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J Biol Chem, 273(32): 20128–20133
CrossRef Pubmed Google scholar
[412]
Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh J C, He X (2007). Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 135(2): 367–375
CrossRef Pubmed Google scholar
[413]
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069): 873–877
CrossRef Pubmed Google scholar
[414]
Zeng Y A, Nusse R (2010). Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell, 6(6): 568–577
CrossRef Pubmed Google scholar
[415]
Zerbinatti C V, Wozniak D F, Cirrito J, Cam J A, Osaka H, Bales K R, Zhuo M, Paul S M, Holtzman D M, Bu G (2004). Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc Natl Acad Sci USA, 101(4): 1075–1080
CrossRef Pubmed Google scholar
[416]
Zhang C, An J, Haile W B, Echeverry R, Strickland D K, Yepes M (2009). Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab, 29(12): 1946–1954
CrossRef Pubmed Google scholar
[417]
Zhang Q, Thomas S M, Lui V W, Xi S, Siegfried J M, Fan H, Smithgall T E, Mills G B, Grandis J R (2006). Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Proc Natl Acad Sci USA, 103(18): 6901–6906
CrossRef Pubmed Google scholar
[418]
Zheng G, Marino’ M, Zhao J, McCluskey R T (1998). Megalin (gp330): a putative endocytic receptor for thyroglobulin (Tg). Endocrinology, 139(3): 1462–1465
CrossRef Pubmed Google scholar
[419]
Zheng Y, Schlondorff J, Blobel C P (2002). Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem, 277(45): 42463–42470
CrossRef Pubmed Google scholar
[420]
Zhou J, Hsieh J T (2001). The inhibitory role of DOC-2/DAB2 in growth factor receptor-mediated signal cascade. DOC-2/DAB2-mediated inhibition of ERK phosphorylation via binding to Grb2. J Biol Chem, 276(30): 27793–27798
CrossRef Pubmed Google scholar
[421]
Zhu Y, Hui D Y (2003). Apolipoprotein E binding to low density lipoprotein receptor-related protein-1 inhibits cell migration via activation of cAMP-dependent protein kinase A. J Biol Chem, 278(38): 36257–36263
CrossRef Pubmed Google scholar
[422]
Zhuo M, Holtzman D M, Li Y, Osaka H, DeMaro J, Jacquin M, Bu G (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci, 20(2): 542–549
Pubmed
[423]
Zimina E P, Bruckner-Tuderman L, Franzke C W (2005). Shedding of collagen XVII ectodomain depends on plasma membrane microenvironment. J Biol Chem, 280(40): 34019–34024
CrossRef Pubmed Google scholar
[424]
Zlokovic B V, Martel C L, Matsubara E, McComb J G, Zheng G, McCluskey R T, Frangione B, Ghiso J (1996). Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA, 93(9): 4229–4234
CrossRef Pubmed Google scholar
[425]
Zou Z, Chung B, Nguyen T, Mentone S, Thomson B, Biemesderfer D (2004). Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J Biol Chem, 279(33): 34302–34310
CrossRef Pubmed Google scholar
[426]
Zurhove K, Nakajima C, Herz J, Bock H H, May P (2008). Gamma-secretase limits the inflammatory response through the processing of LRP1. Sci Signal, 1(47): ra15
CrossRef Pubmed Google scholar

Acknowledgments

This work is supported by the Fondo Nacional de Ciencia y Tecnología, FONDECYT, grant # 1110382 and the Millenium Nucleus in Regenerative Biology (MINREB), P-07-011-F.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(939 KB)

Accesses

Citations

Detail

Sections
Recommended

/