The applications of induced pluripotent stem (iPS) cells in drug development
Shulong YANG, Xuelian WANG, Jinmiao LIU, Zhao LIU, Jiaxue HUANG
The applications of induced pluripotent stem (iPS) cells in drug development
The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry.
induced pluripotent stem (iPS) cells / drug discovery
[1] |
Barbaric I, Gokhale P J, Andrews P W (2010). High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans, 38(4): 1046–1050
CrossRef
Pubmed
Google scholar
|
[2] |
Bass A J, Watanabe H, Mermel C H, Yu S, Perner S, Verhaak R G, Kim S Y, Wardwell L, Tamayo P, Gat-Viks I, Ramos A H, Woo M S, Weir B A, Getz G, Beroukhim R, O’Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac L R, Lafargue C J, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs D B, Lin L, Giordano T J, Wagner P, Minna J D, Gazdar A F, Zhu C Q, Brose M S, Cecconello I, Jr U R, Marie S K, Dahl O, Shivdasani R A, Tsao M S, Rubin M A, Wong K K, Regev A, Hahn W C, Beer D G, Rustgi A K, Meyerson M (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet, 41(11): 1238–1242
CrossRef
Pubmed
Google scholar
|
[3] |
Baxter M A, Rowe C, Alder J, Harrison S, Hanley K P, Park B K, Kitteringham N R, Goldring C E, Hanley N A (2010). Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Res (Amst), 5(1): 4–22
CrossRef
Pubmed
Google scholar
|
[41] |
Centofanti M (2010). Models of the stem cell kind. ALS Alert Newsletter, News, <OrgAddress>http://www.alscenter.org/news/newsletter/2010/November/models_of_the_stem_cell_kind.html</OrgAddress>
|
[4] |
Chu L H, Chen B S (2008). Comparisons of robustness and sensitivity between cancer and normal cells by microarray data. Cancer Inform, 6: 165–181
Pubmed
|
[5] |
Crook J M, Kobayashi N R (2008). Human stem cells for modeling neurological disorders: accelerating the drug discovery pipeline. J Cell Biochem, 105(6): 1361–1366
CrossRef
Pubmed
Google scholar
|
[6] |
Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221
CrossRef
Pubmed
Google scholar
|
[7] |
Doss M X, Sachinidis A, Hescheler J (2008). Human ES cell derived cardiomyocytes for cell replacement therapy: a current update. Chin J Physiol, 51(4): 226–229
Pubmed
|
[8] |
Duinsbergen D, Salvatori D, Eriksson M, Mikkers H (2009). Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci, 1176(1): 197–204
CrossRef
Pubmed
Google scholar
|
[9] |
Ebert A D, Svendsen C N (2010). Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov, 9(5): 367–372
CrossRef
Pubmed
Google scholar
|
[10] |
Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227): 277–280
CrossRef
Pubmed
Google scholar
|
[11] |
Foster K W, Frost A R, McKie-Bell P, Lin C Y, Engler J A, Grizzle W E, Ruppert J M (2000). Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res, 60(22): 6488–6495
Pubmed
|
[12] |
Gunaseeli I, Doss M X, Antzelevitch C, Hescheler J, Sachinidis A (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem, 17(8): 759–766
CrossRef
Pubmed
Google scholar
|
[13] |
Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858): 1920–1923
CrossRef
Pubmed
Google scholar
|
[14] |
Heng B C, Richards M, Shu Y, Gribbon P (2009). Induced pluripotent stem cells: a new tool for toxicology screening? Arch Toxicol, 83(7): 641–644
CrossRef
Pubmed
Google scholar
|
[15] |
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 121(3): 465–477
CrossRef
Pubmed
Google scholar
|
[16] |
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A E, Melton D A (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol, 26(7): 795–797
CrossRef
Pubmed
Google scholar
|
[17] |
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton D A (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 26(11): 1269–1275
CrossRef
Pubmed
Google scholar
|
[18] |
Ichida J K, Blanchard J, Lam K, Son E Y, Chung J E, Egli D, Loh K M, Carter A C, Di Giorgio F P, Koszka K, Huangfu D, Akutsu H, Liu D R, Rubin L L, Eggan K (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5): 491–503
CrossRef
Pubmed
Google scholar
|
[19] |
Jeter C R, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley G Q, Tang D G (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells, 27(5): 993–1005
CrossRef
Pubmed
Google scholar
|
[20] |
Kaitin K I (2008). Obstacles and opportunities in new drug development. Clin Pharmacol Ther, 83(2): 210–212
CrossRef
Pubmed
Google scholar
|
[21] |
Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262): 402–406
CrossRef
Pubmed
Google scholar
|
[22] |
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs . Nat Methods, 6(11): 805–808
CrossRef
Pubmed
Google scholar
|
[23] |
Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel R L, Melton D A (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA, 106(37): 15768–15773
CrossRef
Pubmed
Google scholar
|
[24] |
Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier L S, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5): 507–517
CrossRef
Pubmed
Google scholar
|
[25] |
Meyer N, Penn L Z (2008). Reflecting on 25 years with MYC. Nat Rev Cancer, 8(12): 976–990
CrossRef
Pubmed
Google scholar
|
[26] |
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA, 107(32): 14152–14157
CrossRef
Pubmed
Google scholar
|
[27] |
Nakao Y, Narazaki G, Hoshino T, Maeda S, Yoshida M, Maejima H, Yamashita J K (2008). Evaluation of antiangiogenic activity of azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells. Bioorg Med Chem Lett, 18(9): 2982–2984
CrossRef
Pubmed
Google scholar
|
[42] |
Neveu P, Kye M J, Qis, Buchholz D E, Clegg D O, Sahin M, Park I H, Kim K S, Daley G Q, Kornblum H I, Shraiman B I, Kossk K S (2010). MicroRNA profiling reveals two distinct p53-related human pluripotent stem cells states. Cell Stem Cell, 7(6): 671–681
CrossRef
Pubmed
Google scholar
|
[28] |
Schüle B, Pera R A, Langston J W (2009). Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta, 1792(11): 1043–1051
Pubmed
|
[29] |
Shi Y, Do J T, Desponts C, Hahm H S, Schöler H R, Ding S (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6): 525–528
CrossRef
Pubmed
Google scholar
|
[30] |
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5): 964–977
CrossRef
Pubmed
Google scholar
|
[31] |
Sollano J A, Kirsch J M, Bala M V, Chambers M G, Harpole L H (2008). The economics of drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol Ther, 84(2): 263–266
CrossRef
Pubmed
Google scholar
|
[32] |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
CrossRef
Pubmed
Google scholar
|
[33] |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676
CrossRef
Pubmed
Google scholar
|
[34] |
Viswanathan S R, Powers J T, Einhorn W, Hoshida Y, Ng T L, Toffanin S, O’Sullivan M, Lu J, Phillips L A, Lockhart V L, Shah S P, Tanwar P S, Mermel C H, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes T P, Llovet J M, Radich J, Mullighan C G, Golub T R, Sorensen P H, Daley G Q (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet, 41(7): 843–848
CrossRef
Pubmed
Google scholar
|
[35] |
Vojnits K, Bremer S (2010). Challenges of using pluripotent stem cells for safety assessments of substances. Toxicology, 270(1): 10–17
CrossRef
Pubmed
Google scholar
|
[36] |
Wernig M, Lengner C J, Hanna J, Lodato M A, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R (2008a). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol, 26(8): 916–924
CrossRef
Pubmed
Google scholar
|
[37] |
Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008b). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 105(15): 5856–5861
CrossRef
Pubmed
Google scholar
|
[38] |
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920
CrossRef
Pubmed
Google scholar
|
[39] |
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Zhao Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 3(5): 475–479
CrossRef
Pubmed
Google scholar
|
[40] |
Zhou H, Wu S, Joo J Y, Zhu S, Han D W, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler H R, Duan L, Ding S (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5): 381–384
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |