%A Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias %T Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment %0 Journal Article %D 2017 %J Front. Environ. Sci. Eng. %J Frontiers of Environmental Science & Engineering %@ 2095-2201 %R 10.1007/s11783-017-0996-5 %P 9- %V 11 %N 5 %U {https://journal.hep.com.cn/fese/EN/10.1007/s11783-017-0996-5 %8 2017-10-25 %X

Pyrolysis of plastics from WEEE is a promising technique for the production of fuel.

Pyrolysis of different types of polymers results in very different products.

Existence of different polymers in a blend act synergistically.

Thermal degradation characteristics of a blend are different compared to neat polymers.

Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused. In the framework of sustainable recycling of plastics from WEEE, pyrolysis is proposed here as a means of obtaining secondary value-added products. The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE, using thermogravimetric analysis and a pyrolizer equipped with a GC/MS. Polymers studied include ABS, HIPS, PC and a blend having a composition similar to that appearing in WEEE. It was found that, PC shows greater heat endurance compared to the other polymers, whereas ABS depolymerizes in three-steps. The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation. Moreover, the fragmentation occurred in the pyrolyzer, at certain temperatures, resulted in a great variety of compounds, depending on the polymer type, such as monomers, aromatic products, phenolic compounds and hydrocarbons. The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.