New insights into the formation of ammonium nitrate from a physical and chemical level perspective
New insights into the formation of ammonium nitrate from a physical and chemical level perspective
● Factor analysis of ammonium nitrate formation based on thermodynamic theory.
● Aerosol liquid water content has important role on the ammonium nitrate formation.
● Contribution of coal combustion and vehicle exhaust is significant in haze periods.
High levels of fine particulate matter (PM2.5) is linked to poor air quality and premature deaths, so haze pollution deserves the attention of the world. As abundant inorganic components in PM2.5, ammonium nitrate (NH4NO3) formation includes two processes, the diffusion process (molecule of ammonia and nitric acid move from gas phase to liquid phase) and the ionization process (subsequent dissociation to form ions). In this study, we discuss the impact of meteorological factors, emission sources, and gaseous precursors on NH4NO3 formation based on thermodynamic theory, and identify the dominant factors during clean periods and haze periods. Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution. The dust source is dominant emission source in clean periods; while a combination of coal combustion and vehicle exhaust sources is more important in haze periods. And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate. The findings of this work inform the design of effective strategies to control particulate matter pollution.
Ammonium nitrate formation / Thermodynamic theory / Aerosol liquid water content / Source apportionment
[1] |
Behera S N , Betha R , Balasubramanian R . (2013). Insights into chemical coupling among acidic gases, ammonia and secondary inorganic aerosols. Aerosol and Air Quality Research, 13(4): 1282–1296
CrossRef
ADS
Google scholar
|
[2] |
Behera S N , Sharma M . (2010). Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408(17): 3569–3575
CrossRef
ADS
Google scholar
|
[3] |
Bhattarai N , Wang S X , Pan Y P , Xu Q C , Zhang Y L , Chang Y H , Fang Y T . (2021). δ15N-stable isotope analysis of NHx: an overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science & Engineering, 15(6): 126
|
[4] |
Che H , Xia X , Zhu J , Li Z , Dubovik O , Holben B , Goloub P , Chen H , Estelles V , Cuevas-Agullo E .
CrossRef
ADS
Google scholar
|
[5] |
Chen T Z , Chu B W , Ge Y L , Zhang S P , Ma Q X , He H , Li S M . (2019). Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 252: 236–244
CrossRef
ADS
Google scholar
|
[6] |
Chen X R , Wang H C , Lu K D , Li C M , Zhai T Y , Tan Z F , Ma X F , Yang X P , Liu Y H , Chen S Y .
CrossRef
ADS
Google scholar
|
[7] |
Cheng Y , Yu Q Q , Liu J M , Sun Y W , Liang L L , Du Z Y , Geng G N , Ma W L , Qi H , Zhang Q .
CrossRef
ADS
Google scholar
|
[8] |
Dao X , Lin Y C , Cao F , Di S Y , Hong Y H , Xing G H , Li J J , Fu P Q , Zhang Y L . (2019). Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook. Bulletin of the American Meteorological Society, 100(12): Es337–Es351
|
[9] |
Fan M Y , Zhang Y L , Lin Y C , Chang Y H , Cao F , Zhang W Q , Hu Y B , Bao M Y , Liu X Y , Zhai X Y .
CrossRef
ADS
Google scholar
|
[10] |
Fountoukis C , Nenes A . (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42–-NO3–-Cl–-H2O aerosols. Atmospheric Chemistry and Physics, 7(17): 4639–4659
CrossRef
ADS
Google scholar
|
[11] |
Fu X , Wang T , Gao J , Wang P , Liu Y M , Wang S X , Zhao B , Xue L K . (2020). Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environmental Science & Technology, 54(7): 3881–3889
CrossRef
ADS
Google scholar
|
[12] |
Gao J , Dong S H , Yu H F , Peng X , Wang W , Shi G L , Han B , Wei Y T , Feng Y C . (2020). Source apportionment for online dataset at a megacity in China using a new PTT-PMF model. Atmospheric Environment, 229: 117457
CrossRef
ADS
Google scholar
|
[13] |
Guo H Y , Otjes R , Schlag P , Kiendler-Scharr A , Nenes A , Weber R J . (2018). Effectiveness of ammonia reduction on control of fine particle nitrate. Atmospheric Chemistry and Physics, 18(16): 12241–12256
CrossRef
ADS
Google scholar
|
[14] |
Guo W , Zhang Z Y , Zheng N J , Luo L , Xiao H Y , Xiao H W . (2020). Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmospheric Research, 234: 104687
CrossRef
ADS
Google scholar
|
[15] |
Huang R J , Duan J , Li Y J , Chen Q , Chen Y , Tang M J , Yang L , Ni H Y , Lin C S , Xu W .
CrossRef
ADS
Google scholar
|
[16] |
Lin Y C , Cheng M T . (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9): 1903–1910
CrossRef
ADS
Google scholar
|
[17] |
Lin Y C , Cheng M T , Lin W H , Lan Y Y , Tsuang B J . (2010). Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan (China). Atmospheric Environment, 44(13): 1632–1640
CrossRef
ADS
Google scholar
|
[18] |
Lin Y C , Zhang Y L , Fan M Y , Bao M Y . (2020). Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmospheric Chemistry and Physics, 20(6): 3999–4011
CrossRef
ADS
Google scholar
|
[19] |
Liu M X , Huang X , Song Y , Xu T T , Wang S X , Wu Z J , Hu M , Zhang L , Zhang Q , Pan Y P .
CrossRef
ADS
Google scholar
|
[20] |
Liu Y , Zheng M , Yu M Y , Cai X H , Du H Y , Li J , Zhou T , Yan C Q , Wang X S , Shi Z B .
CrossRef
ADS
Google scholar
|
[21] |
Meskhidze N, Chameides W L, Nenes A, Chen G (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30(21): 2085
CrossRef
ADS
Google scholar
|
[22] |
Pan D , Benedict K B , Golston L M , Wang R , Collett J L Jr , Tao L , Sun K , Guo X H , Ham J , Prenni A J .
CrossRef
ADS
Google scholar
|
[23] |
Pant P , Harrison R M . (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49: 1–12
CrossRef
ADS
Google scholar
|
[24] |
Peng X , Liu X X , Shi X R , Shi G L , Li M , Liu J Y , Huangfu Y Q , Xu H , Ma R Y , Wang W .
CrossRef
ADS
Google scholar
|
[25] |
Ryu S Y , Kwon B G , Kim Y J , Kim H H , Chun K J . (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84(4): 362–373
CrossRef
ADS
Google scholar
|
[26] |
Seinfeld J H, Pandis S N (2016). Atmospheric chemistry and physics: from air pollution to climate change. Hoboken, NJ: John Wiley & Sons, Inc.
|
[27] |
Shen H Q , Liu Y H , Zhao M , Li J , Zhang Y N , Yang J , Jiang Y , Chen T S , Chen M , Huang X B .
CrossRef
ADS
Google scholar
|
[28] |
Shen Z X , Sun J , Cao J J , Zhang L M , Zhang Q , Lei Y L , Gao J J , Huang R J , Liu S X , Huang Y .
CrossRef
ADS
Google scholar
|
[29] |
Shi X R , Nenes A , Xiao Z M , Song S J , Yu H F , Shi G L , Zhao Q Y , Chen K , Feng Y C , Russell A G . (2019). High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental Science & Technology, 53(6): 3048–3057
CrossRef
ADS
Google scholar
|
[30] |
Song S J , Gao M , Xu W Q , Shao J Y , Shi G L , Wang S X , Wang Y X , Sun Y L , Mcelroy M B . (2018). Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 18(10): 7423–7438
CrossRef
ADS
Google scholar
|
[31] |
Squizzato S , Masiol M , Brunelli A , Pistollato S , Tarabotti E , Rampazzo G , Pavoni B . (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4): 1927–1939
CrossRef
ADS
Google scholar
|
[32] |
Su H , Cheng Y F , Poschl U . (2020). New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Accounts of Chemical Research, 53(10): 2034–2043
CrossRef
ADS
Google scholar
|
[33] |
Tao J , Gao J , Zhang L , Zhang R , Che H , Zhang Z , Lin Z , Jing J , Cao J , Hsu S C . (2014). PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics, 14(16): 8679–8699
CrossRef
ADS
Google scholar
|
[34] |
Tao Y , Murphy J G . (2019). The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmospheric Chemistry and Physics, 19(14): 9309–9320
CrossRef
ADS
Google scholar
|
[35] |
Tao Y , Ye X N , Ma Z , Xie Y Y , Wang R Y , Chen J M , Yang X , Jiang S Q . (2016). Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. Atmospheric Environment, 145: 1–9
CrossRef
ADS
Google scholar
|
[36] |
Tian M , Liu Y , Yang F M , Zhang L M , Peng C , Chen Y , Shi G M , Wang H B , Luo B , Jiang C T .
CrossRef
ADS
Google scholar
|
[37] |
Tian Y Z , Shi G L , Han B , Wu J H , Zhou X Y , Zhou L D , Zhang P , Feng Y C . (2015). Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere, 119: 750–756
CrossRef
ADS
Google scholar
|
[38] |
Wang S B , Yin S S , Zhang R Q , Yang L M , Zhao Q Y , Zhang L S , Yan Q S , Jiang N , Tang X Y . (2019a). Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of the Total Environment, 660: 47–56
CrossRef
ADS
Google scholar
|
[39] |
Wang Y L , Song W , Yang W , Sun X C , Tong Y D , Wang X M , Liu C Q , Bai Z P , Liu X Y . (2019b). Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing. Journal of Geophysical Research. Atmospheres, 124(7): 4174–4185
CrossRef
ADS
Google scholar
|
[40] |
Wu Z J , Wang Y , Tan T Y , Zhu Y S , Li M R , Shang D J , Wang H C , Lu K D , Guo S , Zeng L M .
CrossRef
ADS
Google scholar
|
[41] |
Xu J , Chen J , Zhao N , Wang G C , Yu G Y , Li H , Huo J T , Lin Y F , Fu Q Y , Guo H Y .
CrossRef
ADS
Google scholar
|
[42] |
Xu L L , Duan F K , He K B , Ma Y L , Zhu L D , Zheng Y X , Huang T , Kimoto T , Ma T , Li H .
CrossRef
ADS
Google scholar
|
[43] |
Xue J , Yuan Z B , Lau A K H , Yu J Z . (2014). Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research. Atmospheres, 119(8): 4888–4902
CrossRef
ADS
Google scholar
|
[44] |
Yang J R , Wang S B , Zhang R Q , Yin S S . (2022a). Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environmental Pollution, 296: 118716
CrossRef
ADS
Google scholar
|
[45] |
Yang S X , Yuan B , Peng Y W , Huang S , Chen W , Hu W W , Pei C L , Zhou J , Parrish D D , Wang W J .
CrossRef
ADS
Google scholar
|
[46] |
Yao L , Yang L X , Yuan Q , Yan C , Dong C , Meng C P , Sui X , Yang F , Lu Y L , Wang W X . (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 541: 590–598
CrossRef
ADS
Google scholar
|
[47] |
Ye X N , Ma Z , Zhang J C , Du H H , Chen J M , Chen H , Yang X , Gao W , Geng F H . (2011). Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 6(2): 024019
CrossRef
ADS
Google scholar
|
[48] |
Zhai S X , Jacob D J , Wang X , Shen L , Li K , Zhang Y Z , Gui K , Zhao T L , Liao H . (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16): 11031–11041
CrossRef
ADS
Google scholar
|
[49] |
Zhang Q , Shen Z X , Cao J J , Ho K F , Zhang R J , Bie Z J , Chang H R , Liu S X . (2014). Chemical profiles of urban fugitive dust over Xi’an in the south margin of the Loess Plateau, China. Atmospheric Pollution Research, 5(3): 421–430
CrossRef
ADS
Google scholar
|
[50] |
Zhang Q , Zheng Y X , Tong D , Shao M , Wang S X , Zhang Y H , Xu X D , Wang J N , He H , Liu W Q .
CrossRef
ADS
Google scholar
|
[51] |
Zhang T , Shen Z X , Su H , Liu S X , Zhou J M , Zhao Z Z , Wang Q Y , Prevot A S H , Cao J J . (2021). Effects of aerosol water content on the formation of secondary inorganic aerosol during a winter heavy pm2.5 pollution episode in Xi’an, China. Atmospheric Environment, 252: 118304
CrossRef
ADS
Google scholar
|
[52] |
Zhao Q Y , Nenes A , Yu H F , Song S J , Xiao Z M , Chen K , Shi G L , Feng Y C , Russell A G . (2020). Using high-temporal-resolution ambient data to investigate gas-particle partitioning of ammonium over different seasons. Environmental Science & Technology, 54(16): 9834–9843
CrossRef
ADS
Google scholar
|
[53] |
Zheng B , Tong D , Li M , Liu F , Hong C P , Geng G N , Li H Y , Li X , Peng L Q , Qi J .
CrossRef
ADS
Google scholar
|
[54] |
Zhou W , Gao M , He Y , Wang Q Q , Xie C H , Xu W Q , Zhao J , Du W , Qiu Y M , Lei L .
CrossRef
ADS
Google scholar
|
[55] |
Zong Z , Wang X P , Tian C G , Chen Y J , Qu L , Ji L , Zhi G R , Li J , Zhang G . (2016). Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmospheric Chemistry and Physics, 16(17): 11249–11265
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |