Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China
Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China
• Characteristics and interannual variation of aerosol pollution are illustrated.
• Mechanisms of secondary aerosol formation in winter haze of North China are reviewed.
• Directions in future studies of secondary aerosol formation are provided.
Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei (BTH) region (China), exerting profound impacts on air quality, visibility, and human health. The Chinese Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in the annual mean PM2.5 concentration over this region. However, the level of secondary aerosols during heavy haze episodes showed little decrease during this period. During heavy haze episodes, the concentrations of secondary aerosol components, including sulfate, nitrate and secondary organics, in aerosol particles increase sharply, acting as the main contributors to aerosol pollution. To achieve effective control of particle pollution in the BTH region, the precise and complete secondary aerosol formation mechanisms have been investigated, and advances have been made about the mechanisms of gas phase reaction, nucleation and heterogeneous reactions in forming secondary aerosols. This paper reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region, lays out the challenges in haze formation studies, and provides implications and directions for future research.
Secondary aerosol formation / Regional haze / Photochemical reaction / Aqueous reaction / Chemical mechanism
[1] |
Bao F X, Li M, Zhang Y, Chen C C, Zhao J C (2018). Photochemical aging of Beijing urban PM2.5: HONO production. Environmental Science & Technology, 52(11): 6309–6316
CrossRef
ADS
Google scholar
|
[2] |
Bei N F, Wu J R, Elser M, Feng T, Cao J J, El-Haddad I, Li X, Huang R J, Li Z Q, Long X, Xing L, Zhao S Y, Tie X X, Prevot A S H, Li G H (2017). Impacts of meteorological uncertainties on the haze formation in Beijing-Tianjin-Hebei (BTH) during wintertime: A case study. Atmospheric Chemistry and Physics, 17(23): 14579–14591
CrossRef
ADS
Google scholar
|
[3] |
Cai W J, Li K, Liao H, Wang H J, Wu L X (2017). Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Climate Change, 7(4): 257–262
CrossRef
ADS
Google scholar
|
[4] |
Cao C, Jiang W J, Wang B Y, Fang J H, Lang J D, Tian G, Jiang J K, Zhu T F (2014). Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environmental Science & Technology, 48(3): 1499–1507
CrossRef
ADS
Google scholar
|
[5] |
Cao Z, Zhou X, Ma Y, Wang L, Wu R, Chen B, Wang W (2017). The concentrations, formations, relationships and modeling of sulfate, nitrate and ammonium (SNA) aerosols over China. Aerosol and Air Quality Research, 17(1): 84–97
CrossRef
ADS
Google scholar
|
[6] |
Chen D, Liu Z Q, Fast J, Ban J M (2016). Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmospheric Chemistry and Physics, 16(16): 10707–10724
CrossRef
ADS
Google scholar
|
[7] |
Chen R J, Zhao Z H, Kan H D (2013). Heavy smog and hospital visits in Beijing, China. American Journal of Respiratory and Critical Care Medicine, 188(9): 1170–1171
CrossRef
ADS
Google scholar
|
[8] |
Chen Y F, Zhou Y M, Zhao X Y (2020). PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003–2015. Frontiers of Environmental Science & Engineering, 14(2): 23
CrossRef
ADS
Google scholar
|
[9] |
Cheng J, Su J P, Cui T, Li X, Dong X, Sun F, Yang Y Y, Tong D, Zheng Y X, Li Y S, Li J X, Zhang Q, He K B (2019). Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: A model-based decomposition analysis. Atmospheric Chemistry and Physics, 19(9): 6125–6146
CrossRef
ADS
Google scholar
|
[10] |
Cheng N L, Li Y T, Cheng B F, Wang X, Meng F, Wang Q, Qiu Q H (2018). Comparisons of two serious air pollution episodes in winter and summer in Beijing. Journal of Environmental Sciences- China, 69: 141–154
CrossRef
ADS
Google scholar
|
[11] |
Cheng Y, Engling G, He K B, Duan F K, Ma Y L, Du Z Y, Liu J M, Zheng M, Weber R J (2013). Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics, 13(15): 7765–7781
CrossRef
ADS
Google scholar
|
[12] |
Cheng Y F, Zheng G J, Wei C, Mu Q, Zheng B, Wang Z B, Gao M, Zhang Q, He K B, Carmichael G, Poschl U, Su H (2016). Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2(12): e1601530
CrossRef
ADS
Google scholar
|
[13] |
China Daily (2013). Clean air action plan to reduce pollution. China Society. Beijing: China Daily Information Co.
|
[14] |
Ehn M, Thornton J A, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen L B, Jørgensen S, Kjaergaard H G, Canagaratna M, Maso M D, Berndt T, Petäjä T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F (2014). A large source of low-volatility secondary organic aerosol. Nature, 506(7489): 476–479
CrossRef
ADS
Google scholar
|
[15] |
Elser M, Huang R J, Wolf R, Slowik J G, Wang Q Y, Canonaco F, Li G H, Bozzetti C, Daellenbach K R, Huang Y, Zhang R J, Li Z Q, Cao J J, Baltensperger U, El-Haddad I, Prevot A S H (2016). New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 16(5): 3207–3225
CrossRef
ADS
Google scholar
|
[16] |
Gao J J, Wang K, Wang Y, Liu S H, Zhu C Y, Hao J M, Liu H J, Hua S B, Tian H Z (2018). Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environmental Pollution, 233: 714–724
CrossRef
ADS
Google scholar
|
[17] |
Gao M, Carmichael G R, Wang Y, Saide P E, Liu Z, Xin J, Shan Y, Wang Z (2017). Chemical and Meteorological Feedbacks in the Formation of Intense Haze Events. New York: Springer
|
[18] |
Ge B Z, Wang Z F, Lin W L, Xu X B, Li J, Ji D S, Ma Z Q (2018). Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences. Environmental Pollution, 234: 29–38
CrossRef
ADS
Google scholar
|
[19] |
Ge S S, Wang G H, Zhang S, Li D P, Xie Y N, Wu C, Yuan Q, Chen J M, Zhang H L (2019). Abundant NH3 in China enhances atmospheric HONO production by promoting the heterogeneous reaction of SO2 with NO2. Environmental Science & Technology, 53(24): 14339–14347
CrossRef
ADS
Google scholar
|
[20] |
Guo S, Hu M, Peng J, Wu Z, Zamora M L, Shang D, Du Z, Zheng J, Fang X, Tang R, Wu Y, Zeng L, Shuai S, Zhang W, Wang Y, Ji Y, Li Y, Zhang A L, Wang W, Zhang F, Zhao J, Gong X, Wang C, Molina M J, Zhang R (2020). Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proceedings of the National Academy of Sciences of the United States of America, 113(16): 4266–4271
|
[21] |
Guo S, Hu M, Zamora M L, Peng J, Shang D, Zheng J, Du Z, Wu Z, Shao M, Zeng L, Molina M J, Zhang R (2014). Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 111(49): 17373–17378
CrossRef
ADS
Google scholar
|
[22] |
Han B, Zhang R, Yang W, Bai Z, Ma Z, Zhang W (2016a). Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Science of the Total Environment, 544: 319–329
CrossRef
ADS
Google scholar
|
[23] |
Han X, Guo Q, Liu C, Fu P, Strauss H, Yang J, Hu J, Wei L, Ren H, Peters M, Wei R, Tian L (2016b). Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China. Scientific Reports, 6(1): 29958
CrossRef
ADS
Google scholar
|
[24] |
Han X, Zhang M, Gao J, Wang S, Chai F (2014). Modeling analysis of the seasonal characteristics of haze formation in Beijing. Atmospheric Chemistry and Physics, 14(18): 10231–10248
CrossRef
ADS
Google scholar
|
[25] |
He P Z, Alexander B, Geng L, Chi X Y, Fan S D, Zhan H C, Kang H, Zheng G J, Cheng Y F, Su H, Liu C, Xie Z Q (2018a). Isotopic constraints on heterogeneous sulfate production in Beijing haze. Atmospheric Chemistry and Physics, 18(8): 5515–5528
CrossRef
ADS
Google scholar
|
[26] |
He P Z, Xie Z Q, Chi X Y, Yu X W, Fan S D, Kang H, Liu C, Zhan H C (2018b). Atmospheric Delta O-17(NO3‒) reveals nocturnal chemistry dominates nitrate production in Beijing haze. Atmospheric Chemistry and Physics, 18(19): 14465–14476
CrossRef
ADS
Google scholar
|
[27] |
Hong C P, Zhang Q, Zhang Y, Davis S J, Tong D, Zheng Y X, Liu Z, Guan D B, He K B, Schellnhuber H J (2019). Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17193–17200
CrossRef
ADS
Google scholar
|
[28] |
Hu W, Hu M, Hu W, Jimenez J L, Yuan B, Chen W, Wang M, Wu Y, Chen C, Wang Z, Peng J, Zeng L, Shao M (2016). Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research, D, Atmospheres, 121(4): 1955–1977
CrossRef
ADS
Google scholar
|
[29] |
Hu W, Hu M, Hu W W, Zheng J, Chen C, Wu Y, Guo S (2017). Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmospheric Chemistry and Physics, 17(16): 9979–10000
CrossRef
ADS
Google scholar
|
[30] |
Jayaratne R, Pushpawela B, He C, Li H, Gao J, Chai F, Morawska L (2017). Observations of particles at their formation sizes in Beijing, China. Atmospheric Chemistry and Physics, 17(14): 8825–8835
CrossRef
ADS
Google scholar
|
[31] |
Kuang C, Mcmurry P H, Mccormick A V, Eisele F L (2008). Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations. Journal of Geophysical Research, 113(D10): D10209
CrossRef
ADS
Google scholar
|
[32] |
Kulmala M (2003). How particles nucleate and grow. Science, 302(5647): 1000–1001
CrossRef
ADS
Google scholar
|
[33] |
Kulmala M (2015). China’s choking cocktail. Nature, 526(7574): 497–499
CrossRef
ADS
Google scholar
|
[34] |
Kulmala M (2018). Build a global Earth observatory. Nature, 553(7686): 21–23
CrossRef
ADS
Google scholar
|
[35] |
Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E J, Laaksonen A, Kerminen V M, Worsnop D R (2013). Direct observations of atmospheric aerosol nucleation. Science, 339(6122): 943–946
CrossRef
ADS
Google scholar
|
[36] |
Li G H, Bei N F, Cao J J, Huang R J, Wu J R, Feng T, Wang Y C, Liu S X, Zhang Q, Tie X X, Molina L T (2017a). A possible pathway for rapid growth of sulfate during haze days in China. Atmospheric Chemistry and Physics, 17(5): 3301–3316
CrossRef
ADS
Google scholar
|
[37] |
Li X, Jiang L, Bai Y, Yang Y, Liu S, Chen X, Xu J, Liu Y, Wang Y, Guo X, Wang Y, Wang G (2019a). Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission. Atmospheric Research, 218: 25–33
CrossRef
ADS
Google scholar
|
[38] |
Li X, Wu J R, Elser M, Feng T, Cao J J, El-Haddad I, Huang R J, Tie X X, Prevot A S H, Li G H (2018). Contributions of residential coal combustion to the air quality in Beijing-Tianjin-Hebei (BTH), China: a case study. Atmospheric Chemistry and Physics, 18(14): 10675–10691
CrossRef
ADS
Google scholar
|
[39] |
Li X X, Song S J, Zhou W, Hao J M, Worsnop D R, Jiang J K (2019b). Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmospheric Chemistry and Physics, 19(19): 12163–12174
CrossRef
ADS
Google scholar
|
[40] |
Li Y J, Sun Y, Zhang Q, Li X, Li M, Zhou Z, Chan C K (2017b). Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 158: 270–304
CrossRef
ADS
Google scholar
|
[41] |
Liu C, Dai H C, Zhang L, Feng C C (2019a). The impacts of economic restructuring and technology upgrade on air quality and human health in Beijing-Tianjin-Hebei region in China. Frontiers of Environmental Science & Engineering, 13(5): 70
CrossRef
ADS
Google scholar
|
[42] |
Liu J M, Wang P F, Zhang H L, Du Z Y, Zheng B, Yu Q Q, Zheng G J, Ma Y L, Zheng M, Cheng Y, Zhang Q, He K B (2020). Integration of field observation and air quality modeling to characterize Beijing aerosol in different seasons. Chemosphere, 242: 125195
CrossRef
ADS
Google scholar
|
[43] |
Liu L, Wu J R, Liu S X, Li X, Zhou J M, Feng T, Qian Y, Cao J J, Tie X X, Li G H (2019b). Effects of organic coating on the nitrate formation by suppressing the N2O5 heterogeneous hydrolysis: A case study during wintertime in Beijing-Tianjin-Hebei (BTH). Atmospheric Chemistry and Physics, 19(12): 8189–8207
CrossRef
ADS
Google scholar
|
[44] |
Liu M, Huang X, Song Y, Tang J, Cao J, Zhang X, Zhang Q, Wang S, Xu T, Kang L, Cai X, Zhang H, Yang F, Wang H, Yu J Z, Lau A K H, He L, Huang X, Duan L, Ding A, Xue L, Gao J, Liu B, Zhu T (2019c). Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences, 116(16): 7760–7765
|
[45] |
Liu X G, Li J, Qu Y, Han T, Hou L, Gu J, Chen C, Yang Y, Liu X, Yang T, Zhang Y, Tian H, Hu M (2013). Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China. Atmospheric Chemistry and Physics, 13(9): 4501–4514
CrossRef
ADS
Google scholar
|
[46] |
Liu X G, Sun K, Qu Y, Hu M, Sun Y L, Zhang F, Zhang Y H (2015). Secondary formation of sulfate and nitrate during a haze episode in megacity Beijing, China. Aerosol and Air Quality Research, 15(6): 2246–2257
CrossRef
ADS
Google scholar
|
[47] |
Liu Y, Zheng M, Yu M Y, Cai X H, Du H Y, Li J, Zhou T, Yan C Q, Wang X S, Shi Z B, Harrison R M, Zhang Q, He K B (2019d). High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmospheric Chemistry and Physics, 19(9): 6595–6609
CrossRef
ADS
Google scholar
|
[48] |
Liu Y C, Wu Z J, Wang Y, Xiao Y, Gu F T, Zheng J, Tan T Y, Shang D J, Wu Y S, Zeng L M, Hu M, Bateman A P, Martin S T (2017). Submicrometer particles are in the liquid state during heavy haze episodes in the urban atmosphere of Beijing, China. Environmental Science & Technology Letters, 4(10): 427–432
CrossRef
ADS
Google scholar
|
[49] |
Lu K, Guo S, Tan Z, Wang H, Shang D, Liu Y, Li X, Wu Z, Hu M, Zhang Y (2018). Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution. National Science Review, 6(3): 579–594
|
[50] |
Lu K D, Fuchs H, Hofzumahaus A, Tan Z F, Wang H C, Zhang L, Schmitt S H, Rohrer F, Bohn B, Broch S, Dong H B, Gkatzelis G I, Hohaus T, Holland F, Li X, Liu Y, Liu Y H, Ma X F, Novelli A, Schlag P, Shao M, Wu Y S, Wu Z J, Zeng L M, Hu M, Kiendler-Scharr A, Wahner A, Zhang Y H (2019). Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies. Environmental Science & Technology, 53(18): 10676–10684
CrossRef
ADS
Google scholar
|
[51] |
Lv B, Zhang B, Bai Y (2016). A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012. Atmospheric Environment, 124: 98–108
CrossRef
ADS
Google scholar
|
[52] |
Ma J, Xu X, Zhao C, Yan P (2012). A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Advances in Atmospheric Sciences, 29(5): 1006–1026
CrossRef
ADS
Google scholar
|
[53] |
Ma Q X, Wu Y F, Zhang D Z, Wang X J, Xia Y J, Liu X Y, Tian P, Han Z W, Xia X G, Wang Y, Zhang R J (2017). Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing. Science of the Total Environment, 599: 246–253
CrossRef
ADS
Google scholar
|
[54] |
Ma X F, Tan Z F, Lu K D, Yang X P, Liu Y H, Li S L, Li X, Chen S Y, Novelli A, Cho C M, Zeng L M, Wahner A, Zhang Y H (2019). Winter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site. Science of the Total Environment, 685: 85–95
CrossRef
ADS
Google scholar
|
[55] |
Moch J M, Dovrou E, Mickley L J, Keutsch F N, Cheng Y, Jacob D J, Jiang J K, Li M, Munger J W, Qiao X H, Zhang Q (2018). Contribution of hydroxymethane sulfonate to ambient particulate matter: A potential explanation for high particulate sulfur during severe winter haze in Beijing. Geophysical Research Letters, 45(21): 11969–11979
CrossRef
ADS
Google scholar
|
[56] |
Mutzel A, Poulain L, Berndt T, Iinuma Y, Rodigast M, Boge O, Richters S, Spindler G, Sipila M, Jokinen T, Kulmala M, Herrmann H (2015). Highly oxidized multifunctional organic compounds observed in tropospheric particles: A field and laboratory study. Environmental Science & Technology, 49(13): 7754–7761
CrossRef
ADS
Google scholar
|
[57] |
Peng J, Hu M, Guo S, Du Z, Zheng J, Shang D, Zamora M L, Zeng L, Shao M, Wu Y S, Zheng J, Wang Y, Glen C R, Collins D R, Molina M J, Zhang R (2016). Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proceedings of the National Academy of Sciences of the United States of America, 113(16): 4266–4271
CrossRef
ADS
Google scholar
|
[58] |
Pöschl U (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46): 7520–7540
CrossRef
ADS
Google scholar
|
[59] |
Qi J, Zheng B, Li M, Yu F, Chen C, Liu F, Zhou X, Yuan J, Zhang Q, He K (2017). A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China. Atmospheric Environment, 170(Suppl C): 156–168
CrossRef
ADS
Google scholar
|
[60] |
Qi X, Ding A, Roldin P, Xu Z, Zhou P, Sarnela N, Nie W, Huang X, Rusanen A, Ehn M, Rissanen M P, Petäjä T, Kulmala M, Boy M (2018). Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China. Atmospheric Chemistry and Physics, 18(16): 11779–11791
CrossRef
ADS
Google scholar
|
[61] |
Qin M R, Chen Z M, Shen H Q, Li H, Wu H H, Wang Y (2018). Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study. Atmospheric Environment, 183: 144–153
CrossRef
ADS
Google scholar
|
[62] |
Qu Y, Chen Y, Liu X G, Zhang J W, Guo Y T, An J L (2019). Seasonal effects of additional HONO sources and the heterogeneous reactions of N2O5 on nitrate in the North China Plain. Science of the Total Environment, 690: 97–107
CrossRef
ADS
Google scholar
|
[63] |
Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipilä M, Spracklen D V, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U (2014). Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 344(6185): 717–721
CrossRef
ADS
Google scholar
|
[64] |
Shao J, Chen Q, Wang Y, Lu X, He P, Sun Y, Shah V, Martin R V, Philip S, Song S, Zhao Y, Xie Z, Zhang L, Alexander B (2019). Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: Air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmospheric Chemistry and Physics, 19(9): 6107–6123
CrossRef
ADS
Google scholar
|
[65] |
Shen L, Jacob D J, Mickley L J, Wang Y X, Zhang Q (2018). Insignificant effect of climate change on winter haze pollution in Beijing. Atmospheric Chemistry and Physics, 18(23): 17489–17496
CrossRef
ADS
Google scholar
|
[66] |
Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin R L, Hyvärinen A P, Lihavainen H, Kulmala M (2010). The role of sulfuric acid in atmospheric nucleation. Science, 327(5970): 1243–1246
CrossRef
ADS
Google scholar
|
[67] |
Song S J, Gao M, Xu W Q, Shao J Y, Shi G L, Wang S X, Wang Y X, Sun Y L, Mcelroy M B (2018). Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 18(10): 7423–7438
CrossRef
ADS
Google scholar
|
[68] |
Song S J, Gao M, Xu W Q, Sun Y L, Worsnop D R, Jayne J T, Zhang Y Z, Zhu L, Li M, Zhou Z, Cheng C L, Lv Y B, Wang Y, Peng W, Xu X B, Lin N, Wang Y X, Wang S X, Munger J W, Jacob D J, Mcelroy M B (2019). Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 19(2): 1357–1371
CrossRef
ADS
Google scholar
|
[69] |
Su X, Tie X, Li G, Cao J, Huang R, Feng T, Long X, Xu R (2017). Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation. Science of the Total Environment, 579: 221–229
CrossRef
ADS
Google scholar
|
[70] |
Sun Y L, Chen C, Zhang Y J, Xu W Q, Zhou L B, Cheng X L, Zheng H T, Ji D S, Li J, Tang X, Fu P Q, Wang Z F (2016a). Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Scientific Reports, 6(1): 27151
CrossRef
ADS
Google scholar
|
[71] |
Sun Y L, Du W, Fu P Q, Wang Q Q, Li J, Ge X L, Zhang Q, Zhu C M, Ren L J, Xu W Q, Zhao J, Han T T, Worsnop D R, Wang Z F (2016b). Primary and secondary aerosols in Beijing in winter: Sources, variations and processes. Atmospheric Chemistry and Physics, 16(13): 8309–8329
CrossRef
ADS
Google scholar
|
[72] |
Sun Y L, Jiang Q, Wang Z F, Fu P Q, Li J, Yang T, Yin Y (2014). Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research, D, Atmospheres, 119(7): 4380–4398
CrossRef
ADS
Google scholar
|
[73] |
Sun Y L, Wang Z F, Fu P Q, Jiang Q, Yang T, Li J, Ge X L (2013a). The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment, 77: 927–934
CrossRef
ADS
Google scholar
|
[74] |
Sun Y L, Wang Z F, Fu P Q, Yang T, Jiang Q, Dong H B, Li J, Jia J J (2013b). Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 13(9): 4577–4592
CrossRef
ADS
Google scholar
|
[75] |
Tan J H, Duan J C, Zhen N J, He K B, Hao J M (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmospheric Research, 167: 24–33
CrossRef
ADS
Google scholar
|
[76] |
Tan T, Hu M, Li M, Guo Q, Wu Y, Fang X, Gu F, Wang Y, Wu Z (2018). New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions. Science of the Total Environment, 621: 734–743
CrossRef
ADS
Google scholar
|
[77] |
Tang X, Zhang X S, Ci Z J, Guo J, Wang J Q (2016). Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model. Atmospheric Environment, 133: 123–134
CrossRef
ADS
Google scholar
|
[78] |
Tie X, Huang R J, Cao J, Zhang Q, Cheng Y, Su H, Chang D, Pöschl U, Hoffmann T, Dusek U, Li G, Worsnop D R, O’dowd C D (2017). Severe pollution in China amplified by atmospheric moisture. Scientific Reports, 7(1): 15760
CrossRef
ADS
Google scholar
|
[79] |
Vu T V, Shi Z B, Cheng J, Zhang Q, He K B, Waneg S X, Harrison R M (2019). Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmospheric Chemistry and Physics, 19(17): 11303–11314
CrossRef
ADS
Google scholar
|
[80] |
Wang G H, Zhang R Y, Gomez M E, Yang L X, Zamora M L, Hu M, Lin Y, Peng J F, Guo S, Meng J J, Li J J, Cheng C L, Hu T F, Ren Y Q, Wang Y S, Gao J, Cao J J, An Z S, Zhou W J, Li G H, Wang J Y, Tian P F, Marrero-Ortiz W, Secrest J, Du Z F, Zheng J, Shang D J, Zeng L M, Shao M, Wang W G, Huang Y, Wang Y, Zhu Y J, Li Y X, Hu J X, Pan B, Cai L, Cheng Y T, Ji Y M, Zhang F, Rosenfeld D, Liss P S, Duce R A, Kolb C E, Molina M J (2016). Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113(48): 13630–13635
|
[81] |
Wang H C, Lu K D, Chen X R, Zhu Q D, Wu Z J, Wu Y S, Sun K (2018). Fast particulate nitrate formation via N2O5 uptake aloft in winter in Beijing. Atmospheric Chemistry and Physics, 18(14): 10483–10495
CrossRef
ADS
Google scholar
|
[82] |
Wang L T, Wei Z, Yang J, Zhang Y, Zhang F F, Su J, Meng C C, Zhang Q (2014a). The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmospheric Chemistry and Physics, 14(6): 3151–3173
CrossRef
ADS
Google scholar
|
[83] |
Wang Q, Shao M, Zhang Y, Wei Y, Hu M, Guo S (2009). Source apportionment of fine organic aerosols in Beijing. Atmospheric Chemistry and Physics, 9(21): 8573–8585
CrossRef
ADS
Google scholar
|
[84] |
Wang Y H, Wang Y S, Wang L L, Petaja T, Zha Q Z, Gong C S, Li S X, Pan Y P, Hu B, Xin J Y, Kulmala M (2019). Increased inorganic aerosol fraction contributes to air pollution and haze in China. Atmospheric Chemistry and Physics, 19(9): 5881–5888
CrossRef
ADS
Google scholar
|
[85] |
Wang Y H, Yu M, Wang Y S, Tang G Q, Song T, Zhou P T, Liu Z R, Hu B, Ji D S, Wang L L, Zhu X W, Yan C, Ehn M, Gao W K, Pan Y P, Xin J Y, Sun Y, Kerminen V M, Kulmala M, Petaja T (2020). Rapid formation of intense haze episodes via aerosol-boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 20(1): 45–53
CrossRef
ADS
Google scholar
|
[86] |
Wang Y S, Yao L, Wang L L, Liu Z R, Ji D S, Tang G Q, Zhang J K, Sun Y, Hu B, Xin J Y (2014b). Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China. Earth Sciences, 57(1): 14–25
CrossRef
ADS
Google scholar
|
[87] |
Wang Y X, Zhang Q Q, Jiang J K, Zhou W, Wang B Y, He K B, Duan F K, Zhang Q, Philip S, Xie Y Y (2014c). Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. Journal of Geophysical Research, D, Atmospheres, 119(17): 10425–10440
CrossRef
ADS
Google scholar
|
[88] |
Wang Z, Wang Z, Li J, Zheng H, Yan P, Li J (2014d). Development of a meteorology-chemistry two-way coupled numerical model (WRF-NAQPMS) and its application in a severe autumn haze simulation over the Beijing-Tianjin-Hebei Area, China. Climatic and Environmental Research, 19(2): 153–163
|
[89] |
Wang Z, Wu Z, Yue D, Shang D, Guo S, Sun J, Ding A, Wang L, Jiang J, Guo H, Gao J, Cheung H C, Morawska L, Keywood M, Hu M (2017). New particle formation in China: Current knowledge and further directions. Science of the Total Environment, 577: 258–266
CrossRef
ADS
Google scholar
|
[90] |
Wang Z B, Hu M, Yue D L, Zheng J, Zhang R Y, Wiedensohler A, Wu Z J, Nieminen T, Boy M (2011). Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 11(24): 12663–12671
CrossRef
ADS
Google scholar
|
[91] |
Wen L, Xue L K, Wang X F, Xu C H, Chen T S, Yang L X, Wang T, Zhang Q Z, Wang W X (2018). Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy. Atmospheric Chemistry and Physics, 18(15): 11261–11275
CrossRef
ADS
Google scholar
|
[92] |
Xiao S, Wang M Y, Yao L, Kulmala M, Zhou B, Yang X, Chen J M, Wang D F, Fu Q Y, Worsnop D R, Wang L (2015). Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 15(4): 1769–1781
CrossRef
ADS
Google scholar
|
[93] |
Xie Y J (2020).Yearly changes of the sulfate-nitrate-ammonium aerosols and the relationship with their precursors from 1999 to 2016 in Beijing. Environmental Science And Pollution Research, 27(8): 8350–8358
|
[94] |
Xing L, Wu J R, Elser M, Tong S R, Liu S X, Li X, Liu L, Cao J J, Zhou J M, El-Haddad I, Huang R J, Ge M F, Tie X X, Prevot A S H, Li G H (2019). Wintertime secondary organic aerosol formation in Beijing-Tianjin-Hebei (BTH): contributions of HONO sources and heterogeneous reactions. Atmospheric Chemistry and Physics, 19(4): 2343–2359
CrossRef
ADS
Google scholar
|
[95] |
Xu Q C, Wang S X, Jiang J K, Bhattarai N, Li X X, Chang X, Qiu X H, Zheng M, Hua Y, Hao J M (2019a). Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Science of the Total Environment, 689: 1293–1303
CrossRef
ADS
Google scholar
|
[96] |
Xu W Q, Han T T, Du W, Wang Q Q, Chen C, Zhao J, Zhang Y J, Li J, Fu P Q, Wang Z F, Worsnop D R, Sun Y L (2017). Effects of aqueous-phase and photochemical processing on secondary organic aerosol formation and evolution in Beijing, China. Environmental Science & Technology, 51(2): 762–770
CrossRef
ADS
Google scholar
|
[97] |
Xu W Q, Sun Y L, Wang Q Q, Zhao J, Wang J F, Ge X L, Xie C H, Zhou W, Du W, Li J, Fu P Q, Wang Z F, Worsnop D R, Coe H (2019b). Changes in aerosol chemistry from 2014 to 2016 in winter in Beijing: insights from high-resolution aerosol mass spectrometry. Journal of Geophysical Research, D, Atmospheres, 124(2): 1132–1147
CrossRef
ADS
Google scholar
|
[98] |
Xu X, Wang Y, Zhao T, Cheng X, Meng Y, Ding G (2015). Harbor effect of large topography on haze distribution in eastern China and its climate modulation on decadal variations in haze. Chinese Science Bulletin, 60(12): 1132–1143
CrossRef
ADS
Google scholar
|
[99] |
Xu Y L, Xue W B, Lei Y, Zhao Y, Cheng S Y, Ren Z H, Huang Q (2018). Impact of meteorological conditions on PM2.5 pollution in China during winter. Atmosphere, 9(11): 429
CrossRef
ADS
Google scholar
|
[100] |
Xue J, Yuan Z, Griffith S M, Yu X, Lau A K H, Yu J Z (2016). Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during haze-fog events in megacities in China: An observation-based modeling investigation. Environmental Science & Technology, 50(14): 7325–7334
CrossRef
ADS
Google scholar
|
[101] |
Yang Y R, Liu X G, Qu Y, An J L, Jiang R, Zhang Y H, Sun Y L, Wu Z J, Zhang F, Xu W Q, Ma Q X (2015). Characteristics and formation mechanism of continuous hazes in China: A case study during the autumn of 2014 in the North China Plain. Atmospheric Chemistry and Physics, 15(14): 8165–8178
CrossRef
ADS
Google scholar
|
[102] |
Yao L, Garmash O, Bianchi F, Zheng J, Yan C, Kontkanen J, Junninen H, Mazon S B, Ehn M, Paasonen P, Sipila M, Wang M Y, Wang X K, Xiao S, Chen H F, Lu Y Q, Zhang B W, Wang D F, Fu Q Y, Geng F H, Li L, Wang H L, Qiao L P, Yang X, Chen J M, Kerminen V M, Petaja T, Worsnop D R, Kulmala M, Wang L (2018). Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361(6399): 278–281
CrossRef
ADS
Google scholar
|
[103] |
Yao L, Yang L X, Yuan Q, Yan C, Dong C, Meng C P, Sui X, Yang F, Lu Y L, Wang W X (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 541: 590–598
CrossRef
ADS
Google scholar
|
[104] |
Ye C, Liu P F, Ma Z B, Xue C Y, Zhang C L, Zhang Y Y, Liu J F, Liu C T, Sun X, Mu Y J (2018). High H2O2 concentrations observed during haze periods during the winter in Beijing: importance of H2O2 oxidation in sulfate formation. Environmental Science & Technology Letters, 5(12): 757–763
CrossRef
ADS
Google scholar
|
[105] |
Zamora M L, Peng J F, Hu M, Guo S, Marrero-Ortiz W, Shang D J, Zheng J, Du Z F, Wu Z J, Zhang R Y (2019). Wintertime aerosol properties in Beijing. Atmospheric Chemistry and Physics, 19(22): 14329–14338
CrossRef
ADS
Google scholar
|
[106] |
Zhai S X, An X Q, Zhao T L, Sun Z B, Wang W, Hou Q, Guo Z Y, Wang C (2018). Detection of critical PM2.5 emission sources and their contributions to a heavy haze episode in Beijing, China, using an adjoint model. Atmospheric Chemistry and Physics, 18(9): 6241–6258
CrossRef
ADS
Google scholar
|
[107] |
Zhai S X, Jacob D J, Wang X, Shen L, Li K, Zhang Y Z, Gui K, Zhao T L, Liao H (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16): 11031–11041
CrossRef
ADS
Google scholar
|
[108] |
Zhang F, Wang Y, Peng J, Chen L, Sun Y, Duan L, Ge X, Li Y, Zhao J, Liu C, Zhang X, Zhang G, Pan Y, Wang Y, Zhang A L, Ji Y, Wang G, Hu M, Molina M J, Zhang R (2020). An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National Academy of Sciences of the United States of America, 117(8): 3960–3966
CrossRef
ADS
Google scholar
|
[109] |
Zhang H Y, Cheng S Y, Yao S, Wang X Q, Wang C D (2019a). Insights into the temporal and spatial characteristics of PM2.5 transport flux across the district, city and region in the North China Plain. Atmospheric Environment, 218: 117010
CrossRef
ADS
Google scholar
|
[110] |
Zhang J K, Sun Y, Liu Z R, Ji D S, Hu B, Liu Q, Wang Y S (2014). Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmospheric Chemistry and Physics, 14(6): 2887–2903
CrossRef
ADS
Google scholar
|
[111] |
Zhang J W, Chen J M, Xue C Y, Chen H, Zhang Q, Liu X G, Mu Y J, Guo Y T, Wang D Y, Chen Y, Li J L, Qu Y, An J L (2019b). Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Science of the Total Environment, 681: 110–123
CrossRef
ADS
Google scholar
|
[112] |
Zhang Q, Zheng Y X, Tong D, Shao M, Wang S X, Zhang Y H, Xu X D, Wang J N, He H, Liu W Q, Ding Y H, Lei Y, Li J H, Wang Z F, Zhang X Y, Wang Y S, Cheng J, Liu Y, Shi Q R, Yan L, Geng G N, Hong C P, Li M, Liu F, Zheng B, Cao J J, Ding A J, Gao J, Fu Q Y, Huo J T, Liu B X, Liu Z R, Yang F M, He K B, Hao J M (2019c). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469
CrossRef
ADS
Google scholar
|
[113] |
Zhang Q Q, Ma Q, Zhao B, Liu X Y, Wang Y X, Jia B X, Zhang X Y (2018). Winter haze over North China Plain from 2009 to 2016: Influence of emission and meteorology. Environmental Pollution, 242: 1308–1318
CrossRef
ADS
Google scholar
|
[114] |
Zhang R, Suh I, Zhao J, Zhang D, Fortner E C, Tie X, Molina L T, Molina M J (2004). Atmospheric new particle formation enhanced by organic acids. Science, 304(5676): 1487–1490
CrossRef
ADS
Google scholar
|
[115] |
Zhang R, Wang G, Guo S, Zamora M L, Ying Q, Lin Y, Wang W, Hu M, Wang Y (2015a). Formation of urban fine particulate matter. Chemical Reviews, 115(10): 3803–3855
CrossRef
ADS
Google scholar
|
[116] |
Zhang X Y, Wang J Z, Wang Y Q, Liu H L, Sun J Y, Zhang Y M (2015b). Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors the. Atmospheric Chemistry and Physics, 15(22): 12935–12952
CrossRef
ADS
Google scholar
|
[117] |
Zhang Y, Huang W, Cai T Q, Fang D Q, Wang Y Q, Song J, Hu M, Zhang Y X (2016). Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmospheric Research, 174: 62–69
CrossRef
ADS
Google scholar
|
[118] |
Zhao B, Wu W J, Wang S X, Xing J, Chang X, Liou K N, Jiang J H, Gu Y, Jang C, Fu J S, Zhu Y, Wang J D, Lin Y, Hao J M (2017). A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region. Atmospheric Chemistry and Physics, 17(19): 12031–12050
CrossRef
ADS
Google scholar
|
[119] |
Zhao D D, Xin J Y, Gong C S, Quan J N, Liu G J, Zhao W P, Wang Y S, Liu Z, Song T (2019). The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability. Science of the Total Environment, 692: 371–381
CrossRef
ADS
Google scholar
|
[120] |
Zhao X J, Zhao P S, Xu J, Meng W, Pu W W, Dong F, He D, Shi Q F (2013). Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmospheric Chemistry and Physics, 13(11): 5685–5696
CrossRef
ADS
Google scholar
|
[121] |
Zheng B, Tong D, Li M, Liu F, Hong C P, Geng G N, Li H Y, Li X, Peng L Q, Qi J, Yan L, Zhang Y X, Zhao H Y, Zheng Y X, He K B, Zhang Q (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111
CrossRef
ADS
Google scholar
|
[122] |
Zheng G J, Duan F K, Ma Y L, Zhang Q, Huang T, Kimoto T, Cheng Y F, Su H, He K B (2016). Episode-based evolution pattern analysis of haze pollution: Method development and results from Beijing, China. Environmental Science & Technology, 50(9): 4632–4641
CrossRef
ADS
Google scholar
|
[123] |
Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B (2015). Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 15(6): 2969–2983
CrossRef
ADS
Google scholar
|
[124] |
Zhong W G, Yin Z C, Wang H J (2019). The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing-Tianjin-Hebei region. Atmospheric Chemistry and Physics, 19(9): 5941–5957
CrossRef
ADS
Google scholar
|
[125] |
Zhu T, Shang J, Zhao D F (2011). The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China. Chemistry, 54(1): 145–153
CrossRef
ADS
Google scholar
|
[126] |
Zollner J H, Glasoe W A, Panta B, Carlson K K, Mcmurry P H, Hanson D R (2012). Sulfuric acid nucleation: Power dependencies, variation with relative humidity, and effect of bases. Atmospheric Chemistry and Physics, 12(10): 4399–4411
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |