Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots
Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots
CdSe QDs were synthesized with CdCl2, Na2SeO3 and bio-thiols under mild conditions.
Compared with L-cysteine, glutathione was superior for CdSe QDs formation.
Cd2+ binding capacity of glutathione contributed to the CdSe QDs formation.
Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.
CdSe / Quantum dots (QDs) / Biomimetic synthesis / Bio-thiols / Glutathione (GSH) / Cysteine (Cys)
[1] |
Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry, 1986, 90(12): 2555–2560
CrossRef
ADS
Google scholar
|
[2] |
Shu T, Zhou Z M, Wang H, Liu G H, Xiang P, Rong Y G, Han H W, Zhao Y D. Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1-x) quantum dots. Journal of Materials Chemistry, 2012, 22(21): 10525–10529
CrossRef
ADS
Google scholar
|
[3] |
Kuang H, Zhao Y, Ma W, Xu L G, Wang L B, Xu C L. Recent developments in analytical applications of quantum dots. TrAC Trends in Analytical Chemistry, 2011, 30(10): 1620–1636
CrossRef
ADS
Google scholar
|
[4] |
Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010, 39(11): 4326–4354
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
Zhang Y, Clapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors (Basel), 2011, 11(12): 11036–11055
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R. Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature, 1989, 338(6216): 596–597
CrossRef
ADS
Google scholar
|
[7] |
Cui R, Liu H H, Xie H Y, Zhang Z L, Yang Y R, Pang D W, Xie Z X, Chen B B, Hu B, Shen P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Advanced Functional Materials, 2009, 19(15): 2359–2364
CrossRef
ADS
Google scholar
|
[8] |
Park T J, Lee S Y, Heo N S, Seo T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition in English, 2010, 49(39): 7019–7024
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
Li Y, Cui R, Zhang P, Chen B B, Tian Z Q, Li L, Hu B, Pang D W, Xie Z X. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano, 2013, 7(3): 2240–2248
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
Patsoukis N, Georgiou C D. Determination of the thiol redox state of organisms: new oxidative stress indicators. Analytical and Bioanalytical Chemistry, 2004, 378(7): 1783–1792
CrossRef
ADS
Pubmed
Google scholar
|
[11] |
Hansen R E, Roth D, Winther J R. Quantifying the global cellular thiol-disulfide status. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(2): 422–427
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
Zhang J, Wang F, House J D, Page B, Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnology and Oceanography, 2004, 49(6): 2276–2286 doi:10.4319/lo.2004.49.6.2276
|
[13] |
Moingt M, Bressac M, Bélanger D, Amyot M, Role of ultra-violet radiation, mercury and copper on the stability of dissolved glutathione in natural and artificial freshwater and saltwater. Chemosphere, 2010, 80(11): 1314–1320 PMID:20598342 doi:10.1016/j.chemosphere.2010.06.041
|
[14] |
Liu J, Yang T, Chen Q, Liu F, Wang B, Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin. Frontiers of Environmental Science & Engineering, 2016, 10(1): 103–113 doi:10.1007/s11783-014-0686-5
|
[15] |
Pérez-Donoso J M, Monrás J P, Bravo D, Aguirre A, Quest A F, Osorio-Román I O, Aroca R F, Chasteen T G, Vásquez C C. Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One, 2012, 7(1): e30741
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
Shi Y, Ma Z, Cui N, Liu Y, Hou X, Du W, Liu L, Gangsheng T. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers. Nanoscale Research Letters, 2014, 9(1): 121
CrossRef
ADS
Pubmed
Google scholar
|
[17] |
Xue S, Zhao Q, Wei L, Hui X, Ma X, Lin Y.Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions. Frontiers of Environmental Science & Engineering, 2012, 6(6): 784–796 doi:10.1007/s11783-012-0436-5
|
[18] |
Williams A T R, Winfield S A,Miller J N. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst, 1983, 108(1290): 1067–1071 doi:10.1039/an9830801067
|
[19] |
Delley B. Fast calculation of electrostatics in crystals and large molecules. Journal of Physical Chemistry, 1996, 100(15): 6107–6110
CrossRef
ADS
Google scholar
|
[20] |
Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
CrossRef
ADS
Google scholar
|
[21] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
Klamt A, Jonas V, Bürger T, Lohrenz J C W. Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A, 1998, 102(26): 5074–5085
CrossRef
ADS
Google scholar
|
[23] |
Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1993, 2(5): 799–805
CrossRef
ADS
Google scholar
|
[24] |
Cui Y H, Li L L, Zhou N Q, Liu J H, Huang Q, Wang H J, Tian J, Yu H Q. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 2016, 95: 185–191
CrossRef
ADS
Pubmed
Google scholar
|
[25] |
Ganther H E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry, 1971, 10(22): 4089–4098
CrossRef
ADS
Pubmed
Google scholar
|
[26] |
Guo X T, Ni Z J, Liao C Y, Nan H Y, Zhang Y, Zhao W W, Wang W H. Fluorescence quenching of CdSe QDs on graphene. Applied Physics Letters, 2013, 103(20): 201909
CrossRef
ADS
Google scholar
|
[27] |
Neto E S F, da Silva S W, Morais P C, Vasilevskiy M I, Pereira-da-Silva M A, Dantas N O. Resonant raman scattering in CdSxSe1-x nanocrystals: effects of phonon confinement, composition, and elastic strain. Journal of Raman Spectroscopy: JRS, 2011, 42(8): 1660–1669
CrossRef
ADS
Google scholar
|
[28] |
Qian H, Qiu X, Li L, Ren J. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. Journal of Physical Chemistry B, 2006, 110(18): 9034–9040
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
Zhang Y H, Zhang H S, Ma M, Guo X F, Wang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe QDs. Applied Surface Science, 2009, 255(9): 4747–4753
CrossRef
ADS
Google scholar
|
[30] |
Mir I A, Das K, Rawat K, Bohidar H B. Hot injection versus room temperature synthesis of CdSe QDs: a differential spectroscopic and bioanalyte sensing efficacy evaluation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2016, 494: 162–169
CrossRef
ADS
Google scholar
|
[31] |
Silva F O, Carvalho M S, Mendonça R, Macedo W A A, Balzuweit K, Reiss P, Schiavon M A. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Research Letters, 2012, 7(1): 536–538
CrossRef
ADS
Pubmed
Google scholar
|
[32] |
Borovaya M N, Naumenko A P, Matvieieva N A, Blume Y B, Yemets A I. Biosynthesis of luminescent CdS QDs using plant hairy root culture. Nanoscale Research Letters, 2014, 9(1): 686
CrossRef
ADS
Google scholar
|
[33] |
Gonçalves H, Mendonça C, Esteves da Silva J C. PARAFAC analysis of the quenching of EEM of fluorescence of glutathione capped CdTe quantum dots by Pb(II). Journal of Fluorescence, 2009, 19(1): 141–149
CrossRef
ADS
Pubmed
Google scholar
|
[34] |
Santos CI L, Carvalho M S, Raphael E, Dantas C, Ferrari J L, Schiavon M A. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe QDs. Materials Research, 2016, 19(6): 1407–1416
CrossRef
ADS
Google scholar
|
[35] |
Gennari F, Sharma V K, Pettine M, Campanella L, Millero F J. Reduction of selenite by cysteine in ionic media. Geochimica et Cosmochimica Acta, 2014, 124: 98–108
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |