Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb

PDF(4486 KB)
PDF(4486 KB)
Frontiers of Environmental Science & Engineering ›› 2016, Vol. 10 ›› Issue (1) : 192-200. DOI: 10.1007/s11783-014-0719-0

作者信息 +

Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb

Author information +
History +

Abstract

Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast furnace slag-based cementitious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Continuous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C-S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.

Keywords

municipal solid waste incineration (MSWI) fly ash / blast furnace slag / leaching behavior / Cr / Pb

引用本文

导出引用
. . Frontiers of Environmental Science & Engineering. 2016, 10(1): 192-200 https://doi.org/10.1007/s11783-014-0719-0

参考文献

[1]
Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbichler S, Klein R, Lechner P, 0. Management of municipal solid waste incineration residues. Waste Management (New York, N.Y.), 2003, 23(1): 61–88
CrossRef ADS Pubmed Google scholar
[2]
Colangelo F, Cioffi R, Montagnaro F, Santoro L. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Management (New York, N.Y.), 2012, 32(6): 1179–1185
CrossRef ADS Pubmed Google scholar
[3]
Diaz-Loya E I, Allouche E N, Eklund S, Joshi A R, Kupwade-Patil K. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash. Waste Management (New York, N.Y.), 2012, 32(8): 1521–1527
CrossRef ADS Pubmed Google scholar
[4]
Karagiannidis A, Kontogianni S, Logothetis D. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece. Waste Management (New York, N.Y.), 2013, 33(2): 363–372
CrossRef ADS Pubmed Google scholar
[5]
Liu W, Hou H, Zhang C, Zhang D. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash. Waste Management & Research, 2009, 27(3): 258–266
CrossRef ADS Pubmed Google scholar
[6]
Qian G, Yang X, Dong S, Zhou J, Sun Y, Xu Y, Liu Q. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices. Journal of Hazardous Materials, 2009, 165(1–3): 955–960
CrossRef ADS Pubmed Google scholar
[7]
Baricova D, Pribulova A, Demeter P. Utilizing of metallurgical slag for production of cementless concrete mixtures. Metalurgija, 2012, 4(51): 465–468
[8]
Klemm W A, Bhatty J I. Fixation of Heavy Metals as Oxyanion-substituted Ettringites. Portland Cement Association, 2002
[9]
ASTM D6357–00a. Standard Test Methods for Determination of Trace Elements in Coal, Coke, and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and Graphite Furnace Atomic Absorption Spectrometry1. American Society for the Testing of Materials, Philadelphia, PA, 2000
[10]
US EPA. Test methods for evaluating solid wastes, toxicity characteristic leaching procedure (TCLP), Method 1311 SW-846, third edition, Environmental Protection Agency, Washington, DC, USA, 1996.
[11]
Lampris C, Stegemann J A, Pellizon-Birelli M, Fowler G D, Cheeseman C R. Metal leaching from monolithic stabilised/solidified air pollution control residues. Journal of Hazardous Materials, 2011, 185(2–3): 1115–1123
CrossRef ADS Pubmed Google scholar
[12]
Junkang L, Meng W, Kai D. Entrapment of CrO42− by C-S-H during C-S-H Formation. Journal of Wuhan University of Technology, 2009, 31(20): 55–57 (in Chinese)
[13]
Yan S, Min Z, Weixing W. Identification of chromate binding mechanisms in Friedel’s salt. Construction & Building Materials, 2013, 48: 942–947
CrossRef ADS Google scholar
[14]
Gougar M L D, Scheetz B E, Roy D M. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste management, 1996, 16(4): 295–303
[15]
Leisinger S M, Lothenbach B, Le Saout G, Kägi R, Wehrli B, Johnson C A. Solid solutions between CrO4- and SO4-ettringite Ca6(Al(OH)6)2[(CrO4)×(SO4)(1-x)]3×26 H2O. Environmental Science & Technology, 2010, 44(23): 8983–8988
CrossRef ADS Pubmed Google scholar
[16]
Zhang D, Liu W, Hou H, He X. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash. Waste Management & Research, 2007, 25(5): 402–407
CrossRef ADS Pubmed Google scholar
[17]
Yan S, Min Z, Weixing W. Immobilization Mechanisms of Cr and Pb in cement solidified municipal solid waste incineration fly ash. Fresenius Environ Bull, 2013, 8(22): 2291–2296
[18]
Ojas A C, Joseph J B. Leaching behavior of hazardous heavy metals from lime fly ash cements. Journal of Environmental Engineering, 2013, 139(5): 633–641
CrossRef ADS Google scholar
[19]
Aditya K, Gauray S, Cedric P. The influence of sodium and potassium hydroxide on alite hydration: Experiments and simulations. Cement and Concrete Research, 2012, 42(11): 1513–1523
CrossRef ADS Google scholar
[20]
Sanchez H M J, Fernandez J A F, Palomo A. C4A3S hydration in different alkaline media. Cement and Concrete Research, 2013, 46: 41–49
CrossRef ADS Google scholar
[21]
Nicoleau L, Nonat A, Perrey D. The di- and tricalcium silicate dissolutions. Cement and Concrete Research, 2013, 47: 14–30
CrossRef ADS Google scholar
[22]
Junkang L, Yanxin W. Mechanisms of Pb2+ Solidified by Composite Cement. Bulletin of the Chinese Ceramic Society, 2005, 4: 10–14 (in Chinese)

Acknowledgements

This research was supported by the National High Technology Research and Development Program of China (Grant No. 2012AA06A111) and the Opening Fund of Hubei Key Laboratory of Mine Environmental Pollution Control and Remendiation (Hubei Polytechnic University) (No. 2013101).

版权

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(4486 KB)

Accesses

Citation

Detail

段落导航
相关文章

/