
Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia
Tatiana V. LOBODA, Louis GIGLIO, Luigi BOSCHETTI, Christopher O. JUSTICE
Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia
Central Asian dry lands are grass- and desert shrub-dominated ecosystems stretching across Northern Eurasia. This region supports a population of more than 100 million which continues to grow at an average rate of 1.5% annually. Dry steppes are the primary grain and cattle growing zone within Central Asia. Degradation of this ecosystem through burning and overgrazing directly impacts economic growth and food supply in the region. Fire is a recurrent disturbance agent in dry lands contributing to soil erosion and air pollution. Here we provide an overview of inter-annual and seasonal fire dynamics in Central Asia obtained from remotely sensed data. We evaluate the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) global fire products within Central Asian dry lands and use these products to characterize fire occurrence between 2001 and 2009. The results show that on average ~15 million ha of land burns annually across Central Asia with the majority of the area burned in August and September in grasslands. Fire is used as a common crop residue management practice across the region. Nearly 89% of all burning occurs in Kazakhstan, where 5% and 3% of croplands and grasslands, respectively, are burned annually.
Moderate Resolution Imaging Spectroradiometer (MODIS) / fire / Central Asia / dry lands
[1] |
Batima P, Natsagdorj L, Gombluudev P, Erdenetsetseg B (2005) Observed climate change in Mongolia. Assessment of Impacts and Adaptations to Climate Change (AIACC) working paper 12, www.aiaccproject.org, accessed <month>April</month><day>4</day>, 2012
|
[2] |
Boschetti L, Roy D, Barbosa P, Boca R, Justice C (2008). A MODIS assessment of the summer 2007 extent burned in Greece. Int J Remote Sens, 29(8): 2433-2436
CrossRef
Google scholar
|
[3] |
Boschetti L, Roy D, Justice C, Giglio L (2012) Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. International Journal of Wildland Fire (in press)
|
[4] |
Cardoso M E, Nobre C A, Lapola D M, Oyama M D, Sampaio G (2008). Long-term potential for fires in estimates of the occurrence of savannas in the tropics. Glob Ecol Biogeogr, 17(2): 222-235
CrossRef
Google scholar
|
[5] |
Carroll M, Townshend J, DiMiceli C, Noojipady P, Sohlberg R (2009) A new global raster water mask at 250 Meter Resolution. International Journal of Digital Earth. 2(4): 291-308
|
[6] |
Chibilyov A (2002) Steppe and forest-steppe. In: Shahgedanova M, ed. Physical Geography of Northern Eurasia. New York: Oxford University Press
|
[7] |
Feng X M, Zhao Y S (2009) Grazing intensity monitoring in Northern China steppe: Integrating CENTURY model and MODIS data. Ecological Inidcators,
CrossRef
Google scholar
|
[8] |
Friedl M A, McIver D K, Hodges J C F, Zhang X Y, Muchoney D, Strahler A H, Woodcock C E, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002). Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ, 83(1-2): 287-302
CrossRef
Google scholar
|
[9] |
Geerken R, Batikha N, Celis D, Depauw E (2005). Differentiation of rangeland vegetation and assessment of its status: field investigations and MODIS and SPOT VEGETATION data analyses. Int J Remote Sens, 26(20): 4499-4526
CrossRef
Google scholar
|
[10] |
Giglio L, Descloitres J, Justice C O, Kaufman Y J (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ, 87(2-3): 273-282
CrossRef
Google scholar
|
[11] |
Giglio L, Loboda T, Roy D P, Quayle B, Justice C O (2009). An active-fire based burned area mapping slgorithm for the MODIS sensor. Remote Sens Environ, 113(2): 408-420
CrossRef
Google scholar
|
[12] |
Giglio L, van der Werf G R, Randerson J T, Collatz G J, Kasibhatla P (2006). Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys, 6(4): 957-974
CrossRef
Google scholar
|
[13] |
Hall D O, Ojima D S, Parton W J, Scurlock J M O (1995). Response of temperate and tropical grasslands to CO2 and climate change. J Biogeogr, 22(2/3): 537-547
CrossRef
Google scholar
|
[14] |
Justice C O, Vermote E, Townshend J R G, Defries R, Roy D P, Hall D K, Salomonson V V, Privette J L, Riggs G, Strahler A, Lucht W, Myneni R B, Knjazihhin Y, Running S W, Nemani R R, Wan Z, Huete A, van Leeuwen W, Wolfe R (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Rem Sens, 36(4): 1228-1249
CrossRef
Google scholar
|
[15] |
Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOSMODIS. Journal of Geophysical Research—Atmospheres, 103(D24): 32215-32238
|
[16] |
Korontzi S, McCarty J, Loboda T, Kumar S, Justice C (2006). Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochem Cycles, 20(2): GB2021
CrossRef
Google scholar
|
[17] |
Kruse F A, Lefkoff A B, Boardman J W, Heidebrecht K B, Shapiro A T, Barloon J P, Goetz A F H (1993). The spectral image processing system (SIPS)-Interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ, 44(2-3): 145-163
CrossRef
Google scholar
|
[18] |
Leptoukh G, Csiszar I, Romanov P, Shen S, Loboda T, Gerasimov I (2007). NASA NEESPI data and services center for satellite remote sensing information. Environ Res Lett, 2(4): 045009
CrossRef
Google scholar
|
[19] |
Loboda T (2009). Modeling fire danger in data-poor regions: a case study from the Russian Far East. Int J Wildland Fire, 18(1): 19-35
CrossRef
Google scholar
|
[20] |
McCarty J, Loboda T, Trigg S (2008). A hybrid approach to quantifying crop residue burning in the US based on burned area and active fire data. Appl Eng Agric, 24(4): 515-527
|
[21] |
McCarty J L, Korontzi S, Justice C O, Loboda T (2009). The spatial and temporal distribution of crop residue burning in the contiguous United States. Sci Total Environ, 407(21): 5701-5712
CrossRef
Pubmed
Google scholar
|
[22] |
National Bureau of Statistics of China (2008) China Statistical Yearbook 2008: Total Population and Birth Rate, Death Rate and Natural Growth Rate by Region (2007). http://www.stats.gov.cn/tjsj/ndsj/2008/indexeh.htm Accessed <month>05</month>/<day>02</day>/2010.
|
[23] |
Norton J, Glenn N, Germino M, Weber K, Seefeldt S (2009). Relative suitability of indices derived from Landsat ETM+ and SPOT 5 for detecting fire severity in sagebrush steppe. Int J Appl Earth Obs Geoinf, 11(5): 360-367
CrossRef
Google scholar
|
[24] |
Peel M C, Finlayson B L, McMahon T A (2007). Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci, 11(5): 1633-1644
CrossRef
Google scholar
|
[25] |
Randerson JT, van der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS (2007) Global Fire Emissions Database, Version 2 (GFEDv2.1).
CrossRef
Google scholar
|
[26] |
Roy D P, Boschetti L (2009). Southern Africa validation of the MODIS, L3JRC and GlobCarbon burned area products. IEEE Trans Geosci Rem Sens, 47(4): 1032-1044
CrossRef
Google scholar
|
[27] |
Roy D P, Boschetti L, Justice C O, Ju J (2008). The collection 5 MODIS burned area product-global evaluation by comparison with the MODIS active fire product. Remote Sens Environ, 112(9): 3690-3707
CrossRef
Google scholar
|
[28] |
Roy D P, Frost P G H, Justice C O, Landmann T, Le Roux J L, Gumbo K, Makungwa S, Dunham K, Du Toit R, Mhwandagara K, Zacarias A, Tacheba B, Dube O P, Pereira J M C, Mushove P, Morisette J T, Santhana Vannan S K, Davies D (2005). The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol. Int J Remote Sens, 26(19): 4265-4292
CrossRef
Google scholar
|
[29] |
Roy D R, Boschetti L, Trigg S (2006). Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Transactions on Geoscience and Remote Sensing Letters, 3(1): 112-116
CrossRef
Google scholar
|
[30] |
Scheintaub M R, Derner J D, Kelly E F, Knapp A K (2009). Response of the shortgrass steppe plant community to fire. J Arid Environ, 73(12): 1136-1143
CrossRef
Google scholar
|
[31] |
Shen S, Leptoukh G, Loboda T, Csiszar I A, Romanov P, Gerasimmov I (2009) The NASA NEESPI data portal to support studies of climate and environmental changes in non-boreal Europe. In: Groisman P Y, Ivanov SV, eds. Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-Boreal Eastern Europe. Dordrecht: Springer
|
[32] |
Song Y, Chang D, Liu B, Miao W, Zhu L, Zhang Y (2010). A new emission inventory for nonagricutrual open fires in Asia from 2000 to 2009. Environ Res Lett, 5(1): 014014
CrossRef
Google scholar
|
[33] |
Streets D G, Yarber K F, Woo J H, Carmichael G R (2003). Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles, 17(4): 1099
CrossRef
Google scholar
|
[34] |
US Department of Agriculture, Foreign Agricultural Service (1999). Crop calendars. http://www.fas.usda.gov/pecad/weather/Crop_calendar/crop_cal.pdf. Accessed <month>05</month>/<day>03</day>/2010
|
[35] |
US Department of State (2009) Background notes.<http://www.state.gov/r/pa/ei/bgn/index.htm#mostrecent>. Accessed <month>05</month>/<day>02</day>/2010
|
[36] |
Wolfe R, Masek J, Saleous N, Hall F (2004) LEDAPS: mapping North American disturbance from the Landsat record. Geoscience and Remote Sensing Symposium, IGARSS ’04 Proceedings. IEEE International.
CrossRef
Google scholar
|
[37] |
Yan X, Ohara T, Akimoto H (2006). Bottom-up estimate of biomass burning in Mainland China. Atmos Environ, 40(27): 5262-5273
CrossRef
Google scholar
|
[38] |
Yu F, Price K, Ellis J, Shi P (2003). Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens Environ, 87(1): 42-54
CrossRef
Google scholar
|
/
〈 |
|
〉 |