n-alkane distribution coupled with organic carbon isotope composition in shell bar section, Qarhan paleolake, Qaidam basin, NE Tibetan Plateau

Yang PU, Hucai ZHANG, Guoliang LEI, Fengqin CHANG, Mingsheng YANG, Xianyu HUANG

Front. Earth Sci. ›› 0

PDF(330 KB)
PDF(330 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-009-0044-2
RESEARCH ARTICLE
RESEARCH ARTICLE

n-alkane distribution coupled with organic carbon isotope composition in shell bar section, Qarhan paleolake, Qaidam basin, NE Tibetan Plateau

Author information +
History +

Abstract

Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triterpenoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21, n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.

Keywords

lacustrine sediment / biomarker / n-alkane / δ13Corg / cluster analysis

Cite this article

Download citation ▾
Yang PU, Hucai ZHANG, Guoliang LEI, Fengqin CHANG, Mingsheng YANG, Xianyu HUANG. n-alkane distribution coupled with organic carbon isotope composition in shell bar section, Qarhan paleolake, Qaidam basin, NE Tibetan Plateau. Front Earth Sci Chin, https://doi.org/10.1007/s11707-009-0044-2

References

[1]
Aldenderfer M S, Blashfield R K (1984). Cluster analysis. Beverly Hills: Sage Publications
[2]
Alison J B, Asfawossen A, Andy B (2007). A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites. Quaternary Research, 68(3): 314-324
CrossRef Google scholar
[3]
Arabie P, Huber L (1994). Cluster analysis in marketing research. In: Bagozzi R P, ed. Advanced Methods in Marketing Research. Oxford: Blackwell, 160-189
[5]
Chang F Q, Zhang H C, Chen Y, Niu J, Yang M S, Zhang W X, Lei G L, Fan H F (2007). Stable isotopes of carbonate and fossil shells from the Shell Bar section of the paleolake Qarhan, Qaidam basin. Quaternary Sciences, 27(3): 427-436 (in Chinese with English abstract)
[4]
Chang F Q, Zhang H C, Chen Y, Yang M S, Niu J, Fan H F, Lei G L, Zhang W X, Lei Y B, Yang L Q (2008). Sedimentation geochemistry and environmental changes during the late pleistocene of paleolake Qarhan in the Qaidam basin. Journal of China University of Geosciences, 19(1): 1-8
CrossRef Google scholar
[6]
Cranwell P A (1973). Chain-length distribution of n-alkanes from lake sediments in relation to Post-glacial environmental change. Freshwater Biology, 3(3): 259-265
CrossRef Google scholar
[7]
Cranwell P A, Eglinton G, Robinson N (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments — II. Organic Geochemistry, 11(6): 513-527
CrossRef Google scholar
[8]
Eglinton G, Hamilton R J (1963). The distribution of alkanes. In: Swaine T, ed. Chemical Plant Taxonomy. Academic, 87-217
[9]
Eglinton G, Hamilton R J (1967). Leaf epicuticular waxes. Science, 156(3780): 1322-1335
CrossRef Google scholar
[10]
Ficken K J, Li B, Swain D L, Eglinton G (2000). An n-alkane proxy for the sedimentary input of submerged / floating freshwater aquatic macrophytes. Organic Geochemistry, 31(7-8): 745-749
CrossRef Google scholar
[11]
Girese P, Maley J, Brenac P (1994). Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology, 107(11): 65-78
CrossRef Google scholar
[12]
Huang X Y, Cui J W, Pu Y, Huang J H, Alison B J (2008a). Identifying “free” and “bound” lipid fractions in stalagmite samples: an example from Heshang Cave, Southern China. Applied Geochemistry, 23(9): 2589-2595
CrossRef Google scholar
[13]
Huang X Y, Xie S C, Zhang C L, Jiao D, Huang J H, Yu J X, Jin F, Gu Y S (2008b). Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, southern China. Organic Geochemistry, 39(12): 1765-1771
CrossRef Google scholar
[14]
Lei G L, Zhang H C, Zhang W X, Chang F Q, Fan H F, Yang M S, Chen Y, Niu J (2007). The Characteristic of grainsize and Sedimentation of Shell Bar section in Qarhan Lake from Qaidam basin. Acta Sedimentologica Sinica, 25(2): 274-282 (in Chinese with English abstract)
[15]
Li B Y (2000). The last greatest lakes on the Xizang (Tibetan) Plateau. Acta Geographica Sinica, 55(2): 174-182 (in Chinese with English abstract)
[16]
Mahato S B, Sen S (1997). Advances in triterpenoid research 1990-1994. Phytochemistry, 44(7): 1185-1236
CrossRef Google scholar
[17]
Meyers P A (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289
CrossRef Google scholar
[18]
Meyers P A, Horie S (1993). An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 105(3-4): 171-178
CrossRef Google scholar
[19]
Meyers P A, Ishiwatari R (1993). Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7): 867-900
CrossRef Google scholar
[20]
Niu J, Zhang H C, Chang F Q, Chen Y, Fan H F, Zhang W X, Yang M S, Lei G L (2007). The 87Sr/86Sr ratios of Shell Bar section at Qarhan Lake, Qaidam Basin and its paleoenvironmental significance. Geological Journal of China Universities, 13(1): 14-22 (in Chinese with English abstract)
[21]
Owen L A, Finkel R C, Ma H M, Barnard P L (2006). Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, northern Tibet: a framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quaternary International, 154-155: 73-86
CrossRef Google scholar
[22]
Pant P, Rastogi R P (1979). The triterpenoids. Phytochemistry, 18(7): 1095-1108
[23]
Pu Y, Huang J H, Huang X Y, Cui J W, Hu C Y (2006). Acyclic Alkanes in the Soil over Heshang Cave in Qingjiang, Hubei Province. Journal of China University of Geosciences, 17(2): 115-120
CrossRef Google scholar
[24]
Rehm H J, Reiff I (1981). Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Advances in Biochemical Engineering and Biotechnology, 19: 175-215
[25]
Scott L, Cross P, Andy B, Sherilyn C F, Robert B D (2000). A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. The Holocene, 10(1): 21-32
CrossRef Google scholar
[26]
Shen J, Wu R J, An Z S (1998). Characters of the organic δ13C and paleoenvironment in the section of Dabusu Lake. Journal of lake science, 10(3): 8-12 (in Chinese with English abstract)
[27]
Shi Y F (2002). Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International, 97-98: 79-91
CrossRef Google scholar
[28]
Wan H W, Tang L Y, Zhang H C, Li C H, Pang Y Z (2008). Pollen record reflects climate changes in the eastern Qaidam Basin during 36-18 14C ka B P. Quaternary Sciences, 28(1): 112-122 (in Chinese with English abstract)
[29]
Wang Y L, Fang X M, Bai Y, Xi X X, Yang S L, Wang Y X (2006). Macrocyclic alkanes in modern soils of China. Organic Geochemistry, 37(2): 146-151
CrossRef Google scholar
[30]
Wu J L, Wang S M, Shen J (1996). Informations of climate and environment deduced from the organic matters δ13C lacustrine sediments. Journal of Lake Sciences, 8(2): 113-118 (in Chinese with English abstract)
[31]
Xie S C, Lai X L, Yi Y, Gu Y S, Liu Y Y, Wang X Y, Liu G, Liang B (2003a). Molecular fossils in a Pleistocene river terrace in southern China related to paleoclimate variation. Organic Geochemistry, 34(6): 789-797
CrossRef Google scholar
[32]
Xie S C, Nott C J, Avsejs L A, Maddy D C, Frank M E, Richard P (2004). Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochimica et Cosmochimica Acta, 68(13): 2849-2862
CrossRef Google scholar
[33]
Xie S C, Yao T D, Kang S C, Duan K Q, Xu B Q (1999). Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabangma in Qinghai Tibetan Plateau. Science in China (Series D): Earth Science, 42(4): 383-391
[34]
Xie S C, Yi Y, Huang J H, Hu C Y, Cai Y J, Collins M, Baker A (2003b). Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quaternary Research, 60(3): 340-347
CrossRef Google scholar
[35]
Zhang H C, Chang F Q, Li B, Lei G L, Chen Y, Zhang W X, Niu J (2007). Branched aliphatic alkanes of the Late Pleistocene paleolake deposits from the Qaidam Basin, NE Tibetan Plateau. Chinese Science Bulletin, 52(9): 1248-1256
CrossRef Google scholar
[36]
Zhang H C, Lei G L, Chang F Q, Pu Y, Fan H F, Lei Y B, Yang M S, Zhang W X, Yang L Q (2008a). Chronology of the shell bar section and a discussion on the ages of the Late Pleistocene lacustrine deposits in the paleolake Qarhan, Qaidam basin. Frontiers of Earth Science in China, 2(2): 225-235
CrossRef Google scholar
[37]
Zhang H C, Wang Q, Peng J L, Chen G J (2008b). Ostracod assemblages and their paleoenvironmental significance from shell bar section of paleolake Qarhan, Qaidam basin. Quaternary Science, 28(1): 103-111 (in Chinese with English abstract)
[38]
Zhang H C, Wünemann B, Ma Y Z, Peng J L, Pachur H J, Li J J, Qi Y, Chen G J, Fang H B, Feng Z D (2002). Lake Level and Climate Changes between 42000 and 18000 14C a BP in the Tengger Desert, northwestern China. Quaternary Research, 58(1): 62-72
CrossRef Google scholar
[39]
Zhang H C, Yang M S, Zhang W X, Lei G L, Chang F Q, Pu Y, Fan H F (2008c). Molecular fossil and paleovegetation records of paleosol S4 and adjacent loess layers in the Luochuan loess section, NW China. Science in China (Series D): Earth Sciences, 51(3): 321-330
[40]
Zhang H C, Peng J L, Ma Y Z, Chen G J, Feng Z D, Li B, Fan H F, Chang F Q, Lei G L, Wünnemann B (2004a). Late Quaternary palaeolake levels in Tengger Desert, NW China, Palaeogeoraphy, Palaeoclimatology, Palaeoecology, 211(1-2): 41-58
[41]
Zhang P Z, Wang X B, Chen J F, Li C Y, Wang S M (1995). δ13C values and hydrogen index records in sedimentary organic matter of RH core of the Zoige Basin, eastern Qinghai–Xizang (Tibet) plateau and their environmental significance. Science in China (Series D): Earth Science, 38(8): 1015-1024
[42]
Zhang W X, Zhang H C, Lei G L, Yang L Q, Niu J, Chang F Q, Yang M S, Fan H F (2008d). Elemental geochemistry and paleoenvironment evolution of shell bar section at Qarhan in the Qaidam basin. Quaternary Sciences, 28(5): 818-829 (in Chinese with English abstract)
[43]
Zhang Z H, Zhao M X, Yang X D, Wang S M, Jiang X Z, Oldfield F, Eglinton G (2004b). A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing, southwestern China. Organic Geochemistry, 35(5): 595-613
CrossRef Google scholar

Acknowledgements

We thank Prof. S C Xie for his help in improving an earlier version of this paper. This study was supported by the Hundred Talent Project by Chinese Academy of Sciences and the National Natural Science Foundtion of China. (Grant No.40871096). Special thanks to Prof. Y X Wang and Dr. Y L Wang for the laboratory works.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(330 KB)

Accesses

Citations

Detail

Sections
Recommended

/