China summer precipitation simulations using an optimal ensemble of cumulus schemes

Shuyan LIU, Wei GAO, Min XU, Xueyuan WANG, Xin-Zhong LIANG

Front. Earth Sci. ›› 0

PDF(893 KB)
PDF(893 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-009-0022-8
RESEARCH ARTICLE
RESEARCH ARTICLE

China summer precipitation simulations using an optimal ensemble of cumulus schemes

Author information +
History +

Abstract

RegCM3 (REGional Climate Model) simulations of precipitation in China in 1991 and 1998 are very sensitive to the cumulus parameterization. Among the four schemes available, none has superior skills over the whole of China, but each captures certain observed signals in distinct regions. The Grell scheme with the Fritsch-Chappell closure produces the smallest biases over the North; the Grell scheme with the Arakawa-Schubert closure performs the best over the southeast of 100°E; the Anthes-Kuo scheme is superior over the northeast; and the Emanuel scheme is more realistic over the southwest of 100°E and along the Yangtze River Basin. These differences indicate a strong degree of independence and complementarity between the parameterizations. As such, an ensemble is developed from the four schemes, whose relative contributions or weights are optimized locally to yield overall minimum root-mean-square errors from observed daily precipitation. The skill gain is evaluated by applying the identical distribution of the weights in a different period. It is shown that the ensemble always produces gross biases that are smaller than the individual schemes in both 1991 and 1998. The ensemble, however, cannot eliminate the large rainfall deficits over the southwest of 100°E and along the Yangtze River Basin that are systematic across all schemes. Further improvements can be made by a super-ensemble based on more cumulus schemes and/or multiple models.

Keywords

Regional Climate Model / cumulus schemes / optimal ensemble

Cite this article

Download citation ▾
Shuyan LIU, Wei GAO, Min XU, Xueyuan WANG, Xin-Zhong LIANG. China summer precipitation simulations using an optimal ensemble of cumulus schemes. Front Earth Sci Chin, https://doi.org/10.1007/s11707-009-0022-8

References

[1]
Anthes R A (1977). A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Wea Rev, 105: 270-286
CrossRef Google scholar
[2]
Cressman G (1959). An operational objective analysis system. Mon Wea Rev, 87: 367-374
CrossRef Google scholar
[3]
Davies H C, Turner R E (1977). Updating prediction models by dynamical relaxation: An examination of the technique. Quart J Roy Met Soc, 103: 225-245
CrossRef Google scholar
[4]
Dickinson R E, Henderson-Sellers A, Kennedy P J (1993). Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, 72
[5]
Ding Y H (1993). Research on the 1991 Persistent, Severe Flood over Yangtze-Huai River Valley (in Chinese). Beijing: Chinese Meteorological Press, 255
[6]
Ding Y H (1994). Monsoons Over China. Kluwer Academic, 419
[7]
Ding Y H, Liu Y (2001). Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX Field Experiment I 1998. J Meteor Soc Japan, 79: 255-276
[8]
Dudhia J, Gill D, Guo Y R, Manning K, Wang W, Chriszar J (2000). PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3 (http://www.mmm.ucar.edu/mm5/doc.html)
[9]
Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal J, Solmon F, Rauscher S, Zakey A (2007). RegCM Version 3.1 User’s Guide (http://users.ictp.it/~pubregcm/RegCM3/)
[10]
Emanuel K A (1991). A scheme for representing cumulus convection in large-scale models. J Atmos Sci, 48: 2313-2335
CrossRef Google scholar
[11]
Emanuel K A, Zivkovic-Rothman M (1999). Development and evaluation of a convection scheme for use in climate models. J Atmos Sci, 56: 1766-1782
CrossRef Google scholar
[12]
Fritsch J M, Chappell C F (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci, 37: 1722-1733
[13]
Fu C, Wei H, Chen M, Su B, Zhao M, Zheng W (1998). Simulation of the evolution of summer monsoon rainbelts over eastern China from regional climate model. Chinese J Atmos Sci, 4: 522-534
[14]
Gao X, Luo Y, Lin W, Zhao Z, Giorgi F (2003). Simulation of effects of land use change on climate in China by a regional climate model. Adv Atmos Sci, 4: 583-592
[15]
Giorgi F, Bates G T, Nieman S J (1993a). The multi-year surface climatology of a regional atmospheric model over the western United States. J Climate, 6: 75-95
CrossRef Google scholar
[16]
Giorgi F, Francisco R, Pal J S (2003). Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: Effects of temperature and water vapor disaggregation. Journal of Hydrometeorology, 4: 317-333
CrossRef Google scholar
[17]
Giorgi F, Marinucci M R, Bates G T (1993b). Development of a second generation regional climate model (RegCM2) I: Boundary layer and radiative transfer processes. Mon Wea Rev, 121: 2794-2813
CrossRef Google scholar
[18]
Giorgi F, Marinucci M R, Bates G T (1993c). Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev, 121: 2814-2832
CrossRef Google scholar
[19]
Giorgi F, Shields C (1999). Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J Geophys Res, 104: 6353-6375
CrossRef Google scholar
[20]
Grell G (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev, 121: 764-787
CrossRef Google scholar
[21]
Grell G A, Dudhia J, Stauffer D R (1994). A Description of the Fifth-Generation Penn-State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, CO, 122
[22]
Holtslag A A M, Boville B A (1993). Local versus nonlocal boundary-layer diffusion in a global climate model. J Climate, 6: 1825-1842
CrossRef Google scholar
[23]
Kanamitsu M, Ebisuzaki W, Woolen J, Yang S K, Hnilo J J, Firoino M, Potter G L (2002). The NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc, 83: 1631-1643
CrossRef Google scholar
[24]
Kiehl J T, Hack J J, Bonan G B, Boville B A, Breigleb B P, Williamson D, Rasch P (1996). Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, CO, 158
[25]
Leung L R, Ghan S J, Zhao Z C, Luo Y, Wang W C, Wei H L (1999). Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. J Geophys Res, 104: 6425-6454
CrossRef Google scholar
[26]
Lau K M, Yang S (1996). Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Climate, 9: 965-985
CrossRef Google scholar
[27]
Liang X Z (1986). The design of IAP GCM and the simulation of climate and interseasonal variability. Ph.D. Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 250
[28]
Liang X Z, Li L, Dai A, Kunkel K E (2004a). Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett, 31: L24208. doi: 10.1029/2004GL021054
CrossRef Google scholar
[29]
Liang X Z, Li L, Kunkel K E, Ting M, Wang J X L (2004b). Regional climate model simulation of U.S. precipitation during1982-2002. Part I: Annual cycle. J Climate, 17: 3510-3528
CrossRef Google scholar
[30]
Liang X Z, Samel A N, Wang W C (1995). Observed and GCM simulated decadal variability of monsoon rainfall in east China. Climate Dynamics, 11: 103-114
CrossRef Google scholar
[31]
Liang X Z, Samel A N, Wang W C (2002). China rainfall interannual predictability: Dependence on the annual cycle and surface anomalies. J Climate, 15: 2555-2561
CrossRef Google scholar
[32]
Liang X Z, Wang W C (1998). Associations between China monsoon rainfall and tropospheric jets. Quart. J R Meteorol Soc, 124: 2597-2623
CrossRef Google scholar
[33]
Liang X Z, Wang W C, Samel A N (2001). Biases in AMIP model simulations of the east China monsoon system. Climate Dynamics, 17: 291-304
CrossRef Google scholar
[34]
Liang X Z, Xu M, Gao W, Kunkel K E, Slusser J, Dai Y, Min Q, Houser P R, Rodell M, Schaaf C B, Gao F (2005). Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res, 110: D11107 doi:10.1029/2004JD005579.
CrossRef Google scholar
[35]
Liang X Z, Xu M, Kunkel K E, Grell G A, Kain J (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Climate, 20: 5201-5207
CrossRef Google scholar
[36]
Lin J L, Weickman K M, Kiladis G N, Mapes B E, Schubert S D, Suarez M J, Bacmeister J T, Lee M I (2008). Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Climate, 21: 4541-4567
CrossRef Google scholar
[37]
Liu S (2006). CWRF application in east China monsoon area. Ph.D. Dissertation, NanjingUniversity of Information Science & Technology, 170
[38]
Liu S, Liang X Z, Gao W, Zhang H (2008). Application of Climate—Weather Research and Forecasting Model (CWRF) in China: Domain Optimization. Chinese Atmos Sci, 32: 457-468
[39]
Pal J S, Small E E, Eltahir E A B (2000). Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes with RegCM. J Geophys Res, 105(D24): 29579-29594
CrossRef Google scholar
[40]
Pan J, Zhai G, Gao K (2002). Comparisons of three convection parameterization schemes in regional climate simulations. Chinese J Atmos Sci, 2: 206-220
[41]
Samel A N, Liang X Z (2003). Understanding relationships between the 1998 Yangtze River flood and northeast Eurasian blocking. Climate Research, 23, 149-158
CrossRef Google scholar
[42]
Samel A N, Wang W C, Liang X Z (1999). The monsoon rainband over China and relationship with the Eurasian circulation. J Climate, 12: 115-131
[43]
Sundqvist H (1988). Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. In: Schlesinger M E, ed. Physically-Based Modeling and Simulation of Climate and Climate Change. Kluwer, 433-461
[44]
Tao S, Chen L (1987). A review of recent research on the east Asia summer monsoon in China. In: Krishnamurti T N, ed. Monsoon Meteorology. New York: Oxford University Press, 60-92
[45]
Wang W, Seaman N L (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev, 125: 252-278
CrossRef Google scholar
[46]
Wang W C, Gong W, Wei H (2000). A regional model simulation of 1991 severe precipitation event over the Yangtze-Huai River Valley. Part I: Precipitation and circulation statistics. J Climate, 13, 74-92
CrossRef Google scholar
[47]
Wang Y Q, Sen O L, Wang B (2003). A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J Climate, 16: 1721-1738
CrossRef Google scholar
[48]
Yang S, Lau K M, Yoo S H, Kinter J L, Miyakoda K, Ho C H (2004). Upstream subtropical signals preceding the Asian summer monsoon circulation. J Climate, 17: 4213-4229
CrossRef Google scholar
[49]
Zeng Q C, Liang X Z, Zhang M H (1988a). Numerical simulation of monsoons and the abrupt seasonal changing of atmospheric general circulation. Chinese J Atmos Sci (special issue), 22-42
[50]
Zeng X, Zhao M, Dickinson R E (1998b). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate, 11: 2628-2644
CrossRef Google scholar
[51]
Zhang G J (2003). Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. southern great plains. Geophys Res Lett, 30: 2281. doi: 10.1029/2003GL018554
CrossRef Google scholar
[52]
Zhou J L, Tits A L, Lawrence C T (1997). User’s guide for FFSQP version 3.7: A FORTRAN code for solving constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality and linear constraint. Institute for Systems Research, University of Maryland Tech Rep SRC-TR-92-107r4, 44
[53]
Zhu J, Liang X Z (2007). Regional climate model simulation of U.S. precipitation and surface air temperature during1982-2002: Interannual variation. J Climate, 20: 218-232
CrossRef Google scholar

Acknowledgements

The research was partially supported by the National Oceanic and Atmospheric Administration (NOAA) Award NA08OAR4310875, NOAA Education Partnership Program COM Howard 631017,the United States Department of Agriculture UV-B Monitoring and Research Program Grant AG CSU G-1458-6 National Basic Research Program of China (Grant No. 2006CB403404). We acknowledged NOAA/ESRL/GSD and NCSA/UIUC for the supercomputing support. The views expressed were those of the authors and do not necessarily reflect those of the sponsoring agencies or the Illinois State Water Survey.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(893 KB)

Accesses

Citations

Detail

Sections
Recommended

/