The mid- to late Holocene paleoceanographic changes in the northern North Atlantic

RAN Lihua1, JIANG Hui2, KNUDSEN Karen Luise3, EIRĺKSSON Jón4

Front. Earth Sci. ›› 0

PDF(424 KB)
PDF(424 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-008-0056-3

The mid- to late Holocene paleoceanographic changes in the northern North Atlantic

  • RAN Lihua1, JIANG Hui2, KNUDSEN Karen Luise3, EIRĺKSSON Jón4
Author information +
History +

Abstract

A high-resolution diatom record from core MD99-2275 shows a general paleoceanographic change in the northern North Atlantic since 5000 cal. a B.P. by Principle Component Analysis. Sea surface temperature (SST) increased gradually during 5000 and 3000 cal. a B.P. on the North Icelandic shelf as a result of increasing influence of warm Atlantic water mass from the Irminger Current. It apparently started to decrease since 3000 cal. a B.P. due to the weakening influence of warm water and enhanced influence of the Polar and Arctic water masses from the East Greenland Current and the East Icelandic Current. Abrupt decreases in SST and intrusions of Polar and Arctic water superimposed on the late Holocene cooling trend during 3000–2600, 1300–1000 and 600–200 cal. a B.P.. The paleoceanographic record revealed from core MD99-2275 corresponds well with ?18O record from the GISP2 and is generally consistent with other SST records based on diatom on the North Icelandic shelf.

Cite this article

Download citation ▾
RAN Lihua, JIANG Hui, KNUDSEN Karen Luise, EIRĺKSSON Jón. The mid- to late Holocene paleoceanographic changes in the northern North Atlantic. Front. Earth Sci., https://doi.org/10.1007/s11707-008-0056-3

References

1. Andersen C, Koc¸ N, Jennings A, et al. (2004). Nonuniform response of themajor surface currents in the Nordic Seas to insolation forcing: Implicationsfor the Holocene climate variability. Palaeoceanography, 19: PA2003. doi: 10.1029/2002PA000873
2. Berger A L (1978). Long-term variations of caloric insolation resultingfrom the Earth's orbital elements. QuaternaryResearch, 9: 139–167. doi:10.1016/0033-5894(78)90064-9
3. Birks C J A, Koc¸ N (2002). A high-resolutiondiatom record of late-Quaternary sea-surface temperatures and oceanographicconditions from the eastern Norwegian Sea. Boreas, 31: 323–344. doi:10.1080/030094802320942545
4. Bond G, Kromer B, Beer J, et al. (2001). Persistent solar influenceon North Atlantic climate during the Holocene. Science, 294: 2130–2136. doi:10.1126/science.1065680
5. Bond G, Showers W, Cheseby M, et al. (1997). A pervasive millennial-scalecycle in North Atlantic Holocene and glacial climates. Science, 278: 1257–1266. doi:10.1126/science.278.5341.1257
6. Cremer H (1999). Distribution patterns of diatom surface sediment assemblagesin the Laptev Sea (Arctic Ocean). MarineMicropaleontology, 38: 39–67. doi:10.1016/S0377-8398(99)00037-7
7. De Sàve M A (1999). Transfer function between surface sediment diatom assemblagesand sea-surface temperature and salinity of the Labrador Sea. Marine Micropaleontology, 36: 249–267. doi:10.1016/S0377-8398(99)00005-5
8. Eiríksson J, Knudsen K L, Haflidason H, et al. (2000a). Late-glacial and Holocenepalaeoceanography of the North Icelandic shelf. Journal of Quaternary Science, 15: 23–42. doi:10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8
9. Eiríksson J, Knudsen K L, Haflidason H, et al. (2000b). Chronology of Late Holoceneclimatic events in the northern North Atlantic based on AMS 14C dates and tephra markers from the volcano Hekla,Iceland. Journal of Quaternary Science, 15: 573–580. doi:10.1002/1099-1417(200009)15:6<573::AID-JQS554>3.0.CO;2-A
10. Eiríksson J, Larsen G, Knudsen K L, et al. (2004). Marine reservoir age variabilityand water mass distribution in the Iceland Sea. Quaternary Science Reviews, 23: 2247–2268. doi:10.1016/j.quascirev.2004.08.002
11. Hansen B, Østerhus S (2000). NorthAtlantic-Nordic Seas exchanges. Progressin Oceanography, 45: 109–208. doi:10.1016/S0079-6611(99)00052-X
12. Hasle G R, Syvertsen E E (1997). Marinediatoms. In Tomas, C. R. (ed.): Identifying Marine Phytoplankton. California: Academic Press
13. Håkansson H (1984). The recent diatom succession of Lake Havgårdssjön,South Sweden. In Mann, D. G. (ed.): Proceedings of the Seventh InternationalDiatom Symposium. Koenigstein: Otto Koeltz
14. Hendey N I (1964). An introductory account of the smaller algae of Britishcoastal waters: Part V. Bacillariophyceae (Diatoms), Fishery InvestigationsSeries IV. London: Otto Koeltz
15. Hurdle B G (1986). The Nordic Seas. New York: Springer-Verlag
16. Hustedt F (1930). Bacillariophyta (Diatomeae). In Pascher, A. (ed.): Die Susswasser-FloraMitteleuropas. Germany: Verlag von Gustav Fischer
17. Hustedt F (1959). Die Kieselalgen Deutschlands, Volume 2. USA: Koeltz Scientific Books
18. Jensen K G, Kuijpers A, Koc¸ N, et al. (2004). Diatom evidence of hydrographicchanges and ice conditions in Igaliku Fjord, South Greenland, duringthe past 1500 years. Holocene, 14: 152–164. doi:10.1191/0959683604hl698rp
19. Jiang H, Eiríksson J, Schulz M, et al. (2005). Evidence for solar forcingof sea-surface temperature on the North Icelandic shelf during thelate Holocene. Geology, 33: 73–76. doi:10.1130/G21130.1
20. Jiang H, Seidenkrantz M S, Knudsen K L, et al. (2001). Diatom surface sedimentassemblages around Iceland and their relationships to oceanic environmentalvariables. Marine Micropaleontology, 41: 73–96. doi:10.1016/S0377-8398(00)00053-0
21. Jiang H, Seidenkrantz M S, Knudsen K L, et al. (2002). Late-Holocene summer sea-surfacetemperatures based on a diatom record from the North Icelandic shelf. The Holocene, 12: 137–147
22. Jongman R H G, ter Braak C J F, van Tongeren O F R (1987). Data analysis incommunity and landscape ecology. Wageningen: Pudoc Wageningen
23. Knudsen K L, Eiríksson J, Jansen J, et al. (2004a). Palaeoceanographic changesoff North Iceland through the last 1200 years: foraminifera, stableisotopes, diatoms and ice rafted debris. Quaternary Science Reviews, 23: 2231–2246. doi:10.1016/j.quascirev.2004.08.012
24. Knudsen K L, Jiang H, Jansen E, et al. (2004b). Environmental changes offNorth Iceland during the deglaciation and the Holocene: foraminifera,diatoms and stable isotopes. Marine Micropaleontology, 50: 273–305. doi:10.1016/S0377-8398(03)00075-6
25. Koc¸ Karpuz N, Schrader H (1990). Surfacesediment diatom distribution and Holocene paleotemperature variationsin the Greenland, Iceland and Norwegian Sea. Paleoceanography, 5: 557–580. doi:10.1029/PA005i004p00557
26. Labeyrie L, Jansen E, Cortijo E, et al. (2003). Ginna Cruise, MD114-IMAGESV, Scientific Report. Institut PolaireFranc¸ais-Paul-Émile Victor (IPEV), OCE/2003/02
27. Malmberg S A, Jónsson S (1997). Timingof deep convection in the Greenland and Iceland Seas. Journal of Marine Science, 54: 300–309
28. Ran L, Jiang H, Knudsen K L, et al. (2006). Diatom response to the Holoceneclimatic optimum on the North Icelandic shelf. Marine Micropaleontology, 60: 226–241. doi:10.1016/j.marmicro.2006.05.002
29. Saito K, Taniguchi A (1978). Phytoplanktoncommunities in the Bering Sea and adjacent seas. II. Spring and summercommunities in seasonally ice-covered areas. Astarte, 11: 27–35
30. Sancetta C (1982). Distribution of diatom species in surface sedimentsof Bering and Okhotsk seas. Micropaleontology, 28: 221–257. doi:10.2307/1485181
31. Shimada C, Hasegawa S (2001). Paleoceanographicimplications of a 90 000 year long diatom record in piston core KH94-3,LM-8 off NE Japan. Marine Micropaleontology, 41: 153–166. doi:10.1016/S0377-8398(00)00059-1
32. Stuiver M, Braziumas T F, Grootes P M, et al. (1997). Is there evidence for solarforcing of climate in the GISP2 oxygen isotope record? Quaternary Research, 48: 259–266. doi:10.1006/qres.1997.1931
33. ter Braak C J F, Prentice I C (1988). A theoryof gradient analysis. Advance in EcologicalResearch, 18: 271–317. doi:10.1016/S0065-2504(08)60183-X
34. Yeung K Y, Ruzzo W L (2001). Principalcomponent analysis for clustering gene expression data. Bioinformatics, 17(9): 763–774. doi:10.1093/bioinformatics/17.9.763
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/