Collections

Traffic Engineering Systems Management
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • REVIEW ARTICLE
    Lebing WANG, Jian Gang JIN, Lijun SUN, Der-Horng LEE
    Frontiers of Engineering Management, 2024, 11(1): 79-91. https://doi.org/10.1007/s42524-023-0291-z

    Urban rail transit (URT) disruptions present considerable challenges due to several factors: i) a high probability of occurrence, arising from facility failures, disasters, and vandalism; ii) substantial negative effects, notably the delay of numerous passengers; iii) an escalating frequency, attributable to the gradual aging of facilities; and iv) severe penalties, including substantial fines for abnormal operation. This article systematically reviews URT disruption management literature from the past decade, categorizing it into pre-disruption and post-disruption measures. The pre-disruption research focuses on reducing the effects of disruptions through network analysis, passenger behavior analysis, resource allocation for protection and backup, and enhancing system resilience. Conversely, post-disruption research concentrates on restoring normal operations through train rescheduling and bus bridging services. The review reveals that while post-disruption strategies are thoroughly explored, pre-disruption research is predominantly analytical, with a scarcity of practical pre-emptive solutions. Moreover, future research should focus more on increasing the interchangeability of transport modes, reinforcing redundancy relationships between URT lines, and innovating post-disruption strategies.

  • REVIEW ARTICLE
    Huan WANG, Yan-Fu LI, Jianliang REN
    Frontiers of Engineering Management, 2024, 11(1): 62-78. https://doi.org/10.1007/s42524-023-0256-2

    High-speed trains (HSTs) have the advantages of comfort, efficiency, and convenience and have gradually become the mainstream means of transportation. As the operating scale of HSTs continues to increase, ensuring their safety and reliability has become more imperative. As the core component of HST, the reliability of the traction system has a substantially influence on the train. During the long-term operation of HSTs, the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures, thus threatening the running safety of the train. Therefore, performing fault monitoring and diagnosis on the traction system of the HST is necessary. In recent years, machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis. Machine learning has made considerably advancements in traction system fault diagnosis; however, a comprehensive systematic review is still lacking in this field. This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint. First, the structure and function of the HST traction system are briefly introduced. Then, the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed. Finally, the challenges for accurate fault diagnosis under actual operating conditions are revealed, and the future research trends of machine learning in traction systems are discussed.

  • RESEARCH ARTICLE
    Cheng CHANG, Jiawei ZHANG, Kunpeng ZHANG, Yichen ZHENG, Mengkai SHI, Jianming HU, Shen LI, Li LI
    Frontiers of Engineering Management, 2024, 11(1): 107-127. https://doi.org/10.1007/s42524-023-0293-x

    Driving safety and accident prevention are attracting increasing global interest. Current safety monitoring systems often face challenges such as limited spatiotemporal coverage and accuracy, leading to delays in alerting drivers about potential hazards. This study explores the use of edge computing for monitoring vehicle motion and issuing accident warnings, such as lane departures and vehicle collisions. Unlike traditional systems that depend on data from single vehicles, the cooperative vehicle-infrastructure system collects data directly from connected and automated vehicles (CAVs) via vehicle-to-everything communication. This approach facilitates a comprehensive assessment of each vehicle’s risk. We propose algorithms and specific data structures for evaluating accident risks associated with different CAVs. Furthermore, we examine the prerequisites for data accuracy and transmission delay to enhance the safety of CAV driving. The efficacy of this framework is validated through both simulated and real-world road tests, proving its utility in diverse driving conditions.

  • RESEARCH ARTICLE
    Haoran LI, Yunpeng LU, Yaqiu LI, Junyi ZHANG
    Frontiers of Engineering Management, 2024, 11(1): 92-106. https://doi.org/10.1007/s42524-023-0285-x

    Dynamic speed guidance for vehicles in on-ramp merging zones is instrumental in alleviating traffic congestion on urban expressways. To enhance compliance with recommended speeds, the development of a dynamic speed-guidance mechanism that accounts for heterogeneity in human driving styles is pivotal. Utilizing intelligent connected technologies that provide real-time vehicular data in these merging locales, this study proposes such a guidance system. Initially, we integrate a multi-agent consensus algorithm into a multi-vehicle framework operating on both the mainline and the ramp, thereby facilitating harmonized speed and spacing strategies. Subsequently, we conduct an analysis of the behavioral traits inherent to drivers of varied styles to refine speed planning in a more efficient and reliable manner. Lastly, we investigate a closed-loop feedback approach for speed guidance that incorporates the driver’s execution rate, thereby enabling dynamic recalibration of advised speeds and ensuring fluid vehicular integration into the mainline. Empirical results substantiate that a dynamic speed guidance system incorporating driving styles offers effective support for human drivers in seamless mainline merging.

  • RESEARCH ARTICLE
    Meng QIN, Jiayu WANG, Wei-Ming CHEN, Ke WANG
    Frontiers of Engineering Management, 2023, 10(2): 262-284. https://doi.org/10.1007/s42524-021-0168-y

    With the development of the bike-sharing system (BSS) and the introduction of green and low carbon development, the environmental impacts of BSS had received increasing attention in recent years. However, the emissions from the rebalancing of BSS, where fossil-fueled vehicles are commonly used, are usually neglected, which goes against the idea of green travel in a sharing economy. Previous studies on the bike-sharing rebalancing problem (BRP), which is considered NP-hard, have mainly focused on algorithm innovation instead of improving the solution model, thereby hindering the application of many existing models in large-scale BRP. This study then proposes a method for optimizing the CO2 emissions from BRP and takes the BSS of Beijing as a demonstration. We initially analyze the spatial and temporal characteristics of BSS, especially the flow between districts, and find that each district can be independently rebalanced. Afterward, we develop a rebalancing optimization model based on a partitioning strategy to avoid deciding the number of bikes being loaded or unloaded at each parking node. We then employ the tabu search algorithm to solve the model. Results show that (i) due to over launch and lack of planning in rebalancing, the BSS in Beijing shows great potential for optimization, such as by reducing the number of vehicle routes, CO2 emissions, and unmet demands; (ii) the CO2 emissions of BSS in Beijing can be reduced by 57.5% by forming balanced parking nodes at the end of the day and decreasing the repetition of vehicle routes and the loads of vehicles; and (iii) the launch amounts of bikes in specific districts, such as Shijingshan and Mentougou, should be increased.

  • RESEARCH ARTICLE
    Ping ZHANG, Xin YANG, Jianjun WU, Huijun SUN, Yun WEI, Ziyou GAO
    Frontiers of Engineering Management, 2023, 10(2): 250-261. https://doi.org/10.1007/s42524-021-0180-2

    Coupling analysis of passenger and train flows is an important approach in evaluating and optimizing the operation efficiency of large-scale urban rail transit (URT) systems. This study proposes a passenger–train interaction simulation approach to determine the coupling relationship between passenger and train flows. On the bases of time-varying origin–destination demand, train timetable, and network topology, the proposed approach can restore passenger behaviors in URT systems. Upstream priority, queuing process with first-in-first-serve principle, and capacity constraints are considered in the proposed simulation mechanism. This approach can also obtain each passenger’s complete travel chain, which can be used to analyze (including but not limited to) various indicators discussed in this research to effectively support train schedule optimization and capacity evaluation for urban rail managers. Lastly, the proposed model and its potential application are demonstrated via numerical experiments using real-world data from the Beijing URT system (i.e., rail network with the world’s highest passenger ridership).