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Abstract Over the past decade, electric vehicles (EVs)
have been considered in a growing number of models and
methods for vehicle routing problems (VRPs). This study
presents a comprehensive survey of EV routing problems
and their many variants. We only consider the problems in
which each vehicle may visit multiple vertices and be
recharged during the trip. The related literature can be
roughly divided into nine classes: Electric traveling
salesman problem, green VRP, electric VRP, mixed electric
VRP, electric location routing problem, hybrid electric
VRP, electric dial-a-ride problem, electric two-echelon
VRP, and electric pickup and delivery problem. For each of
these nine classes, we focus on reviewing the settings of
problem variants and the algorithms used to obtain their
solutions.

Keywords electric vehicles, routing, recharging stations,
exact algorithms, metaheuristics*

1 Introduction

Burning fossil fuels generates greenhouse gas (GHG),
which is a major cause of climate change and global
warming, and also results in air pollution that damages
human health (Schiffer and Walther, 2017). Transportation
plays an important role in the development of economies
and consumes a large portion of fossil fuels. As reported by
the Environmental Protection Agency (2018), transporta-
tion activities accounted for 28.5% of GHG emissions in
the US in 2016. According to Eurostat, the statistical office
of the European Union (EU), fuel combustion for
transportation was responsible for 25% of EU-28 GHG
emissions in 2017, which has increased its contribution
significantly since 1990. Governments of many countries
have adopted new environmental measures and regulations
to reduce GHG emissions and cut down on the consump-
tion of fossil fuels (Keskin and Çatay, 2018).
During the last decade, electric vehicles (EVs) have

received increasing attention, and their market share has
increased rapidly mainly due to their environmental
advantages, such as absence of GHG emission, low noise
pollution, high energy efficiency, and low fuel cost
(Desaulniers et al., 2016; Murakami, 2017; 2018). More-
over, EVs have two benefits for electric grids. On one
hand, as most EVs are recharged at night, they can balance
the excess supply of energy. On the other hand, in a smart
grid, EVs can be used as a power source during peak hours
in the daytime (Kempton and Letendre, 1997). Some
leading express companies in the world are using EVs to
serve their customers. On November 20, 2018, FedEx
announced that it was expanding its fleet to add 1000 EVs
that would be operated for commercial and residential
pick-up and delivery services. In 2019, DHL introduced a
new fleet of 63 electric cargo delivery vans to the US, with
the first 30 vans going to the San Francisco Bay Area. In
2017, the chief executive of JD.com announced that the
company would change its fleet of delivery vans in Beijing
to EVs by the end of February 2018. China has the world’s
largest EV market where nearly 580000 EVs were sold in
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2017, which accounts for half of the global EV market
(International Energy Agency, 2018).
At present, the prevalence of the EVs still faces several

challenges (Schneider et al., 2014; 2018; Schiffer and
Walther, 2017). The first challenge is the limited EV
driving range whose average value is approximately
200 km so far. The maximum travel range of an EV is
usually less than that of a comparable gasoline-powered
vehicle. Moreover, the driving range can be decreased
significantly by cold temperatures. Therefore, EV drivers
must be cautious when scheduling routes to ensure that
EVs will not run out of electricity. The second challenge is
the long charging time of EVs; fully charging the battery
can take up to 8 h and the charging time increases with the
battery age. The third challenge is the high cost of the EVs,
especially the exorbitant battery price. The last challenge is
related to the immaturity of the charging infrastructure
networks, which makes recharging EVs inconvenient.
Since its introduction by Dantzig and Ramser (1959),

the vehicle routing problem (VRP) and its variants have
been extensively studied during the last several decades
and numerous research papers can be found in the
literature. The basic VRP aims to minimize the total
transportation cost of visiting a set of customers by means
of multiple vehicle routes starting and ending at the depot
while respecting various types of constraints. For a
comprehensive overview of the VRPs, we refer the reader
to Toth and Vigo (2002), Golden et al. (2008), Eksioglu
et al. (2009), and Braekers et al. (2016). According to the
numbers of existing articles in the literature, the most
representative VRP variants include the VRP with time
windows (Solomon, 1987; Bräysy and Gendreau, 2005a;
2005b), location routing problem (Nagy and Salhi, 2007;
Prodhon and Prins, 2014; Schneider and Drexl, 2017),
dial-a-ride problem (Cordeau and Laporte, 2007; Liu et al.,
2015; Ho et al., 2018; Luo et al., 2019), two-echelon
capacitated VRP (Perboli et al., 2011; Baldacci et al., 2013;
Liu et al., 2018), pickup and delivery problem (Savels-
bergh and Sol, 1995; Nagy et al., 2015), arc routing
problem (Dror, 2000; Corberán and Prins, 2010; Yu et al.,
2019a), periodic vehicle routing problem (Zhang et al.,
2013; Campbell and Wilson, 2014; Luo et al., 2015), and
split delivery VRP (Desaulniers, 2010; Archetti and
Speranza, 2012; Luo et al., 2017).
Research on the electric VRP (EVRP) was formally

started with the study of the green VRP (GVRP)
introduced by Erdoğan and Miller-Hooks (2012). After
carefully analyzing the literature, we find that almost all of
them are extensions of their corresponding VRPs. For
example, the basic EVRP is a natural extension of the basic
VRP and the electric location routing problem can be
regarded as an extension of the location routing problem.
Compared with the VRPs (see Fig. 1), the difficulty of
using EVRPs results from the short driving range of the
EVs and the necessity of recharging activities along the

vehicle routes (see Fig. 2). Actually, the EVRPs extend the
VRPs by mainly considering the following four aspects:
1) locations of the recharging (or battery swapping)
stations (Yang and Sun, 2015; Schiffer and Walther,
2017; Zhang et al., 2019), 2) adoption of full or partial
recharging policy (Keskin and Çatay, 2016; Sweda et al.,
2017a; 2017b; Macrina et al., 2019a; 2019b), 3) charging
functions (Montoya et al., 2017; Froger et al., 2019; Zuo
et al., 2019), and 4) multiple types of recharging stations
(Felipe et al., 2014).

In this study, we only review the routing problems that
use EVs and consider recharging operations in the routes.
In several existing studies, such as Doppstadt et al. (2016),
Nejad et al. (2017), Sassi and Oulamara (2017), and
Murakami (2017), the problems of routing EVs are
investigated, but recharging EVs along the routes are not
considered, and therefore we do not discuss them. Afroditi
et al. (2014) surveyed the EVRPs with industry constraints,
but this study includes only a small number of reference
papers. Recently, Erdelić and Carić (2019) reviewed the
variants and solution approaches for EVRPs. The solution
approaches can be roughly divided into two main streams,
namely, metaheuristics and exact algorithms. However, the

Fig. 1 An example solution of the VRP.

Fig. 2 An example solution for EVRP.
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authors only mentioned metaheuristics for the relevant
problems. According to our statistics, the number of papers
on the EVRPs published in the last two years accounts for
over 40% of the total number. In Erdelić and Carić (2019),
only a small number of papers in the last two years were
reviewed and several problem variants were not discussed.
As the research on EVRPs is in an increasing stage and the
relevant literature is not rich so far, the number of articles
reviewed in our work is only around 50. Figures 3 and 4
show the numbers of papers published in the recent nine
years and in each relevant journal, respectively. Figure 5
displays a word cloud diagram indicating the distribution

of the papers in the relative journals.
The rest of this paper is structured as follows. In

Section 2, we review the electric traveling salesman
problem (ETSP) in which only one EV is used. In
Section 3, we present a thorough survey of the GVRP,
which is a widely studied special case of the EVRP. In
Section 4, we focus on the papers about the basic EVRP as
well as its extensions that consider additional features,
such as charging functions and time windows. In many
situations, the carriers need to simultaneously schedule
various types of vehicles, which may include EVs, hybrid
EVs, and conventional vehicles. Many studies have
investigated the approaches for scheduling a mixed fleet
of vehicles, and thus the relevant survey on the mixed
EVRP (MEVRP) is given in Section 5. Subsequently, we
discuss in Section 6 all papers on the electric location
routing problem (ELRP) that make decisions on both the
locations of recharging facilities and the routes of EVs. In
Section 7, we provide an overview of all the other EVRP
variants, including hybrid EVRP (HEVRP), electric dial-a-
ride problem (EDARP), electric two-echelon VRP
(E2EVRP), and electric pickup and delivery problem
with time windows (EPDPTW). The classes of problems
surveyed in this study are presented in Fig. 6. Several
variants exist in each class, and their connections and
characteristics are presented in the relevant sections.
Finally, Section 8 concludes the paper.Fig. 3 The number of papers published in recent nine years.

Fig. 4 The number of papers published in each journal.
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2 Electric traveling salesman problem

Traveling salesman problem (TSP) is one of the most
intensively studied problems in computational mathe-
matics (Gutin and Punnen, 2007). The ETSP, which
extends the TSP by considering only one EV, is a special
case of the EVRP. When a time window is imposed on
each customer, we can obtain a variant called ETSP with
time windows (ETSPTW). This problem aims to find the
shortest Hamiltonian tour of a set of customers while
ensuring that the time window constraints are not violated
and the battery level is always positive (Roberti and Wen,
2016). During the tour, the electric supply for the vehicle
can be recharged in recharging stations. Roberti and Wen
(2016) considered in the ETSPTW two recharging
policies, namely, full recharging (the battery is fully
recharged at each station) and partial recharging (any
amount of electricity can be recharged at each recharging
station), and presented mixed integer programming (MIP)
models for the problem under both recharging policies.
Subsequently, they developed a three-phase heuristic to
solve the ETSPTW, where the approach components need
to be simply adapted to deal with different recharging

policies. This heuristic is based on the heuristics proposed
by da Silva and Urrutia (2010) and Mladenović et al.
(2012) for the TSP with time windows (TSPTW). At the
beginning, this proposed algorithm generates a sequence of
random Hamiltonian tours that do not guarantee time
windows and battery capacity constraints. The three-phase
heuristic is applied to each of these generated tours. First, a
variable neighborhood descent (VND) procedure is used to
satisfy the time window of each customer. Second, a local
search heuristic based on the VND tries to reduce the cost
of the route while guaranteeing the feasibility of the time
window constraints. Finally, the algorithm makes the tour
to satisfy the battery capacity constraints by executing a
dynamic programming algorithm, which inserts recharging
stations when necessary. The authors generated two sets of
test instances based on the TSPTW benchmark instances
available in the literature. Their approach is able to find
optimal solutions for most of the instances with 20
customers under both recharging policies. They also
adapted their approach to deal with the TSPTW instances
and obtained similar results, compared with the general
variable neighborhood search (VNS) of da Silva and
Urrutia (2010).

Fig. 5 Word cloud diagram of journal names.

Fig. 6 EVRP classes surveyed in this study.
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In the market, various types of recharging stations exist,
which use different charging technologies. As a result, the
charging rate at one type of recharging station may differ
from that of another. Küçükoğlu et al. (2019) extended the
ETSPTW by considering various charging rates and
introduced a new problem called ETSPTW with mixed
charging rates (ETSPTW–MCR). To solve this problem,
they proposed a new and effective hybrid simulated
annealing/tabu search (SA/TS) algorithm. This algorithm
improved on the existing hybridization of SA and TS by
employing an efficient search strategy, a modified solution
acceptance criterion, and two types of tabu lists. The
ETSPTW–MCR is solved by a two-state procedure. First,
the hybrid SA/TS algorithm seeks the least cost solutions
only considering the constraints in the TSPTW. Then, a
dynamic programming algorithm is executed to obtain
feasible solutions for the ETSPTW–MCR. For a given
route that only contains customers, the dynamic program-
ming algorithm generates recharging operation plans
optimally by inserting the recharging stations in the
customer-only route. In the experiments, the authors
employed their algorithm to solve the instances of the
TSPTW, ETSPTW, and ETSPTW–MCR. Compared with
the existing algorithms for the TSPTWand ETSPTW, their
algorithm achieved competitive results. In addition, the
results generated by their algorithm is stable because the
standard deviations of most of the results are zero or very
close to zero. The ETSP and its variants are depicted in
Fig. 7, where for each arc the problem at its end is an
extension of the problem at its origin.

3 Green vehicle routing problem

The GVRP, formally introduced by Erdoğan and Miller-
Hooks (2012), is a special case of the EVRP that does not
consider the vehicle capacity. This problem is defined on a
directed graph G ¼ ðV , EÞ, where the vertex set V ¼
N [F [f0g consists of a set N ¼ f1, :::, ng of n
customers, a set F ¼ fnþ 1, :::, nþ f g of f recharging
stations, and vertex 0 representing the depot. Each
customer i 2 N has a service time Si and each edge is
associated with a distance di,j and a travel time ti,j. These n
customers need to be served by an unlimited number of

homogeneous alternative fuel vehicles (AFVs) positioned
at the depot. Each AFV has a maximum driving time of T
minutes and a fuel capacity Q. The vehicle fuel consump-
tion is assumed to be linearly proportional to the distance
traveled. If h is the constant rate of fuel consumption per
unit distance, the maximum distance D that a vehicle can
travel without refueling is computed as D ¼ Q=h. Each
AFV can be refueled at any of the refueling stations. It is
assumed that the AFVs must be fully refueled and each
stop at the refueling station incurs a constant operation
time of S minutes. The GVRP seeks to find a set of at most
m tours that start from and end at the depot and serve all
customers with the aim of minimizing the total travel
distance. Information on the solution approaches for the
GVRP is summarized in Table 1.
Erdoğan and Miller-Hooks (2012) proposed an MIP

model for the GVRP and developed two constructive
heuristics to solve it. The first constructive heuristic was
modified from the Clarke–Wright saving algorithm (Clarke
and Wright, 1964), which was designed for the classical
VRP. The second one is the density-based clustering
algorithm, which was built on the concept from the
density-based spatial clustering of applications with noise
algorithm (Ester et al., 1996). The routes generated by the
two heuristics are further improved through two techniques
that apply, respectively, an inter- and intra-route edge
exchange operator. The authors tested their approaches
based on a set of 40 self-generated instances with 20
customers and 12 real cases with up to 500 customers. The
experimental results show that their heuristics performed
well. Koç and Karaoglan (2016) proposed a new MIP
model for the GVRP and implemented a branch-and-cut
algorithm to solve this problem. During the process of the
branch-and-cut algorithm, an SA algorithm that involves
four neighborhood search operators is employed to obtain
feasible solutions for the problem. In their experiments,
Koç and Karaoglan (2016) compared their proposed model
with that from Erdoğan and Miller-Hooks (2012); the
results show that the new model can generate better lower
bounds. The branch-and-cut algorithm optimally solved 22
out of 40 small instances that contain 20 customers.
Montoya et al. (2016) proposed an effective two-phase
heuristic to tackle the GVRP. In the first stage, this
heuristic builds a pool of routes via a set of randomized
route-first cluster-second heuristics (Beasley, 1983; Prins
et al., 2014) with an optimal procedure of inserting
alternative fuel stations. In the second phase, the heuristic
seeks feasible GVRP solutions by solving a set-partition-
ing formulation based on the routes in the pool. The
authors conducted experiments using 52 instances in
Erdoğan and Miller-Hooks (2012), and then compared
their results to the best results obtained by Erdoğan and
Miller-Hooks (2012), Schneider et al. (2014; 2015), and
Felipe et al. (2014). Numerical results reveal that this
heuristic yielded new best-known solutions for 8 instances,
achieved the best solutions for 40 instances, and generated

Fig. 7 The ETSP and its variants.
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solutions that are very close to the best-known solutions
for the 4 remaining instances.
Yavuz (2017) developed an iterated beam search (IBS)

algorithm to heuristically or exactly solve the GVRP. This
IBS algorithm constructs a search tree and is able to
explore the solution space either partially or completely.
The search tree consists of nodes and branches, where the
leaf nodes correspond to the complete solutions and the
other nodes represent partial solutions. This algorithm can
employ different lower- and upper-bound strategies, and
can be accelerated by a dominance strategy. Yavuz (2017)
tested their algorithm on instances provided by Erdoğan
and Miller-Hooks (2012) and Yavuz and Çapar (2017).
The experimental results show that the exact IBS
algorithm outperforms CPLEX 12.6 on a set of 30
instances obtained from Yavuz and Çapar (2017). More-
over, for the larger instances, this algorithm also works
better, compared with the best-known solutions in the
literature. Leggieri and Haouari (2017) designed a practical
solution approach that uses a novel MIP model and a
reduction procedure to solve the GVRP. The new model
has two advantages. First, it includes a polynomial number
of variables and constraints, and thus can be solved by
commercial MIP solvers. Second, it is flexible and can be
easily adapted to handle many variants of the problem. In
addition, the authors presented reduction procedures for
early fixing binary variables to reduce the problem size and
speed up the computation. They tested their model on
instances used by Erdoğan and Miller-Hooks (2012) and
demonstrated that directly solving their model can yield
better results than the branch-and-cut algorithm presented
by Koç and Karaoglan (2016).

Andelmin and Bartolini (2017) proposed an exact
algorithm to solve the GVRP, and formulated the problem
into a set-partitioning model based on a multigraph in
which columns correspond to feasible routes. This model
is strengthened by three classes of valid inequalities,
namely, weak subset row inequalities, subset row inequal-
ities, and k-path cuts. The proposed exact method follows
the general schema presented by Baldacci et al. (2008;
2011). The authors conducted experiments on two set of
instances, namely, a set of instances from Erdoğan and
Miller-Hooks (2012) and a set of self-generated instances.
The computational results show that this algorithm can
optimally solve instances with up to 110 customers. Based
on the multigraph reformulation introduced by Andelmin
and Bartolini (2017), Andelmin and Bartolini (2019) also
devised a multi-start local search heuristic for the GVRP.
This heuristic consists of three phases: The first two phases
iteratively construct new solutions, improve them by a
local search procedure, and then store all vehicle routes
encountered in a route pool; and the last phase optimally
combines vehicle routes in the route pool by solving a set-
partitioning model and improves the resultant solution by a
local search procedure. The authors tested their heuristic
using 52 instances from Erdoğan and Miller-Hooks (2012)
and 40 instances generated by themselves. For the set of
the former 52 instances, this heuristic found 8 new best-
known solutions and reached the best-known solutions for
the rest of the instances. For the set of the 40 instances, it
found 23 optimal solutions and achieved upper bounds
whose average value is only within 0.27% far from the
optimal solution value. Affi et al. (2018) tackled the GVRP
using a VNS heuristic (Mladenović and Hansen, 1997) and

Table 1 Solution approaches for GVRP

References Approaches Results Advantages Disadvantages

Erdoğan and
Miller-Hooks (2012)

Constructive heuristics Tested on a set of 40 self-generated instances with 20
customers and 12 real cases with up to 500 customers

and performed well

Fast Low quality

Koç and Karaoglan
(2016)

Branch-and-cut algorithm Optimally solved 22 out of 40 small instances
with 20 customers

Optimal solution Slow

Montoya et al. (2016) Two-phase heuristic Yielded new best-known solutions for 8 instances, and
achieved the best solutions for 40 instances

Fast Near-optimal
solution

Yavuz (2017) Iterated beam search
algorithm

Outperformed CPLEX and all previous heuristics on
large instances

Be able to either exactly or
heuristically solve the

problem

–

Leggieri and Haouari
(2017)

MIP model-based
reduction procedure

Better than the branch-and-cut algorithm proposed by
Koç and Karaoglan (2016)

Optimal solution Slow

Andelmin and Bartolini
(2017)

Set-partitioning model
based exact algorithm

Optimally solved instances with up to 110 customers Optimal solution Slow

Affi et al. (2018) Variable neighborhood
search heuristic

Produced the best solution values for 11 out of 12 large
instances and was superior to the other existing heuristics

in the literature

Fast Near-optimal
solution

Andelmin and Bartolini
(2019)

Multi-start local search
heuristic

Found 8 new best-known solutions and reached the
best-known solution for the rest of the instances

Fast Near-optimal
solution
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also tested their algorithm on 52 GVRP instances
presented by Erdoğan and Miller-Hooks (2012). When
compared with the results in the literature, this VNS
algorithm provided the best solution values for all small
instances with less computation time. For the larger
instances, it also produced the best solution values for 11
out of 12 instances, and its performance is superior to the
other existing heuristics in the literature.

4 Electric vehicle routing problem

The EVRP is a straightforward extension of the classic
VRP by involving EVs and the operations of recharge.
This section first provides an MIP model for the standard
EVRP and then introduces its several types of extensions
and variants. In the literature, the EVRP has been extended
by considering many features, such as multiple types of
recharging stations, minimization of the total energy
consumed, multiple depots, energy consumption uncer-
tainty, heterogeneous EVs, time windows, and nonlinear
charging functions. According to the number of articles
published, we find the two main extensions of the EVRP
are that with time windows (Schneider et al., 2014) and
that with nonlinear charging functions (Montoya et al.,
2017). The EVRP and its variants are summarized in
Table 2, which shows the problem names, features
considered, and solution approaches.
Here, we present the MIP model of the standard EVRP.

Let V# be the set of vertices with V#¼ V [F#, where
V ¼ f1, :::, ng denotes the set of n customers and F#is the
set of dummy vertices related to the set F of recharging
stations. Vertices 0 and n + 1 represent the exit and
entrance of the depot, and each route must start from vertex
0 and end at vertex n + 1. Moreover, we define
F#0 ¼ F#[f0g, V#0 ¼ V#[f0g, and V#0,nþ1 ¼ V#[
f0, nþ 1g. The EVRP is defined on a complete and
directed graph G ¼ ðV#0,nþ1, EÞ with the set of edges
E ¼ fði, jÞji, j 2 V#0,nþ1, i≠jg. Each edge has a distance
di,j, a travel time ti,j, and a constant battery consumption
rate h (per unit distance), i.e., traversing this edge
consumes hdi,j battery charge. A fleet of identical EVs
with a loading capacity of C and a battery capacity of Q is
positioned at the depot. When leaving the depot, EVs have
full battery power. Each vertex i 2 V#0,nþ1 has a positive
demand qi, which is 0 if i =2V , and a service time
si ðs0 ¼ snþ1 ¼ 0Þ. At each recharging station, the differ-
ence between the present battery level and Q is recharged
with a charging rate of g (i.e., full recharging policy is
adopted). Each customer must be visited by exactly one
vehicle, i.e., split delivery is not allowed. We define
decision variable τi as the time of arrival, decision variable
ui as the remaining cargo, and decision variable yi as the
remaining battery level on arrival at vertex i 2 V#0,nþ1. Let
xi,j ði 2 V#0, j 2 V#nþ1, i≠jÞ be a binary decision variable

that equals 1 if edge (i, j) is traversed and 0 otherwise. The
objective of this problem is to minimize the total traveling
distance. The MIP model for the EVRP is described as
follows:

min
X

i2V #0, j2V#nþ1, i≠j

di,jxi,j (1)

s.t.
X

j2V#nþ1, i≠j

xi,j ¼ 1, 8i 2 V , (2)

X

j2V #nþ1, i≠j

xi,j£1, 8i 2 F#, (3)

X

j2V#nþ1, i≠j

xj,i –
X

i2V#0, i≠j

xi,j ¼ 0, 8j 2 V#, (4)

τi þ ðti,j þ siÞxi,j –Mð1 – xi,jÞ£τj,

8i 2 V0, j 2 V#nþ1, i≠j, (5)

τi þ ti,jxi,j þ gðQ – yiÞ – ðM þ gQÞð1 – xi,jÞ£τj,

8i 2 F#, j 2 V#nþ1, i≠j, (6)

0£uj£ui – qixi,j þ Cð1 – xi,jÞ,

8i 2 V#0, j 2 V#nþ1, i≠j, (7)

0£u0£C, (8)

0£yj£yi – hdi,jxi,j þ Qð1 – xi,jÞ,

8j 2 V#nþ1, i 2 V , i≠j, (9)

0£yj£Q – hdi,jxi,j, 8i 2 F#0, j 2 V#nþ1, i≠j, (10)

xi,j 2 f0, 1g, 8i 2 V#0, j 2 V#nþ1, i≠j: (11)

In the above model, M is a sufficiently large positive
number. Objective (1) minimizes the total traveling
distance. Constraint (2) ensures that each customer must
be served exactly once, and constraint (3) states that each
dummy recharging station must be visited at most once.
Constraint (4) represents flow conservation constraints.
Constraints (5) and (6) define the relationship of ui and uj,
which are associated with two consecutively visited
vertices i and j. Constraints (7) and (8) guarantee demand
fulfillment for each customer. Finally, constraints (9) and
(10) guarantee that the battery charge level never falls
below 0.
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Zhang et al. (2018a) studied a capacitated GVRP, which
is a special case of the EVRP without considering
recharging time, and proposed two solution approaches,

namely, a two-phase heuristic and a metaheuristic based on
the ant colony system to solve the problem. In the first
stage of the two-stage heuristic, a TSP is solved using the

Table 2 EVRP and its variants

Reference Problem name Features Approaches

Zhang et al. (2018a) Capacitated GVRP Zero recharging time Two-phase heuristic and metaheuristic based
on ant colony system

Granada-Echeverri et al. (2020) EVRP with backhaul Two types of customers Iterated local search heuristic

Felipe et al. (2014) GVRP with multiple technologies and
partial recharges

Multiple recharging technologies
and partial recharging

Constructive heuristic, variable neighbor-
hood search heuristic, and simulated

annealing algorithm

Lin et al. (2016) General EVRP Both delivering or collecting
products, and vehicle load

MIP model

Shao et al. (2018) EVRP Fixed charging time Hybrid genetic algorithm

Zhang et al. (2018b) EVRP Full recharging policy, and zero
recharging time

Ant colony algorithm and adaptive large
neighborhood search heuristic

Li et al. (2019) Multi-depot GVRP CO2 emissions Improved ant colony optimization algorithm

Pelletier et al. (2019) EVRP with energy consumption
uncertainty

Energy consumption uncertainty Cutting-plane algorithm and two-phase
heuristic based on large neighborhood search

Schneider et al. (2014) EVRPTW with recharging stations Time windows Hybrid heuristic that combines variable
neighborhood search algorithm and tabu

search heuristic

Desaulniers et al. (2016) EVRPTW Time windows Branch-and-price-and-cut algorithm

Keskin and Çatay (2016) EVRPTW Time windows and partial
recharging policy

Adaptive large neighborhood search heuristic

Hiermann et al. (2016) Electric fleet size and mix VRP with time
windows and recharging stations

Time windows and
heterogeneous EVs

Branch-and-price algorithm and adaptive large
neighborhood search heuristic

Zhao and Lu (2019) Real-world EVRP Heterogeneous EVs, full recharging
policy, and constant recharging time

Heuristic based on adaptive large
neighborhood search heuristic and

set-partitioning model

Yu et al. (2019b) Heterogeneous fleet GVRPTW Heterogeneous EVs, full recharging
policy, and carbon emissions

Branch-and-price algorithm

Wen et al. (2016) EV scheduling problem Full recharging policy, multiple
depot, and variable recharging time

Adaptive large neighborhood search heuristic

Wang et al. (2019) Multi-depot GVRP with shared
transportation resource

Multiple depot, shared transporta-
tion resources, time-dependent

speed, and piecewise penalty costs
for violating time windows

Hybrid heuristic

Keskin and Çatay (2018) EVRP with time windows
and fast chargers

Partial recharging and multiple types
of rechargers

Two-phase matheuristic approach

Verma (2018) EVRP with time windows, recharging
stations, and battery swapping stations

Both chargers and batteries for
swapping

Two-step heuristic

Kancharla and Ramadurai (2018) EVRP with load-dependent energy
consumption

Load-dependent energy
consumption

Adaptive large neighborhood search heuristic

Cortés-Murcia et al. (2019) EVRP with time windows, partial
recharges, and satellite customers

Partial recharges and satellite
customers

Hybrid heuristic consisting of iterated local
search, variable neighborhood decent,

and set-partitioning model

Montoya et al. (2017) EVRP with nonlinear charging function Nonlinear charging function Hybrid metaheuristic that combines an iterated
local search algorithm and a concentration

heuristic

Froger et al. (2019) EVRP with nonlinear charging function Nonlinear charging function Heuristic and exact labeling algorithm

Zuo et al. (2019) EVRPTW with concave nonlinear
charging function

Nonlinear charging function No tailored solution procedure
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nearest neighborhood greedy algorithm to find a delivery
tour. In the second stage, according to the remaining fuel
and remaining products, recharging stations and the depot
are inserted in the TSP tour to generate a feasible solution.
The authors randomly generated benchmark instances,
which include a set of 10 small instances with the number
of customers ranging from 15 to 24 and the number of
recharging stations fixed to 2; and furthermore, a set of 20
large instances consider 25, 50, 70, 100, and 150 customers
and 2, 4, 6, and 8 recharging stations. The experimental
results show that the performance of the ant colony system
is 38.27% better than that of the two-stage heuristic.
Granada-Echeverri et al. (2020) studied an EVRP that
provides services for two sets of customers. The first set
includes the customers that require a given quantity of
products to be delivered and the second set includes the
customers that need to send a given quantity of products to
the depot. Additionally, this problem requires the custo-
mers in the first set to be visited before those in the second
set. To solve the problem, the authors proposed an iterated
local search algorithm that applies inter- and intra-route
operations to explore the search space associated with the
solution encoding strategy.
To the best of our knowledge, the number of existing

papers that investigated the standard EVRP is extremely
limited. In fact, most of the papers in the literature studied
the extensions and variants of the standard EVRP.
Felipe et al. (2014) introduced an EVRP with multiple
technologies and partial recharging. Different from the
standard EVRP, this problem considers various types of
recharging stations and allows any amount of electricity to
be recharged at the recharging station. Each type of
recharging station has a given recharge speed and recharge
unit cost. The objective of this problem is to minimize the
total recharging cost, which is composed of a fixed cost
and a variable cost. The fixed cost of each recharge
operation is given by the cost of a battery divided by the
estimated maximum number of recharge operations. The
variable cost of a recharge operation is proportional to the
amount of electricity recharged and also depends on the
type of recharging station. The authors implemented three
types of heuristics to solve their problem. The first type is a
constructive heuristic that aims to generate feasible
solutions using a short computation time. The second
type is the VNS heuristic that employs three neighborhood
search operators, namely, recharge relocation, 2-opt, and
reinsertion. The last type is the SA algorithm. Lin et al.
(2016) mentioned a general EVRP whose objective is to
minimize the total cost, consisting of the battery charging
cost, travel time cost, and battery-charging waiting time
cost. In addition, this problem can also deal with the
operations of both delivering and collecting products.
During the process of calculating the cost, the vehicle load
and travel speed are considered while the travel speed on
each edge is assumed to be a known constant and the

vehicle load varies along with the route. Through a case
study, Lin et al. (2016) showed that the load effect cannot
be ignored in the routing strategies.
Shao et al. (2018) presented an EVRP that minimizes the

sum of the fixed vehicle cost, travel cost, and charging
cost. This work assumed that the charging time is a
constant, and a full recharging policy is adopted. To solve
this problem, the researchers implemented a hybrid genetic
algorithm, which is a combination of a genetic algorithm
and a local search procedure. Zhang et al. (2018b)
introduced an EVRP that seeks to minimize the total
energy consumed by all EVs. The amount of consumed
energy depends on several factors, such as traveling
distance, vehicle weight, vehicle speed, and engine
efficiency. In this problem, the full recharging policy is
also adopted, while the time consumed by the recharging
operation is not considered, i.e., the service time at each
recharging station is zero. As the solution approaches to
their problem, Zhang et al. (2018b) proposed an ant colony
algorithm and an adaptive large neighborhood search
(ALNS) heuristic (Ropke and Pisinger, 2006). The authors
conducted experiments based on a set of self-generated
instances and found that the ant colony algorithm is able to
provide close-to-optimal solutions for the small-sized
instances and performs better than the ALNS heuristic
for the large-sized instances in terms of solution quality
and computation time. Li et al. (2019) studied a multi-
depot EVRP that has four objectives, namely, maximizing
revenue, minimizing cost, minimizing the traveling time of
vehicles, and minimizing the level of CO2 emissions. They
solved their problem by applying an improved ant colony
optimization algorithm.
In practice, the amount of energy consumed is uncertain

due to factors such as weather and road conditions, driver
behavior, and several energy consumption parameters that
are difficult to determine precisely. To deal with this issue,
Pelletier et al. (2019) introduced an EVRP with energy
consumption uncertainty and then proposed a robust
optimization framework to address the aforementioned
uncertainties. Different from the deterministic EVRP, this
problem assumes that each edge (i, j) has an expected
empty-vehicle energy consumption ai,j (kWh) and an
expected load-dependent energy consumption rate bi,j
(kWh/kg). The realized energy consumption value deviates
from the expected values because of the uncertain
environments. The authors formulated their stochastic
problem to a deterministic MIP model whose objective
function is to minimize the total fixed cost of EVs, the total
maintenance cost proportional to the total traveling
distance, and worst-case energy cost. The authors first
used a cutting-plane algorithm to produce the optimal
solutions for the small instances of the problem. There-
after, they developed a two-phase heuristic approach based
on the large neighborhood search (LNS) to seek near-
optimal solutions for the large instances.
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4.1 EVRP with time windows

Schneider et al. (2014) initiated the research on EVRP with
time windows (EVRPTW). The MIP model of the
EVRPTW can be obtained by adding time window
constraints to the model (1)–(11). The authors implemen-
ted a hybrid heuristic that combines VNS algorithm and TS
heuristic (henceforth called VNS/TS for brevity) to solve
the EVRPTW. They conducted numerical experiments to
evaluate the performance of their method. First, they
compared the performance of their VNS/TS heuristic and
CPLEX using small-sized instances. The results show that
the VNS/TS heuristic is able to solve these small instances
to optimality within only a few seconds. However, for most
of these instances, CPLEX consumed much more
computation times. Moreover, for 11 out of 36 small
instances, CPLEX cannot produce provable optimal
solutions. Second, the authors analyzed the efficiency of
the algorithmic components of their hybrid heuristic based
on a set of medium-size instances. Finally, they demon-
strated the ability of the VNS/TS heuristic on solving the
instances of the GVRP, VRPTW, and multi-depot VRP
with inter-depot routes (Crevier et al., 2007). Desaulniers
et al. (2016) designed exact branch-and-price-and-cut
algorithms for four versions of the EVRPTW, which are
the following: 1) each route is allowed to visit at most one
recharging station and a full recharging policy is adopted,
2) each route can visit multiple recharging stations and a
full recharging policy is adopted, 3) each route is allowed
to visit at most one recharging station and a partial
recharging policy is adopted, and 4) each route can visit
multiple recharging stations and a partial recharging policy
is adopted. Actually, the second version is exactly the same
as the problem studied by Schneider et al. (2014). The
branch-and-price-and-cut algorithm follows a standard
framework including column generation procedure, cut-
ting planes, and branching strategies. Keskin and Çatay
(2016) focused on the EVRPTW with the partial rechar-
ging policy and developed an ALNS heuristic to solve it
efficiently. This ALNS heuristic uses new removal and
insertion mechanisms to handle the structure of the
problem, which includes customer removal, recharging
station removal, customer insertion, and recharging station
insertion. The authors applied their heuristic to the
instances of the EVRPTW with the full recharging policy
and achieved new best-known solutions for four instances.
Further, they showed that the partial recharging policy may
improve the solutions substantially, compared with the full
recharging one.
Other works in the literature focused on the extensions

of the EVRPTW. Hiermann et al. (2016) extended the
EVRPTW by considering heterogeneous EVs, and the
resultant problem is called the heterogeneous EVRPTW
(HEVRPTW). The available vehicle types differ in their
load capacities, battery capacities, amount of energy
consumed per distance unit, recharging time per energy

unit, and acquisition costs. The authors provided two
models for the HEVRPTW, namely, an arc-flow model and
a set-partitioning model. Then, they applied the branch-
and-price algorithm to solve the set-partitioning model for
the optimal solution of the problem. However, the instance
size that can be optimally solved by this exact method is
limited. To handle the instances of real sizes, they also
developed a heuristic based on the ALNS heuristic. In this
heuristic, a local search procedure is used to intensify the
search process in each iteration. As the ALNS heuristic has
low ability to better position the recharging stations, a post-
processing procedure is added to improve the selection and
positioning of recharging stations for a route with the fixed
customer visiting order. This post-optimization procedure
is realized by a labeling algorithm and assumes that at most
one recharging station can be placed between any two
consecutive customers to reduce the computation time.
Zhao and Lu (2019) also studied an HEVRPTW in which a
full recharging policy is adopted, and the charging time of
each EV type is assumed to be constant regardless of the
remaining battery power of the EV. The objective of this
problem is to minimize the sum of the EV acquisition,
travel, charging, and waiting costs incurred by the
customers and distribution center. The researchers also
devised a heuristic approach based on the ALNS heuristic
and the set-partitioning model to solve their problem. This
heuristic first applies the ALNS heuristic to search the
solution space and stores the feasible routes encountered
during the search process in a route pool. Then, it
constructs a set-partitioning model using the routes in the
pool and solves it using an MIP solver. As the route pool is
a subset of all feasible routes, the optimal solution of the
set-partitioning model can only be regarded as a near-
optimal solution of the problem. Yu et al. (2019b) studied a
GVRP with time windows (GVRPTW) that employs
heterogeneous EVs and tries to minimize the total carbon
emissions. This problem considers the vehicle capacity,
and thus it is essentially the HEVRPTW. The authors
developed a branch-and-price algorithm to solve their
problem to optimality.
Wen et al. (2016) introduced a multi-depot EVRPTW

that employs the full recharging policy and considers
recharging time proportional to the charged electricity.
Each vertex to be served has a fixed starting time, which is
equivalent to having a service time window whose starting
and ending times are the same. Moreover, each depot or
recharging station has a specified time window within
which the EV can visit. The authors implemented an
ALNS heuristic to find near-optimal solutions for their
problem. Wang et al. (2019) extended the multi-depot
EVRPTW by considering shared transportation resources,
where the time-dependent speed and piecewise penalty
costs for violating the time windows are also incorporated.
The researchers proposed a bi-objective model to minimize
the total carbon emission and operational cost, and then
designed a hybrid heuristic to solve the problem. Keskin
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and Çatay (2018) extended the EVRPTW by allowing
partial recharging and considering three types of chargers
equipped at each recharging station, namely, normal, fast,
and super-fast chargers. The faster charger uses less time
while the unit cost of energy is higher. This problem aims
to first minimize the number of vehicles and then minimize
the total cost of energy consumed. To solve this problem,
the authors proposed a two-phase matheuristic approach,
where the ALNS heuristic is applied to find near-optimal
solutions in the first phase and an exact method with the aid
of the MIP solver is used in the second phase to further
improve the solution quality. Specifically, the exact
approach uses a simplified MIP model that fixes the
sequence of the customers, and makes decisions based on
the selection of the recharging stations and charger types,
and the amount of energy charged.
Battery swapping is an alternative way to recharge EVs.

Usually, the battery of the EV can be swapped with a new
fully recharged one within only five minutes. Verma
(2018) introduced a variant of the EVRPTW in which the
recharging stations provide both chargers and batteries for
swapping. To solve this problem, they designed a heuristic
that consists of two steps. In the first step, the number of
visits to each recharging station is fixed using a local
search procedure that is combined with efficient lower and
upper bounds. In the second step, this heuristic determines
the routing costs of the delivery plan using a genetic
algorithm. In the heuristic, the constraints on battery
capacity and time windows can be violated. Vehicle load
can affect the energy consumption as well as the
transportation cost, which has been mentioned in several
studies (Zhang et al., 2012; Luo et al., 2017). Kancharla
and Ramadurai (2018) extended the EVRPTW in which
energy consumption depends on the vehicle load. Actually,
the electricity consumption per distance unit of an EV is a
function of its speed and load. The authors applied an
ALNS heuristic with several special operators to seek the
near-optimal solution of their problem. Cortés-Murcia
et al. (2019) introduced a new variant of the EVRPTW that
involves the concept of satellite customers. During the time
for recharging the EV at any recharging station, if the
cargoes on the EV can be delivered to a certain customer
by alternative transportation modes, such as walking,
bicycles, and drones, such customers are called satellite
customers. It is assumed that during each recharging
operation, at most one satellite customer can be visited.
This extended problem is solved by a hybrid heuristic
consisting of iterated local search, variable neighborhood
descent, and set-partitioning model.

4.2 EVRP with nonlinear charging function

The majority of the existing studies on routing EVs assume
that the recharging time is a linear function of the amount
of electricity charged. However, the charging duration can
be roughly divided into two stages, where in the first stage

charging time and charged electricity have a linear
relationship and in the second stage its relationship is
nonlinear. To face this reality, Montoya et al. (2017)
incorporated into the EVRP model the nonlinear feature of
charging process, and thus the resultant problem is called
the EVRP with nonlinear charging function (EVRP–NL).
As shown in Fig. 8, the charging process can be
approximated to a piecewise linear function. The authors
provided an MIP model for the EVRP–NL and then
developed a hybrid metaheuristic that combines an iterated
local search algorithm and a concentration heuristic to
solve it. Compared with the model used by Montoya et al.
(2017), two new MIP models were proposed by Froger
et al. (2019) for the EVRP–NL. Subsequently, they
proposed a heuristic and an exact labeling algorithm to
solve this problem. Extensive experiments were conducted
to compare the results of directly solving the MIP models
using Gurobi 7.5.0, the heuristic and exact labeling
algorithm. Zuo et al. (2019) focused on formulating the
EVRP–NL into newMIP models that do not use duplicated
dummy vertices or edges. In this work, no tailored solution
procedure is given. Through experiments, they compared
the performance of their models with that of the traditional
models, and demonstrated the superiority of their models.

5 Mixed electric vehicle routing problem

Many companies own both EVs and conventional vehicles
(CVs). Therefore, routing a mixed fleet of EVs and CVs
becomes necessary in many situations. The energy costs of
EVs are lower, whereas labor costs may increase due to
time spent on the recharging operations. Several works
have investigated the problems of scheduling a mixed fleet
of EVs and CVs, which are presented in Table 3. Goeke
and Schneider (2015) proposed an EVRP that considers
time windows and a mixed fleet of EVs and CVs. The
energy consumption functions of these vehicles are related
to the vehicle speed, gradient, and vehicle load. The
authors formulated their problem into a nonlinear MIP

Fig. 8 Piecewise linear approximation of nonlinear charging
function.
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model, which cannot be directly handled by general
solvers such as CPLEX and Gurobi. To find a high-quality
solution for this problem, the researchers developed an
ALNS heuristic that is enhanced by a local search
procedure for intensifying the search process. This
ALNS heuristic has three main features. First, an adaptive
mechanism is used to select the number of customers to be
removed by the removal operators in each iteration.
Second, it uses surrogate violations to avoid the calculation
of the time window and battery capacity violations.
Finally, it adopts an acceptance criterion that considers
the different penalty factors used when computing the
solution objective value.
Hiermann et al. (2019) studied a problem that

simultaneously schedules CVs, EVs, and plug-in hybrid
EVs (HEVs). The HEVs have two engines, namely, an
internal combustion engine and an electric engine, and thus
can avoid visiting to recharging stations by switching to
the internal combustion engine. The travel cost per
distance unit when using the internal combustion engine
is higher than that caused by the electric engine. To solve
this complex problem, Hiermann et al. (2019) designed a
metaheuristic consisting of a genetic algorithm, a local
search procedure, and an LNS procedure. Evaluating the
quality of a given route is difficult because optimally
deciding the visits to recharging stations, arrival times, and
possible engine mode changes are computationally
expensive. As a result, to approximately calculate the
cost of each route, the authors adopted a heuristic
evaluation method that requires less computation time.
Specifically, the approach of evaluating routes is based on
a layered optimization algorithm that combines a labeling
technique and several greedy evaluation policies for
inserting recharging stations and selecting the engine
mode. Their approach, on the one hand, executes a generic
algorithm subroutine, and on the other hand, solves a set-
partitioning model to recombine the routes encountered
during the search process. In the genetic algorithm, an LNS
is embedded to act as a mutation operator. At the end of
each iteration, the local search procedure is performed to
further improve the solutions generated by the genetic

algorithm and set-partitioning model.
Macrina et al. (2019a) presented a new variant of the

GVRPTW that optimizes a mixed vehicle fleet composed
of EVs and CVs. The EVs can be partially recharged at any
recharging station. The objective function of this problem
is the sum of four terms, which are the cost of energy
recharged by all EVs, fixed costs of the EVs, variable
traveling costs of the EVs, and variable traveling costs of
the CVs. For this problem, the authors proposed an iterated
local search heuristic that mainly consists of a perturbation
procedure and a local search procedure. Through experi-
ments, they showed how the time windows and partial
recharging policy affect the solution quality. Subsequently,
Macrina et al. (2019b) extended the problem by incorpor-
ating: 1) a comprehensive energy consumption function
that considers speed, acceleration, deceleration, loaded
cargoes, and road gradients; 2) the effects of the
acceleration and braking phases; and 3) the realistic
features related to the battery lifespan. Macrina et al.
(2019a) only used a standard LNS heuristic to solve their
problem and did not reveal the details of their approach.

6 Electric location routing problem

Before routing EVs, we need to know the locations of
recharging (or battery swapping) stations. In most of the
literature, the locations of recharging stations are known in
advance. However, for some situations, we need to
simultaneously decide on the locations of recharging
stations and schedules of EVs, which leads to the research
on the ELRP. The ELRP has a single depot, a set of
customers with given demands, a set of candidate locations
for building recharging stations, and a fleet of identical
EVs to be dispatched to delivery cargoes from the depot to
the customers. Each customer can be serviced by exactly
one vehicle. Each EV must start from and end at the depot,
and the amount of loaded cargoes cannot exceed the
vehicle capacity. A fixed construction cost exists for
building a recharging station, and the shipping cost is
proportional to the traveling distance of the EVs. The

Table 3 MEVRP and its variants

Reference Problem name Features Approaches

Goeke and Schneider
(2015)

EVRP with time windows and mixed fleet Energy consumption functions Adaptive large neighborhood search heuristic

Hiermann et al. (2019) Hybrid heterogeneous electric fleet routing
problem with time windows and

recharging stations

Time windows, conventional,
plug-in hybrid, and electric vehicles

Metaheuristic consisting of a genetic
algorithm, a local search procedure and a large

neighborhood search procedure

Macrina et al. (2019a) Green mixed fleet VRP with partial battery
recharging and time windows

Partial battery recharging
and time windows

Iterated local search heuristic

Macrina et al. (2019b) Energy-efficient GVRP with mixed
vehicle fleet, partial battery recharging,

and time windows

Partial battery recharging, time windows,
energy consumption function, effects of

acceleration and braking phases,
and battery lifespan

Large neighborhood search heuristic
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objective of this problem is to determine the locations of
the recharging stations and the routes of all EVs while
minimizing the total cost and satisfying all customer
demands. Table 4 lists the recent studies on the ELRP and
its variants.
Yang and Sun (2015) presented an ELRP that aims to

simultaneously determine the locations of the battery
swapping stations and the routing plan of a fleet of EVs.
The authors first provided a basic mathematical model with
an assumption that each vehicle can only visit each
swapping station or each customer at most once (see
Fig. 9(a)). Subsequently, they removed this assumption
and gave an extended mathematical model in which an
EV can visit any swapping station multiple times (see
Fig. 9(b)). To solve this problem, the authors proposed a
two-phase heuristic that combines tabu search algorithm
and modified Clarke–Wright saving algorithm (henceforth
referred to as TS–MCWS) and a four-phase heuristic called

SIGALNS. In the TS–MCWS, the tabu search algorithm is
used to fix the locations of the swapping stations, and then
the modified Clarke–Wright saving method is executed to
decide the vehicle routes based on the given locations of
the swapping stations. In the first stage of the SIGALNS, a
modified sweep algorithm is invoked to generate an initial
solution. In the second phase, a subset of candidate-
swapping stations is selected and allocated to different
routes using an iterated greedy algorithm. An ALNS
heuristic is performed to route the vehicles in the third
phase and solutions are further improved by a split
procedure in the last phase. Hof et al. (2017) showed
how to solve the ELRP by adapting the adaptive VNS
(AVNS) heuristic for the VRP with intermediate stops
(Schneider et al., 2015). They conducted experiments
using the benchmark instances generated by Yang and Sun
(2015). The AVNS heuristic significantly improved the
previously best-known solutions for the majority of

Table 4 ELRP and its variants

Reference Problem name Features Approaches

Yang and Sun (2015) Battery swap station location-routing
problem with capacitated electric

vehicles

Locations of battery-swapping stations
and EV routes

Two-phase heuristic that combines tabu search
algorithm and modified Clarke–Wright saving

algorithm and SIGALNS

Hof et al. (2017) Battery swap station location-routing
problem with capacitated electric

vehicles

Locations of battery-swapping stations
and EV routes

Adaptive variable neighborhood search heuristic

Schiffer and Walther
(2017)

ELRP with time windows and partial
recharging

Locations of battery-swapping stations,
EV routes, time windows, and partial

recharging

MIP model without tailored methods

Zhang et al. (2019) Location-routing problem in EV
transportation with stochastic

demands

Locations of battery-swapping stations,
EV routes, and stochastic demands

Hybrid heuristic composed of a binary PSO algorithm
and a variable neighborhood search heuristic

Koç et al. (2019) EVRP with shared charging stations Locations of battery-swapping stations,
EV routes, multiple depots, and investment

in charging stations

Multi-start adaptive large neighborhood search
heuristic

Fig. 9 Comparison between allowing and not allowing revisit in ELRP.
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instances within reduced computation times, compared
with the approaches used by Yang and Sun (2015).
Moreover, they observed that the AVNS heuristic is robust
based on the average solution quality, and is able to
considerably reduce the number of swapping stations
constructed, compared with the results in the literature.
Schiffer and Walther (2017) focused on the ELRP with

time windows and partial recharging policy, which is used
to support strategic decisions of transportation companies.
The authors formulated their problem into an MIP model
and presented four objective functions, each corresponding
to one of four scenarios. Thereafter, they derived a
strengthened MIP model to reduce the computation time.
The authors did not provide any tailored solution
procedure for their problem and only directly solved
their models through a general MIP solver using small
instances with up to 15 customers. By experiments, they
showed the advantages of their strengthened model, the
benefits brought about by the partial recharging policy, and
the effect of different objective functions. Zhang et al.
(2019) addressed an ELRP with stochastic demands, with
the aim to seek a min-cost solution that outputs the optimal
locations of the battery-swapping stations and optimal
priori routing plan. They adapted the classical recourse
policy and preventive restocking policy to consider the
influences of battery capacity. The EV needs to select an
optimal swapping station sequence based on its current
state of charge. In this selection process, the EV must face
two conflicting objectives, namely, minimizing the travel-
ing distance and maintaining higher battery level. The
authors tried to identify a Pareto optimal set to speed up the
selection of swapping stations. They implemented a hybrid
heuristic composed of a binary particle swarm optimiza-
tion (PSO) algorithm and a VNS heuristic to solve their
problem. In the experiments, the authors demonstrated the
performance of their proposed approach by comparing it
with five other heuristics. Koç et al. (2019) presented a
multi-depot ELRP, where each company runs a distribution
system consisting of a fleet of identical EVs, a depot, and a
preassigned set of customers. However, these companies
jointly invest in installing and operating recharging
stations. That is, the recharging stations are shared by
these companies. This problem aims to determine the
locations of the recharging stations and schedule EVs for
each company. The authors implemented a multi-start
ALNS heuristic to solve their problem and evaluated their
method using self-generated test instances.

7 Other variants

In this section, we review the literature of the EVRP
variants that do not appear in the aforementioned context.
All articles except two were published in 2019 and thus,
the number of articles about each type of variant is
limited.

7.1 Hybrid electric vehicle routing problem

Mancini (2017) introduced the HEVRP and assumed that
the vehicle shifts to fuel propulsion mode only immedi-
ately after the power in the vehicle battery is depleted. The
authors formulated this problem into an MIP model and
then proposed a matheuristic that combines a standard
ALNS heuristic with a simplified model. The matheuristic
starts from a feasible solution. Two routes are destroyed at
each iteration. Then, a simplified model is solved, which
only considers two vehicles and the customers in the
destroyed two routes to generate two new routes. The
aforementioned two steps are iteratively executed until a
termination criterion is reached. Yu et al. (2017) developed
two versions of simulated annealing algorithm with a
restart strategy to solve this problem. These two versions
employ the Boltzmann and Cauchy functions to determine
the acceptance probability of a worse solution, respec-
tively. We refer the reader to Dascioglu and Tuzkaya
(2019) for a review of the papers regarding the HEVRP
published in or before 2017. In the following, we survey
two most recently published papers.
Li et al. (2018) proposed a multi-objective EVRP that

uses plug-in and wireless charging systems. They
formulated the problem into an MIP model and solved it
by CPLEX efficiently. Zhen et al. (2020) introduced a
variant of the HEVRP in which vehicles can run on four
types of modes. The hybrid electric vehicles (HEVs) can
run as long as they have battery power or gasoline.
However, in this work, the impact of the vehicle load on
the electricity or gasoline consumption is neglected. This
problem needs to decide which gas stations or recharging
stations will be visited in the routes of the HEVs. Prices of
gasoline and electricity are given, and the amounts of
gasoline and electricity consumed on each edge are also
known beforehand. This problem has an implicit assump-
tion that each edge can only select exactly one mode. The
authors developed an improved PSO algorithm to solve
their problem, which is a mixture of the PSO and VNS
procedures and uses a label procedure to assign a mode to
each edge.

7.2 Electric dial-a-ride problem

If the dial-a-ride problem (DARP) uses EVs and allows
EVs to be recharged during the trip, then we can obtain the
EDARP. The DARP consists of designing vehicle routes
for a number of requests, each characterized by a pickup
point (origin), a delivery point (destination), and a certain
quantity of demand. For all requests, a maximal ride time
exists, i.e., the difference of the pickup and delivery times
must be within a given limit. For comprehensive reviews
on the DARP, we refer the reader to Cordeau and Laporte
(2007), Molenbruch et al. (2017), and Ho et al. (2018).
Masmoudi et al. (2018) introduced the EDARP,

which arises specifically in healthcare services related to
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non-emergency transportation of patients. Different
patients need to be transported between their homes and
the clinics (or hospitals). In this problem, multiple types of
EVs are considered and each EV can provide several types
of resources, each with a certain capacity. The EDARP
aims to plan a set of routes to fulfill all requests while
minimizing the total routing cost. A feasible solution to the
EDARP must satisfy the following conditions: 1) the
pickup vertex must be visited before its corresponding
delivery vertex, 2) the constraints of the resource capacities
must be respected, 3) the service of each vertex must be
started within its time window, 4) the limitation on the ride
time for each patience cannot be violated, and 5) each
request must be fulfilled by exactly one EV. To solve the
problem, the authors proposed three versions of the
evolutionary VNS heuristic in which the VNS heuristic
is integrated into the framework of the genetic algorithm.
In addition, the techniques of the shuffled frog-leaping
algorithm (Eusuff et al., 2006) and the bees algorithm are
also used in their approaches. Shi et al. (2018) also studied
the EDARP in the context of ride-sharing service and
formulated the problem into an MIP model.
Bongiovanni et al. (2019) extended the work of

Masmoudi et al. (2018) by considering multiple starting
and ending depots. Each EV can return to one of the
candidate ending depots rather than return to its starting
depot. The recharging stations can only be accessed by
empty EVs and can provide partial recharging service. The
authors formulated their problem as 3-index and 2-index
MIP models, and then devised a branch-and-cut algorithm
with new valid inequalities derived from the problem
structure. By experiments, they found that solving the
2-index model can yield better results compared with the
3-index model. The largest instances optimally solved by
their approaches contain up to 5 EVs and 40 requests. Al-
Kanj et al. (2020) addressed a comprehensive ride-hailing
system that dispatches a centrally managed fleet of
autonomous EVs. They used approximate dynamic
programming algorithm to determine trip assignment and
recharging operations.

7.3 Electric two-echelon vehicle routing problem

Two-echelon distribution systems are common in the
industry of logistics, necessitating the investigation of the
two-echelon VRP (2EVRP). In the 2EVRP, the cargoes are
first transported from depot to intermediate points (called
satellites) by large vehicles and then distributed from
satellites to customers by small vehicles. At the satellites,
the cargoes need to be transferred from large vehicles to
small vehicles. Therefore, we need to simultaneously
handle two VRPs, namely, routing large vehicles from a
depot to a set of satellites (i.e., first echelon vehicle
routing) and routing small vehicles from a satellite to a set
of customers (i.e., second echelon vehicle routing). For
more information with regard to 2EVRP, we refer the

reader to Perboli et al. (2011), Baldacci et al. (2013), and
Jepsen et al. (2013). When this problem uses EVs to
transport cargoes, we can obtain an extended variant called
E2EVRP. Figure 10 provides an example of the E2EVRP
transportation network.

Breunig et al. (2019) proposed an E2EVRP that only
uses EVs in the second echelon distribution stage. They
developed an exact method to solve this problem to
optimality based on the method in Baldacci et al. (2013)
for the 2EVRP. From their experimental analysis, the
authors found that their exact algorithm can only optimally
solve small- and medium-sized instances. For the large
instances, they designed an LNS heuristic to produce high-
quality upper bounds. Jie et al. (2019) studied an E2EVRP
that uses EVs in both echelons. They solved their problem
using a hybrid heuristic called CG–ALNS, which is
composed of a column generation (CG) procedure and
an ALNS heuristic. The routing problem for the first
echelon, which is handled by the CG procedure, is a split-
delivery EVRP. The routing problem that is solved by the
ALNS heuristic in the second echelon can be regarded as a
multi-depot EVRP by assuming satellites to be depots. The
authors implicitly assumed that the customer demands are
integral, which can be revealed from the description of the
column generation procedure in their study.

7.4 Electric pickup and delivery problem with time
windows

The pickup and delivery problem with time window
(PDPTW) has been widely studied by many researchers. In
the PDPTW, n transportation requests need to be fulfilled.
A transportation request comprises an origin point and a
destination point. A given amount of commodity is picked
up from the origin point and then delivered to its
corresponding destination point. Each operation has a
service time and must be started within a given time

Fig. 10 Example of E2EVRP transportation network.

384 Front. Eng. Manag. 2021, 8(3): 370–389



window. A fleet of identical vehicles with a known
capacity is dispatched to fulfill these requests. All vehicles
must start from and end at the depot. If we replace CVs
with EVs, then the PDPTW becomes EPDPTW. Goeke
(2019) introduced a compact formulation of the EPDPTW
with the partial recharging policy and developed the first
solution approach, which is called granular tabu search
(GTS) algorithm. The idea behind the GTS algorithm is not
new and has been applied to several other VRPs, such as
Toth and Vigo (2003) and Escobar et al. (2014). In their
algorithm, they effectively handled the partial recharges
when time window constraints were allowed to be
violated. No benchmark approach can be found in the
literature. Therefore, the author applied the algorithm to
solve the PDPTW and compared their results with those
generated by five best PDPTW algorithms available in the
literature. The comparison results showed that the GTS
algorithm can produce highly competitive solutions.

8 Conclusions

We presented a comprehensive literature review on the
routing problems concerning EVs. All the surveyed papers
are extended from their corresponding vehicle routing
counterparts. Two types of recharging policies, namely,
full and partial recharging policy, can be adopted by the
EVRPs. Thus, each problem can have two versions. The
partial recharging policy is more flexible while increasing
the complexity of the problem and the difficulty of the
solution approach. Many studies have demonstrated the
benefits resulted from the adoption of the partial charging
policy. In addition, numerous papers have incorporated the
battery-charging functions and energy consumption func-
tions into their models and made their problem closer to the
real practice. In terms of the solution approaches, most of
the works inherited the methods for VRP and made some
changes based on the properties of EVs. Further efforts
have been exerted to decide the locations of the recharging
(or battery-swapping) stations and when to recharge the
EVs.
After reviewing these papers, we found several obvious

research gaps, which are described as follows. No existing
paper reports real industrial cases that truly applied the
models and algorithms of the EVRPs. Therefore, we have
no clue regarding the companies that applied the relative
methods and cost reduction caused by adopting the EVs.
The scale of the instances handled in the literature is far
smaller than the scale of real instances, which usually
involves hundreds of EVs and thousands of customers. The
methods suitable for the small instances are likely
inapplicable to the real and large instances. We cannot
find any existing study focused on designing algorithms to
solve large-scale instances. Some researchers have devised
reinforcement learning algorithms to solve the traditional
VRP while such methodologies have yet to deal with

EVRPs. Car-sharing and online car-hailing businesses,
such as Uber, have been operating in many countries and
are using EVs prevalently. No research problem has been
introduced and studied in such backgrounds. Range
anxiety is the fear that a vehicle has insufficient range to
reach its destination. Uncertain environments and tasks
considerably aggravate range anxiety. Few studies have
paid attention to the solution approaches for the EVRPs
under uncertain environments and random customer
requests.
The literature on the EVRP is not yet extensive and

therefore, more researchers can contribute to this area.
Four promising avenues are available for further research.
First, in the models, we can consider mobile recharging
stations and thus make the transportation more flexible.
Second, almost all VRPs can be upgraded by replacing
CVs with EVs. Therefore, we can attempt to extend other
VRP variants to their electric version. Third, we observed
from this survey that the research on exact algorithms is
scarce, and more researchers are needed to design the
approaches for the optimal solution of the problem.
Finally, with the arrival of driverless vehicles and the era
of 5G, additional problems, models, and algorithms related
to the routing of EVs can be proposed and investigated.
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