首页  期刊列表 期刊订阅 开放获取 关于我们
English
在线预览  |  当期目录  |  过刊浏览  |  热点文章  |  下载排行

ISSN 2095-7513 (Print)
ISSN 2096-0255 (Online)
CN 10-1205/N
Postal Subscription Code 80-905
  期刊介绍
    » 出版范围
    » 简介
    » 编委会
    » 数据库收录
    » 联系我们
  作者中心
    » 在线投稿
    » 作者指南
    » 模板下载
    » 作者常见问题
  审稿中心
    » 审稿指南
    » 在线审稿
    » 推荐审稿人
    » 致谢
  新闻公告 更多  
» Call for papers — Risk and Resilience of Cyber–Physical Systems
  2022-09-19
» Call for papers—Reliability Management of Complex Systems
  2020-05-15
» Call for papers — Special issue: Blockchain technology
  2019-05-15
» Special Issue — City and Infrastructure Engineering and Management
  2018-11-30
» Call for Papers—Resource-saving and Environment-friendly (Two oriented) Engineering Management and Decision Making
  2018-06-07
» Call for Papers- Systems Thinking in Construction
  2018-04-04
» Call for Papers - Optimization and Operational Research in Engineering
  2018-03-29
» Call for Papers-Green Management in Construction
  2017-12-07
» Call for Papers— Decision, Risk Analytics and Data Intelligence
  2017-10-31
» Call for Papers-Low carbon Management
  2017-10-31
在线预览

在线预出版文章, 内容和格式将与印刷版一致(除了页码), 您可以通过doi直接引用。
Please wait a minute...
选择: 合并摘要 显示/隐藏图片
An overview of solutions to the bus bunching problem in urban bus systems
Ying YANG, Junchi CHENG, Yang LIU
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-024-0297-1
摘要   HTML   PDF (874KB)

Bus bunching has been a persistent issue in urban bus system since it first appeared, and it remains a challenge not fully resolved. This phenomenon may reduce the operational efficiency of the urban bus system, which is detrimental to the operation of fast-paced public transport in cities. Fortunately, extensive research has been undertaken in the long development and optimization of the urban bus system, and many solutions have emerged so far. The purpose of this paper is to summarize the existing solutions and serve as a guide for subsequent research in this area. Upon careful examination of current findings, it is found that, based on the different optimization objects, existing solutions to the bus bunching problem can be divided into five directions, i.e., operational strategy improvement, traffic control improvement, driver driving rules improvement, passenger habit improvement, and others. While numerous solutions to bus bunching are available, there remains a gap in research exploring the integrated application of methods from diverse directions. Furthermore, with the development of autonomous driving, it is expected that the use of modular autonomous vehicles could be the most potential solution to the issue of bus bunching in the future.

图表 | 参考文献 | 相关文章 | 多维度评价
Will fuel switching ever happened in China’s thermal power sector? The rule of carbon market design
Anqi HE, Huarong PENG
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-023-0283-z
摘要   HTML   PDF (7730KB)

To assess the effectiveness of China’s emissions trading scheme (ETS) in facilitating energy structure optimization, we constructed a fuel-switching model utilizing data from 1067 generating units under the Chinese ETS framework. The model simulates the fuel-switching price in China’s thermal power sector, taking into account various allowance allocation strategies. The results show the following: 1) Thermal power plants will transition from coal to gas if the current ETS auction rate surpasses 26%. 2) Furthermore, in scenarios where the ETS operates independently, a transition will occur if the carbon allowance market is entirely auction-based and the carbon price attains 119.50 USD/tCO2. 3) In a collaborative scenario involving both the ETS and a gas feed-in tariff subsidy, a carbon price of 9.39 USD/tCO2 will effect a transition from coal to gas, provided both the auction ratio and subsidy price are maximized.

图表 | 参考文献 | 相关文章 | 多维度评价
Data-driven rolling eco-speed optimization for autonomous vehicles
Ying YANG, Kun GAO, Shaohua CUI, Yongjie XUE, Arsalan NAJAFI, Jelena ANDRIC
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-023-0284-y
摘要   HTML   PDF (4421KB)

In urban settings, fluctuating traffic conditions and closely spaced signalized intersections lead to frequent emergency acceleration, deceleration, and idling in vehicles. These maneuvers contribute to elevated energy use and emissions. Advances in vehicle-to-vehicle and vehicle-to-infrastructure communication technologies allow autonomous vehicles (AVs) to perceive signals over long distances and coordinate with other vehicles, thereby mitigating environmentally harmful maneuvers. This paper introduces a data-driven algorithm for rolling eco-speed optimization in AVs aimed at enhancing vehicle operation. The algorithm integrates a deep belief network with a back propagation neural network to formulate a traffic state perception mechanism for predicting feasible speed ranges. Fuel consumption data from the Argonne National Laboratory in the United States serves as the basis for establishing the quantitative correlation between the fuel consumption rate and speed. A spatiotemporal network is subsequently developed to achieve eco-speed optimization for AVs within the projected speed limits. The proposed algorithm results in a 12.2% reduction in energy consumption relative to standard driving practices, without a significant extension in travel time.

图表 | 参考文献 | 相关文章 | 多维度评价
Cloud-integrated cyber–physical systems: Reliability, performance and power consumption with shared-servers and parallelized services
Shuyi MA, Jin LI, Jianping LI, Min XIE
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-023-0272-2
摘要   HTML   PDF (8811KB)

Cloud systems, which are typical cyber–physical systems, consist of physical nodes and virtualized facilities that collaborate to fulfill cloud computing services. The advent of virtualization technology engenders resource sharing and service parallelism in cloud services, introducing novel challenges to system modeling. In this study, we construct a systematic model that concurrently evaluates system reliability, performance, and power consumption (PC) while delineating cloud service disruptions arising from random hardware and software failures. Initially, we depict system states using a birth–death process that accommodates resource sharing and service parallelism. Given the relatively concise service duration and regular failure distributions, we employ transient-state transition probabilities instead of steady-state analysis. The birth–death process effectively links system reliability, performance, and PC through service durations governed by service assignment decisions and failure/repair distributions. Subsequently, we devise a multistage sample path randomization method to estimate system metrics and other factors related to service availability. The findings highlight that the trade-off between performance and PC, under the umbrella of reliability guarantees, hinges on the equilibrium between service duration and unit power. To further delve into the subject, we formulate optimization models for service assignment and juxtapose optimal decisions under varying availability scenarios, workload levels, and service attributes. Numerical results indicate that service parallelism can improve performance and conserve energy when the workload remains moderate. However, as the workload escalates, the repercussions of resource sharing-induced performance loss become more pronounced due to resource capacity limitations. In cases where system availability is constrained, resource sharing should be approached cautiously to ensure adherence to deadline requirements. This study theoretically analyzes the interrelations among system reliability, performance, and PC, offering valuable insights for making informed decisions in cloud service assignments.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
An integrated framework for automatic green building evaluation: A case study of China
Qiufeng HE, Zezhou WU, Xiangsheng CHEN
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-023-0274-0
摘要   HTML   PDF (19132KB)

With the burgeoning emphasis on sustainable construction practices in China, the demand for green building assessment has significantly escalated. The overall evaluation process comprises two key components: The acquisition of evaluation data and the evaluation of green scores, both of which entail considerable time and effort. Previous research predominantly concentrated on automating the latter process, often neglecting the exploration of automating the former in accordance with the Chinese green building assessment system. Furthermore, there is a pressing requirement for more streamlined management of structured standard knowledge to facilitate broader dissemination. In response to these challenges, this paper presents a conceptual framework that integrates building information modeling, ontology, and web map services to augment the efficiency of the overall evaluation process and the management of standard knowledge. More specifically, in accordance with the Assessment Standard for Green Building (GB/T 50378-2019) in China, this study innovatively employs visual programming software, Dynamo in Autodesk Revit, and the application programming interface of web map services to expedite the acquisition of essential architectural data and geographic information for green building assessment. Subsequently, ontology technology is harnessed to visualize the management of standard knowledge related to green building assessment and to enable the derivation of green scores through logical reasoning. Ultimately, a residential building is employed as a case study to validate the theoretical and technical feasibility of the developed automated evaluation conceptual framework for green buildings. The research findings hold valuable utility in providing a self-assessment method for applicants in the field.

图表 | 参考文献 | 相关文章 | 多维度评价
Emergence mechanisms of group consensus in social networks
Min WANG, Zi-Ke ZHANG
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-023-0277-x
摘要   HTML   PDF (282KB)

Reaching consensus within larger social network groups has emerged as a pivotal concern in the digital age of connectivity. This article redefines group consensus as the emergence of collective intelligence resulting from self-organizing actions and interactions of individuals within a social network group. In our exploration of extant research on group consensus, we illuminate two frequently underestimated, yet noteworthy facets: Dynamism and emergence. In contrast to the conventional perspective of consensus as a mere outcome, we perceive it as an ongoing, dynamic process. This process encompasses self-organized communication and interaction among group members, collectively guiding the group towards cognitive convergence and viewpoint integration. Consequently, it is imperative to redirect our focus from the outcomes of group interactions to an examination of the relationships and processes underpinning consensus formation, thus elucidating the mechanisms responsible for the generation of group consensus. The amalgamation of cognitive contexts and accurate simplification of real-world scenarios for simulation and experimental analysis offers a pragmatic operational approach. This study contributes novel theoretical underpinnings and quantitative insights for establishing and sustaining group consensus within the realm of engineering management practices. Concurrently, it holds substantial importance for advancing the broader research landscape pertaining to social consensus.

参考文献 | 相关文章 | 多维度评价
Optimal production strategy for auto manufacturers with government subsidies in competitive environments
Jingjing XUE, Bin ZHENG, Sijie LI
Frontiers of Engineering Management    https://doi.org/10.1007/s42524-023-0261-5
摘要   HTML   PDF (1075KB)

Using the Hotelling model and evolutionary game theory, this paper studies the optimal production strategy of duopoly auto manufacturers and explores the impacts of two government policies (manufacturer and consumer subsidies) on strategies related to the production of electric vehicles (EVs) or fuel vehicles (FVs). The study finds that consumers’ environmental preferences have direct effects on manufacturers’ market shares and profits, which in turn, affect the manufacturers’ production strategy selection. Specifically, when consumer environmental preference is sufficiently high, both auto manufacturers will eventually choose to produce EVs; when it is moderate, only one with a cost advantage will choose to produce EVs. Finally, when it is low, neither auto manufacturer will produce EVs. The findings further reveal that the more significant the difference in EV production costs is, the more inclined auto manufacturers are to choose a different final stable strategy. Regardless of whether the government subsidizes manufacturers or consumers, the policy only works if subsidies reach a certain threshold. The study also identifies the conditions under which government subsidies are considered more cost-effective.

图表 | 参考文献 | 相关文章 | 多维度评价
First page | Prev page | Next page | Last page Page 1 of 1, 7 articles found  
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn