RESEARCH ARTICLE

Simulation of inhomogeneous strain in Ge-Si core-shell nanowires

  • Yuhui HE 1 ,
  • Yuning ZHAO 1 ,
  • Chun FAN 2 ,
  • Xiaoyan LIU 1 ,
  • Ruqi HAN , 1
Expand
  • 1. Institute of Microelectronics, Peking University, Beijing 100871, China
  • 2. Computer Center of Peking University, Beijing 100871, China

Received date: 12 Jan 2009

Accepted date: 16 Mar 2009

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper studies the elastic deformation field in lattice-mismatched Ge-Si core-shell nanowires (NWs). Infinite wires with a cylindrical cross section under the assumption of translational symmetry are considered. The strain distributions are found by minimizing the elastic energy per unit cell using finite element method. This paper finds that the trace of the strain is discontinuous with a simple, almost piecewise variation between core and shell, whereas the individual components of the strain can exhibit complex variations. The simulation results are prerequisite of strained band structure calculation, and pave a way for further investigation of strain effect on the related transport property simulation.

Cite this article

Yuhui HE , Yuning ZHAO , Chun FAN , Xiaoyan LIU , Ruqi HAN . Simulation of inhomogeneous strain in Ge-Si core-shell nanowires[J]. Frontiers of Electrical and Electronic Engineering, 2009 , 4(3) : 342 -347 . DOI: 10.1007/s11460-009-0050-x

1
Lauhon L J, Gudiksen M S, Wang D, Lieber C M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420(6911): 57–61

DOI

2
Lu W, Xiang J, Timko B P, Wu Y, Lieber C M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29): 10046–10051

DOI

3
Lin H M, Chen Y L, Yang J, Liu Y C, Yin K M, Kai J J, Chen F R, Chen L C, Chen Y F, Chen C C. Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires. Nano Letters, 2003, 3(4): 537–541

DOI

4
Tateno K, Gotoh H, Watanabe Y. GaAs/AlGaAs nanowires capped with AlGaAs layers on GaAs(311)B substrates. Applied Physics Letters, 2004, 85(10): 1808–1810

DOI

5
Sköld N, Karlsson L S, Larsson M W, Pistol M E, Seifert W, Tragardh J, Samuelson L. Growth and optical properties of strained GaAs-GaxIn1-xP core-shell nanowires. Nano Letters, 2005, 5(10): 1943–1947

6
Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber C M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 2006, 441(7092): 489–493

DOI

7
Liang G, Xiang J, Kharche N, Klimeck G, Lieber C M, Lundstrom M. Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. Nano Letters, 2007, 7(3): 642–646

DOI

8
Liu X W, Hu J, Pan B C. The composition-dependent mechanical properties of Ge/Si core-shell nanowires. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(10): 3042–3048

DOI

9
De Caro L, Tapfer L. Elastic lattice deformation of semiconductor heterostructures grown on arbitrarily oriented substrate surfaces. Physical Review B, 1993, 48(4): 2298–2303

DOI

10
Landau L, Lifshitz E. Theory of Elasticity. New York: Pergamon, 1959

11
Pryor C, Kim J, Wang L W, Williamson A J, Zunger A. Comparison of two methods for describing the strain profiles in quantum dots. Journal of Applied Physics, 1998, 83(5): 2548–2550

DOI

12
Jogai B. Three-dimensional strain field calculations in coupled InAs/GaAs quantum dots. Journal of Applied Physics, 2000, 88(9): 5050–5055

DOI

13
Cleland A N. Foundations of Nanomechanics. Berlin: Springer, 2003

14
Søndergaard N, He Y H, Fan C, Han R Q, Guhr T, Xu H Q. Strain distributions in lattice mismatched semiconductor core-shell nanowires. Journal of Vacuum Science and Technology B, 2009, 27(2): 827–830

DOI

15
Zienkiewicz O C, Taylor R L. The Finite Element Method. Maidenhead: McGraw-Hill, 1994

16
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815–5875

DOI

Outlines

/