RESEARCH ARTICLE

Information geometry in neural spike sequences

  • Kazushi IKEDA , 1 ,
  • Daisuke KOMAZAWA 2 ,
  • Hiroyuki FUNAYA 1
Expand
  • 1. Nara Institute of Science and Technology, Nara 630-0192, Japan
  • 2. Kyoto University, Kyoto 606-8501, Japan

Received date: 01 Jul 2010

Accepted date: 20 Oct 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

An information geometrical method is developed for characterizing or classifying neurons in cortical areas whose spike rates fluctuate in time. The interspike intervals (ISIs) of a spike sequence of a neuron is modeled as a gamma process with a time-variant spike rate, a fixed shape parameter and a fixed absolute refractory period. We formulate the problem of estimating the fixed parameters as semiparametric estimation and apply an information geometrical method to derive the optimal estimators from a statistical viewpoint.

Cite this article

Kazushi IKEDA , Daisuke KOMAZAWA , Hiroyuki FUNAYA . Information geometry in neural spike sequences[J]. Frontiers of Electrical and Electronic Engineering, 2011 , 6(1) : 146 -150 . DOI: 10.1007/s11460-010-0123-x

1
Holt G R, Softky W R, Koch C, Douglas R J. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neurophysiology, 1996, 75(5): 1806-1814

2
Shinomoto S, Sakai Y, Funahashi S. The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Computation, 1999, 11(4): 935-951

DOI

3
Sakai Y, Funahashi S, Shinomoto S. Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Networks, 1999, 12(7-8): 1181-1190

DOI

4
Shinomoto S, Shima K, Tanji J. New classification scheme of cortical sites with the neuronal spiking characteristics. Neural Networks, 2002, 15(10): 1165-1169

DOI

5
Shinomoto S, Shima K, Tanji J. Differences in spiking patterns among cortical neurons. Neural Computation, 2003, 15(12): 2823-2842

DOI

6
Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K. Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Computational Biology, 2009, 5(7): e1000433

DOI

7
Tiesinga P H E, Fellous J M, Sejnowski T J. Attractor reliability reveals deterministic structure in neuronal spike trains. Neural Computation, 2002, 14(7): 1629-1650

DOI

8
Amari S. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics. Berlin: Springer-Verlag, 1985

9
Amari S, Nagaoka H. Methods of Information Geometry. New York: Oxford University Press, 2000

10
Miura K, Shinomoto S, Okada M. Search for optimal measure to discriminate random and regular spike trains. IEICE Technical Report, 2004, NC2004-52

11
Ikeda K. Information geometry of interspike intervals in spiking neurons. Neural Computation, 2005, 17(12): 2719-2735

DOI

12
Miura K, Okada M, Amari S. Estimating spiking irregularities under changing environments. Neural Computation, 2006, 18(10): 2359-2386

DOI

13
Shinomoto S, Tsubo Y. Modeling spiking behavior of neurons with time-dependent Poisson processes. Physical Review E, 2001, 64(4): 041910

DOI

14
Godambe V P. Conditional likelihood and unconditional optimum estimating equations. Biometrika, 1976, 63(2): 277-284

DOI

15
Godambe V P. Estimating Functions. Oxford: Oxford University Press, 1991

16
Amari S, Kawanabe M. Information geometry of estimating functions in semiparametric statistical models. Bernoulli, 1997, 3(1): 29-54

DOI

Outlines

/