Collections AI Mindmap AI Analyzer

AI in/and Education
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Ronghuai Huang, Michael Agyemang Adarkwah, Mengyu Liu, Ying Hu, Rongxia Zhuang, Tingwen Chang
    Frontiers of Digital Education, https://doi.org/10.1007/s44366-024-0031-x

    Higher education systems are under increasing pressure to embrace technology-enhanced learning as a meaningful step towards the digital transformation of education. Digital technologies in education promise optimal teaching and learning, but at the same time, they put a strain on education systems to adapt pedagogical strategies. Classical pedagogical frameworks such as Dewey, Piaget, and Vygotsky’s theories focused on student agency and are not specific to contemporary education with ubiquitous digital technologies. Hence, there is a need for a novel and innovative pedagogical framework that aligns with these emerging and advanced digital technologies. However, recent guidelines to incorporate emerging digital technologies in education have largely focused on ethical dimensions and assessment practices. The lack of an overarching pedagogical framework for teaching and learning practices in the digital era is a threat to quality education. The current study proposes a digital pedagogy for sustainable educational transformation (DP4SET) framework applicable to the new modes of teaching and learning powered by digital technologies. The DP4SET framework comprises four components that advocate for digital competence for accessing deep learning, evidence-based practice with quality digital resources, learning environments with applicable digital technology, and synergy between human teachers and trustworthy artificial intelligence (AI). A real-world application of the DP4SET framework in Chinese contexts proves that it promotes the effective use of technology and significantly reshapes teaching and learning in and beyond the classroom. The proposed digital pedagogy framework provides a foundation for modern education systems to accommodate advanced digital technologies for sustainable digital transformation of education.

  • EDITORIAL
    Fangzheng Tan
    Frontiers of Digital Education, 2024, 1(3): 267-271. https://doi.org/10.1007/s44366-024-0016-9

    With the rapid growth of information technology, digital textbooks, as a crucial component of education digitalization, are gradually emerging as a key tool for teaching in higher education institutions. They transcend the limitations of traditional textbooks, providing a broader scope and a wealth of resources for teaching. Digital textbooks present knowledge through diverse formats, including multimedia content and interactive sessions, thereby enhancing student’s engagement and interest in learning. Furthermore, they can be updated at any time to keep abreast of the development in various disciplines and to meet the needs of the times, ensuring that students can access the latest and accurate information. In addition, digital textbooks can help promote educational equity by making quality educational resources accessible to a broader range of students. As Yang (2024) points out, integrating artificial intelligence (AI)-related courses into teaching can cultivate students’ computational thinking, data analysis, and algorithmic application skills, as well as their sense of innovation and a spirit of exploration through solving practical problems. At the same time, AI technology and Big Data can be utilized to analyze students’ learning data and provide customized learning paths and resources. Therefore, it is evident that digital textbooks in higher education play a vital and irreplaceable role in improving teaching quality and cultivating innovative talent.   By introducing the efforts and progress made by Higher Education Press (HEP) in the development of digital textbooks and resources, as well as the specific actions and initiatives in applying AI to develop digital textbooks, strengthening copyright management and protection, and pushing forward the implementation of standards for digital textbooks, this paper discusses the current status, challenges, and future directions of developing digital textbooks in higher education.

  • SHORT COMMUNICATION
    Tianyi Sui, Jianbin Liu, Shan Jiang, Jian Xu
    Frontiers of Digital Education, 2024, 1(3): 274-278. https://doi.org/10.1007/s44366-024-0015-x

    New quality productive forces characterized by innovation and innovation-driven development are essentially talent-driven. The cultivation of engineering practice and innovation ability of science and engineering talents is closely related to the development of national science and technology. It serves as a decisive factor in seizing opportunities of the new round of scientific and technological revolution and industrial change. To align digital engineering graphics education with the evolving demands of industries driven by new quality productive forces and engineering practice, this paper proposes teaching methods based on digital teaching practices at Tianjin University. These methods aim to deepen students’ understanding of new quality productive forces in engineering practice. The knowledge map of new quality productive forces is designed to enhance students’ innovation ability based on cartographic knowledge. It achieves this by refining typical engineering application scenarios that address global scientific and technological issues, tackle economic challenges, meet national strategic needs, and improve people’s life and health. This approach aims to cultivate innovative engineering and technical talents with a solid theoretical foundation, comprehensive innovation abilities, and strong engineering practice ability.

  • RESEARCH ARTICLE
    Dechen Zhan, Xue Li, Lanshun Nie, Songlin Gu, Long Zhang
    Frontiers of Digital Education, 2024, 1(3): 254-266. https://doi.org/10.1007/s44366-024-0030-y

    The creation and application of massive open online courses, online and offline blended courses, and AI-empowered courses drive the reform in higher education. In this context, the establishment of grassroots teaching organisations should be increasingly promoted. By leading more schools and teachers to more efficiently develop courses and effectively implement teaching reforms through cross-regional and cross-university grassroots teaching organisations, virtual teaching and research section (VTRS) has emerged as a new means to explore the creation of such organisations in the “Internet +” era. This paper introduces the background of the VTRS proposal, analyses the connotations of three types of VTRS, and explains seven characteristics of VTRS. Next, it proposes a VTRS construction framework that involves team building, platform construction, mechanism construction, and content construction. Finally, using computational thinking virtual teaching and research section as an example, this paper introduces the construction cases and methods for VTRS. As a new model of collaborative teaching and research, VTRS will improve teaching skills and research engagements of university teachers and will enhance teaching management and professional development in universities.

  • REVIEW ARTICLE
    Xiaofei Xu, John Impagliazzo
    Frontiers of Digital Education, 2024, 1(2): 132-141. https://doi.org/10.1007/s44366-024-0004-0

    Amid the digital revolution, this research explores a groundbreaking topic—the potential impact of metaverse services on the future of computing and engineering education. The transformative potential of metaverse services in education is a beacon of the future, promising new learning modes in digital environments. This work poses two questions: Will metaverse services affect computing and engineering education learning? If so, to what extent has computing and engineering education adopted metaverse services in its curricula? To address these queries, the authors researched several metaverse activities affecting computing and engineering education. The new concepts of metaverse services, metaverse education services, and metaverse education service space are presented and analyzed. This research also discusses the influences of metaverse and services on computing and engineering education. The research showed a transformation toward metaverse service education in the evolving digital era. Academic and industry professionals must recognize the critical need to prepare students and graduates for the digital era adequately. The future is coming whereby metaverse, higher education, and services will generate a new destiny for computing and engineering education with new learning modes in digital environments. The transformative potential of metaverse services in education cannot be overstated, and the academic and industry communities must recognize and embrace this phenomenon.

  • REVIEW ARTICLE
    Shuaizhen Jin, Jingbin Huang, Zheng Zhong
    Frontiers of Digital Education, 2024, 1(2): 142-152. https://doi.org/10.1007/s44366-024-0001-3

    The digital transformation is driving profound changes in education and teaching, with immersive technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR), representing the future form of the internet, set to lead a new round of innovation in primary and secondary education applications. This study first elaborates on the connotation and typical characteristics of immersive technologies, analyzes their potential applications in primary and secondary education scenarios such as space, resources, curriculum, models, and evaluation. It then points out the key issues in the application of immersive technologies in primary and secondary education from four aspects: educational system, innovative technology, application orientation, and privacy ethics. Finally, from the perspective of multi-party collaboration among government departments, educational entities, industries, and enterprises, we propose application strategies such as top-level planning and design, core technology research, typical case cultivation, and regulatory governance. Such strategies aim to promote the deep integration of immersive technologies and primary and secondary education, shaping a new educational climate that aligns with the talents demands of the digital era.