%A Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang %T S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion %0 Journal Article %D 2018 %J Front. Chem. Sci. Eng. %J Frontiers of Chemical Science and Engineering %@ 2095-0179 %R 10.1007/s11705-018-1727-6 %P 346-357 %V 12 %N 3 %U {https://journal.hep.com.cn/fcse/EN/10.1007/s11705-018-1727-6 %8 2018-09-18 %X

Porous polymers have been recently recognized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom-containing monomers and versatile polymerization methods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmospheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m2·g−1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g−1 at 5 mV·s−1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s−1. Furthermore, as the electrochemical catalysts for oxygen reduction reaction, as-fabricated porous carbons presented ultralow half-wave-potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure-performance interrelationship study of heteroatoms co-doped porous carbon for energy applications.