%A Hajime Nakatani,Katsutoshi Hori %T Cell surface protein engineering for high-performance whole-cell catalysts %0 Journal Article %D 2017 %J Front. Chem. Sci. Eng. %J Frontiers of Chemical Science and Engineering %@ 2095-0179 %R 10.1007/s11705-017-1609-3 %P 46-57 %V 11 %N 1 %U {https://journal.hep.com.cn/fcse/EN/10.1007/s11705-017-1609-3 %8 2017-03-17 %X

Cell surface protein engineering facilitated by accumulation of information on genome and protein structure involves heterologous production and modification of cell surface proteins using genetic engineering, and is important for the development of high-performance whole-cell catalysts. In this field, cell surface display is a major technology by exposing target proteins, such as enzymes, on the cell surface using a carrier protein. The target proteins are fused to the carrier proteins that transport and tether them to the cell surface, as well as to a secretion signal. This paper reviews cell surface display systems for prokaryotic and eukaryotic cells from the perspective of carrier proteins, which determine the number of displayed molecules, and the localization, size, and direction (N- or C-terminal anchoring) of the passengers. We also discuss advanced methods for displaying multiple enzymes and a new method for the immobilization of whole-cell catalysts using adhesive surface proteins.