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HIGHLIGHTS

GRAPHIC ABSTRACT

¢ A novel brain-inspired network accurately pre-

dicts sewage effluent quality.

* Sewage-surface images are utilized in data

analysis by the model.

* The developed method outperforms traditional

ones by reducing error by 23%.

* The model offers the potential for cost-

effective monitoring.
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ABSTRACT

Efficiently predicting effluent quality through data-driven analysis presents a significant advancement
for consistent wastewater treatment operations. In this study, we aimed to develop an integrated
method for predicting effluent COD and NHj; levels. We employed a 200 L pilot-scale sequencing
batch reactor (SBR) to gather multimodal data from urban sewage over 40 d. Then we collected data
on critical parameters like COD, DO, pH, NH;, EC, ORP, SS, and water temperature, alongside
wastewater surface images, resulting in a data set of approximately 40246 points. Then we proposed a
brain-inspired image and temporal fusion model integrated with a CNN-LSTM network (BITF-CL)
using this data. This innovative model synergized sewage imagery with water quality data, enhancing
prediction accuracy. As a result, the BITF-CL model reduced prediction error by over 23% compared
to traditional methods and still performed comparably to conventional techniques even without using
DO and SS sensor data. Consequently, this research presents a cost-effective and precise prediction
system for sewage treatment, demonstrating the potential of brain-inspired models.

© The Author(s) 2024. This article is published with open access at link.springer.com and
journal.hep.com.cn

1 Introduction

treatment of wastewater not only prevents the release of
harmful pollutants into natural water bodies but also

Wastewater treatment plants (WWTPs) are essential mitigates the risks to public health and aquatic

components of sustainable

management schemes and play a crucial role in water
environmental protection (Geerdink et al., 2017). The

effective waste ccosystems. Stable and high-quality effluent is

indispensable for the effective operation of WWTPs. In
determining the effluent quality, ammonia nitrogen (NH;)
and chemical oxygen demand (COD) are essential. As
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key control parameters in WWTPs, NH,, and COD
represent the level of nitrogenous waste and organic
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pollutants in the effluent, respectively, that affect WWTP
performance and compliance with regulatory standards
(Wu et al., 2019). Therefore, the accurate prediction of
NH; and COD effluent concentrations is vital for
ensuring water safety, satisfying regulatory standards, and
optimizing the management of WWTPs.

Data-driven methods for predicting effluent water
quality have become increasingly popular due to the
increasing volume of available data produced by WWTP
operations. Several models have been developed to
establish connections between available water quality
data and effluent quality. Among these, time series
analysis using linear and nonlinear approaches has
emerged as a widely accepted method (Tealab, 2018).
Early research primarily utilized linear techniques such as
multiple linear regression (Poutiainen et al., 2010; Zare
Abyaneh, 2014) and the autoregressive integrated moving
average model (Al-Asheh et al., 2007). These models
assume linear relationships among the water quality
parameters and provide low computational costs and
easily interpretable results. In comparison, nonlinear
techniques are effective at enhancing prediction accuracy
because of their ability to simulate brain-like
computations, making them particularly successful at
predicting intricate systems (Mehonic and Kenyon,
2022). Thus, brain-inspired models, such as artificial
neural networks (Lee et al., 2011; Nasr et al., 2012;
Bekkari and Zeddouri, 2019), support vector machines
(Guo et al., 2015; Granata et al., 2017; Wang et al., 2018;
Fu et al., 2023), and kernel function-based optimization
methods (Bagheri et al., 2015; Fernandez de Canete et al.,
2016; Zhu et al.,, 2017; Liu et al.,, 2019), have been
increasingly employed and are preferred when managing
the complex and nonlinear behaviors of wastewater
treatment systems, especially when considering the high
interdependence among the parameters involved (Zodrow
et al., 2017). These models adopt a broader set of
characteristics such as the ability of the brain to process
large amounts of information, to improve their prediction
accuracy. In recent years, deep learning methods such as
Long Short-Term Memory networks (LSTM) and
convolutional neural networks (CNN), have emerged as
powerful tools for time-series analysis in water quality
prediction (Wang et al., 2023; Zhang and Li, 2023).
These methods differ significantly from traditional linear
and nonlinear models because they can handle more
extensive and complex data sets, leading to improved
prediction accuracy. For example, the LSTM model,
which is inspired by the temporal dependency of human
memory, excels at processing sequential data. Meanwhile,
a CNN emulating the hierarchical structure of the human
visual system allows effective feature extraction from
images. For instance, Wang et al. (2017) demonstrated
that LSTM models are more reliable than back-
propagation neural networks and extreme learning
machine models in predicting dissolved oxygen (DO) and

total phosphorus (TP) in water. Similarly, Ta and Wei
(2018) presented a CNN model for predicting DO
concentration, which provided better feature extraction
results and improved accuracy compared with other
models. Despite significant advancements in data-driven
methods, remaining challenges must be addressed to fully
harness their potential for effluent water quality
prediction. First, the availability of high-quality data are
crucial for the success of these methods; however,
obtaining such data are often limited and costly. Second,
these methods require further optimization and
improvement to enhance their performance, particularly
regarding prediction accuracy and computational
efficiency.

To achieve enhanced effluent quality prediction,
researchers have explored brain-inspired techniques,
particularly hybrid models that combine CNN and LSTM
(Barzegar et al., 2020). Hybrid approaches leverage the
efficient feature extraction capabilities of CNN and the
time correlation capture ability of LSTM, resulting in a
more dependable water quality prediction performance
than single models. Additionally, image recognition
technology offers a promising avenue for water quality
prediction and serves as a potential integration method for
diverse models. By analyzing images of wastewater or
sludge samples, researchers can extract valuable
information related to water quality parameters, making
relatively high-accuracy prediction possible (Litjens
et al., 2017; Rawat and Wang, 2017). Studies analyzing
wastewater surface images aim to capture the
relationships between the visual characteristics that are
perceivable by the human eye and the target water quality
parameters. This method offers benefits for real-time
prediction as it capitalizes on readily available visual
characteristics that are closely linked to effluent quality
(Liu et al., 2014; Mullins et al., 2018; Li et al., 2022b).
Data-driven models offer advantages in terms of
capturing temporal correlations, whereas image
recognition technology provides valuable information
related to water quality parameters. Recently, multimodal
data fusion has emerged as a focal point of research,
yielding significant advancements across various domains
(Li et al., 2022a). This approach, which is reminiscent of
the ability of the human brain to process diverse data
types concurrently, has demonstrated multiple advantages
in terms of efficient and accurate practical applications
(Lahat et al., 2015). For instance, its implementation in
the financial and medical sectors has significantly
enhanced the precision of stock market analysis and
disease diagnostics, respectively (Lee and Yoo, 2020;
Muhammad et al., 2021). We hypothesize that a brain-
inspired multimodal approach mirroring the human
brain’s proficiency in processing diverse data would offer
a more comprehensive representation of complex water
quality patterns. This method not only aims to achieve
enhanced prediction accuracy but also strives to reduce
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the dependency of traditional methods on expensive
sensors, subsequently lowering costs. Although recent
algorithms and computational resource advancements
have bolstered the brain-inspired multimodal strategy,
consequential challenges remain. These encompass the
limited availability of multimodal data in the wastewater
sector, the uncharted territories of data fusion, model
robustness, and data preprocessing and compatibility
problems. Practical experiments with real-world data are
paramount to validate the efficacy of the approach.
Despite these challenges, the proposed brain-inspired
multimodal method enhances traditional monitoring
techniques, offering a more encompassing view of
wastewater dynamics.

This study aims to enhance water quality prediction
using a brain-inspired approach, integrating wastewater
surface image features with time series data, and imitating
how the human brain processes complex multimodal
information. We propose a novel brain-inspired image
and temporal fusion (BITF) with a CNN-LSTM network
(CL) model for effective prediction which includes 1) an
image feature extraction module that captures high-
dimensional visual information from wastewater surface
images; 2) an adaptive feature fusion method that assigns
different weights to image and time series data; and 3) a
CNN-LSTM architecture that effectively leverages both
short and long-term data for accurate predictions. To
evaluate the performance of the BITF-CL model, we
compared it with other widely used models using real-
world data sets and appropriate evaluation metrics to
demonstrate the effectiveness and advantages of our
proposed approach.

2 Experimental platform and data
collection
2.1 Experimental platform

To investigate the dynamics of essential parameters in

sewage treatment processes, we developed an
experimental platform utilizing a 200 L sequencing batch
reactor (SBR) made of acrylic, as depicted in Fig. 1(a).
The influent of the reactor was collected from an actual
urban sewage treatment plant to ensure accurate and
reliable data for developing the water quality prediction
model. The reactor operates in a 180-min cycle, with
phases of synchronous filling and discharging (20 min),
anaerobic treatment (25 min), aeration (120 min), and
settling (15 min). During the aeration phase, the air pump
typically provides an aeration velocity of 15 L/min under
regular operation. This rate is adjustable and is
continuously monitored using a flow gauge. An inlet tank
was used to temporarily store the influent wastewater
before it was fed into the SBR during the filling phase,
while an outlet tank temporarily stored the treated water
before being discharged. The adaptable design of the SBR
allows adjustments to operational parameters as needed,
thereby enhancing efficiency and control and facilitating
the optimization of sewage treatment.

2.2 Image and sensor data collection

To acquire multimodal wastewater data, a high-resolution
overhead camera (WSD-2133-V01, Weishida, China)
with a resolution of 1920 x 1080 was used to capture
images of the sewage surface every minute. These images
provided insights into the physical and chemical changes
at the liquid surface during treatment. As shown in Fig. 1
(b), water quality sensor arrays (LH-G8820, Lohand,
China) were strategically placed. Influent water quality
sensors were placed in the inlet tank, while those for
effluent readings were positioned near the outlet of the
SBR. These sensors continuously monitored essential
indicators such as COD, DO, pH, NH,, electrical
conductivity (EC), oxidation-reduction potential (ORP),
suspended solids (SS), and temperature at consistent
1-min intervals. The study monitored 16 indicators using
8 sensors in influent and effluent streams. However, when
predicting specific effluent parameters, such as NH; and
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Fig. 1 Schematic of the (a) experimental platform and (b) platform structure.
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COD, we excluded their effluent values from the input
features to prevent data leakage and ensure robust model
training. As a result, the maximum number of parameters
used in the predictions is 15.

All the monitored indicators were chosen based on their
known impact on microbial activity and the overall
effectiveness of wastewater biological treatments
(Mulkerrins et al., 2004; Gustin and MarinSek-Logar,
2011). Furthermore, they are essential tools for
effectively monitoring the treatment process (Yu et al.,
2013; Alattabi et al., 2017). We used a registration script
to synchronize image capture timestamps and sensor
readings to ensure consistent data collection. This precise
alignment was essential, especially considering the 1-min
data collection intervals. Maintaining data quality was of
identical importance. The Outliers were removed, and
data normalization was performed to ensure consistent
scaling of all water quality metrics, preventing any
excessive impact on the model.

2.3 Experiment settings

To rigorously evaluate the efficiency of the BITF-CL
model in predicting effluent COD and NH,
concentrations, we collected 40 d of multimodal data
consisting of 40246 data points, each including
corresponding water quality and image data. The data set
was divided into 36 d under normal conditions and 4 d
under anomalous conditions. These anomalous conditions
were created by manually modifying the aeration
velocity. Further information about these operational
shifts will be provided in later sections.

For model assessment, we adopted two distinct
partitioning methodologies. In the regular conditions, data
was split in a 6:3:1 ratio for training, validation, and
testing. Results from this test set formed our primary
evaluation metrics, revealing model performance in
typical scenarios. Conversely, regular conditions data was
used for training and validation under anomalous
conditions, while anomalous data was reserved for
testing, allowing us to evaluate the model’s adaptability
to operational changes. The previous 150 data points were
employed for each prediction since this period covers
necessary processing steps throughout the entire 180-min
SBR cycle. This approach ensures accurate short- and
long-term forecasts, and we based our predictions on
historical data at 1-min and 1-h intervals.

We contrasted the model against LSTM and CNN-
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LSTM in performance benchmarks to highlight its
specific advantage in multimodal prediction accuracy.
The development of these models was facilitated using
Pytorch 1.8.0 and TensorFlow 2.2.0 (Paszke et al., 2019;
Pang et al., 2020) frameworks. Our experimental
environment featured an Intel Xeon E5-2679 v4 CPU and
an RTX 2080Ti GPU. We used Ubuntu 18.04 as the
operating system and Python 3.6 as the development
language.

3 Model establishment and evaluation

3.1 Development of the BITF module
Inspired by the brain’s ability to integrate multimodal
information, we developed a BITF module. This module
aims to combine sewage surface images and water quality
parameters, offering valuable insights for wastewater
treatment. These images, rich in visual indicators, reveal
the physicochemical of sewage attributes through
variations in texture and color. For instance, color
variations can reflect changes in chemical concentrations,
while changes in texture can indicate differences in
sediment granularity or distribution. To accurately
interpret these visual cues and to further the utility of the
BITF module, a robust image feature extraction method
was necessary. We incorporated the VGG11 network into
the BITF due to its proven efficiency in extracting
intricate image features with a relatively simpler
architecture than deeper networks, ensuring accuracy and
computational efficiency. As illustrated in Fig. 2, VGG11
comprises stacked convolutional (conv), max-pooling
(pooling), and fully connected (fc) layers. These layers
transform simple textures into more complex visual
concepts (Sengupta et al., 2019).

The conv layer is pivotal in this transformation process,
which allows the network to identify and highlight
intricate image patterns by the following equation

(Eq. (1)):
lu= D D In )X K (x=iy=j). )

First, in the conv layer, the x and y denote the
coordinates in the output image. Meanwhile, the i and j
refer to the positions in the input image multiplied with a
specified filter. / , and [, are the output and input
images, respectively. Lastly, K is the conv kernel or filter
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Fig. 2 Image feature extraction process.
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that detects specific features. Subsequently, the pooling
layer is used to reduce the size of the feature map while
preserving essential features (Peng et al.,, 2019). This
methodology enhances computational performance and
augments the network’s resilience to overfitting. Finally,
after the pooling layer, the extracted features are
integrated into feature vectors through stacked fc layers to
capture patterns and relationships in the image data for
practical analysis and prediction. With this foundational
understanding, it is crucial to consider the practical
adaptations made for our specific study. We resized the
original 1920 x 1080 wastewater images to 224 x 224 to
comply with the network input requirements. This
allowed us to efficiently extract visual features using the
VGG11 architecture tailored to our needs. We modified
the last fully connected layer to output a 10-dimensional
vision feature vector ¢ instead of the conventional 1000-
dimensional feature vector, ensuring a more accurate
representation of the visual features inherent to
wastewater during treatment.

After image feature extraction, we focused on
integrating image and temporal data within the BITF
module, utilizing a self-attention mechanism. Inspired by
the brain’s capacity to prioritize specific sensory inputs,
this mechanism quantifies the significance of diverse
elements in the input sequence, and subsequently
modulates their impact on the output (Niu et al., 2021). In
the fusion process, the 10-dimensional image feature
vector ¢ was concatenated with the water quality feature
vector s, which has a dimensionality of up to 15,
depending on the sensors used. This results in an input
feature vector m with a maximum dimensionality of 25.
The Fig. 3 visualizes this self-attention-based fusion
process.

The input features from m were first transformed into
three distinct feature spaces, fim,), g(mj), and h(m,), by
their respective linear transformations W, W,, and W,. As
showcased in Fig. 3, the attention weights, denoted as 4, »
where i and j are indices of the input feature map, were

derived using the formula (Eq. (2)):

A;; = softmax (f(m,)" g (m;)). )

The f(m;) and g(m;) are the query and key vectors. After
being processed by the softmax function, their dot
product yields 4, ;. This weight quantifies the importance
of each data input, indicating which features should be
emphasized more during the subsequent fusion, whether
from imagery or water quality metrics.

By using the attention weights in Eq. (2), the value
vector h(m;) informs the weighted sum of features to
generate the final multimodal feature vector O. This
vector reflects the joint expression of sewage image and
water quality features, as given by (Eq. (3)):

N
0= Ahm).

i=1

3)

Significantly, the multimodal feature vector O, which
assimilates insights from image and water quality data,
preserves its dimensionality, matching that of m at 25
dimensions. The distinctiveness lies in its construction:
rather than relying on predefined weights, it is molded by
the model’s adaptively learned weights. The BITF
proficiency in feature extraction and fusion exemplifies a
brain-inspired design that emulates the ability of the
human brain to synthesize sensory inputs into a coherent
interpretation. The multimodal feature vector is critical
for achieving accurate water quality predictions because
of its encompassing nature.

3.2 Construction of the BITF-CL model

Expanding on the BITF module introduced in Section 3.1,
we further integrated it with the CNN-LSTM network to
formulate the comprehensive BITF-CL model. As
depicted in Fig. 4, the multimodal feature vectors O,
generated by processing sewage images and water quality
data through the BITF module, serve as a vital input to
the subsequent CNN-LSTM network. This approach
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Fig.3 Image and time series feature fusion based on self-attention.
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Fig. 4 Model architecture of BITF-CL.

leverages the advantages of multimodal data, enhancing
prediction accuracy and robustness. The CNN-LSTM
architecture, consisting of an initial CNN layer followed
by two LSTM layers, is designed for intricate temporal
pattern extraction. It excels in extracting both local
temporal patterns and long-range dependencies from O,
achieving superior water quality forecasting compared to
traditional LSTM networks (Yang et al., 2021).

The initial CNN layer, equipped with 128 filters of 3 x
3 kernel size, refined the O, vectors, producing feature
maps represented as O, for each time instance .
Following this, the feature map O, is relayed to the two
LSTM layers, each containing 64 units and incorporating
a 0.2 dropout rate to mitigate overfitting. These LSTM
layers are integral in analyzing time-series data,
extracting essential insights for water quality prediction,
and utilizing the forget, input, and output gate

mechanisms, further illustrated by the subsequent
equations (Egs. (4)—(6)):
F,=0(W;-[h-,0.1+by), “4)
l=0W,-[h.,0]1+b), ®)
C,=tanh(W,-[h,_,,0,]+b,.), (6)

where F, represents the forget gate, which determines the
information to be discarded from the previous cell state,
improving the model’s ability to focus on relevant data. /,
is the input gate, which controls the degree to which new
information contributes to the updated cell state. C, is a
candidate value that helps incorporate new information
into the cell state. The weight matrices of the
corresponding gates are denoted by W., and the biases are

represented by b.. Here, * acts as a wildcard. The ¢ in
equations is the sigmoid activation function, which helps
control the flow of information through the gates. The
tanh is the hyperbolic tangent function aiding in
regulating the cell state.

The two LSTM layers work in tandem to capture short-
and long-term correlations in the time-series data, which
are essential for extracting crucial information for water
quality prediction. By integrating these modules, the
BITF-CL model can analyze multimodal features,
providing a more comprehensive understanding of water
quality dynamics. This ability can potentially enhance the
predictive performance of the model in water quality
prediction tasks.

3.3 Effluent quality prediction evaluation

In this study, we evaluate the effectiveness of the model
using three evaluation indexes: root mean square error
(RMSE), coefficient of determination (R?), and mean
absolute percentage error (MAPE) (Chicco et al., 2021).
These indexes help measure the difference between
predicted and observed values.

The RMSE calculates the square root of the mean
square deviation between the predicted values and the
target observation values to evaluate the model. The
calculation formula is as follows (Eq. (7)):

1 ¢ 5
RMSE = ,/;;@—yi), @)

where y,; is the actual value of the i target, ; is the



Junchen Li et al. Brain-inspired approach for effluent quality prediction using sewage images and data 7

model’s predicted value for the ith point, and 7 is the total
number of data points. A lower RMSE value indicates a
minor difference between the predicted and actual values,
meaning that the model has a higher prediction accuracy.

The R? is a measure of the proportion of the variance in
the target wvariable that is predictable from the
independent variables. It provides an indication of how
well the model’s predictions fit the actual values. The
calculation formula is as follows (Eq. (8)):

znl O _y[)z
1 i=1

iyi_)_)i
i=1

where y, is the actual value of the i target, y; is the
model’s predicted value for the i point, ¥; is the mean of
the target values, and 7 is the total number of data points.
The R? value ranges from 0 to 1, with higher values
indicating better model performance.

The MAPE is used to evaluate the mean absolute
percentage deviation between the predicted values and the
target values. The calculation formula is as follows

(Eq.(9)):

R = (8)

s
2

—

— )i

Vi
where y, is the actual value of the i target, y; is the
model’s predicted value for the i point, and 7 is the total
number of data points. The smaller MAPE is, the smaller
the average percentage difference between the predicted
and actual values, which means that the model’s
prediction accuracy is higher.

1 n
MAPE = - R 9
) 0

i=1

4 Results and discussion

4.1 BITF-CL and other unimodal models

In this study, we developed the BITF-CL model for
predicting COD and NH, levels. Parallel to our brains
processing multi-sensory information, our model
integrated the sewage surface image features with water
quality data. To evaluate the performance of the BITF-CL
model, we employed data collected under regular
conditions detailed in Section 2.3 to establish a standard
benchmark. We evaluated the model’s capability at 1-min
and 1-h intervals, comparing it with conventional
unimodal methods, specifically LSTM and CNN-LSTM,
which rely solely on water quality data.

Tables 1 and 2 compare the prediction performance of
different models for COD and NHj, levels at 1-min and
I-h intervals, respectively. The BITF-CL model
consistently outperformed the other models, with an RZ
improvement of 4.40% over CNN-LSTM and 9.20% over
LSTM for COD at 1-min, and a gain of 5.43% over

CNN-LSTM and 8.99% over LSTM for NH; at the same
interval. Similar improvements were observed for
predictions at the 1-h intervals. This improved
performance can be attributed to the unique image feature
extraction and fusion mechanism inspired by the brain
processing visual information, as employed by the BITF-
CL model. The mechanism effectively includes other
visual features into the unimodal time series, enhancing
the performance of model when handling multimodal data
input.

Figure 5 compares the predicted NH; and COD values
for BITF-CL, LSTM, and CNN-LSTM against the actual
measurements at 1-min and 1-h intervals, which witness
sudden COD value fluctuations ranging from 40 mg/L to
200 mg/L. These fluctuations mainly owe to the SBR
process entering the aeration stage, where the sludge-
water mixture disrupts the fluorescence-based COD
sensor. Such interference does not compromise the
predictive capacity of our model. Focusing on the 1-min
interval (Figs. 5(a) and 5(b)), the BITF-CL model
impressively captures the actual values, recording an
RMSE of 20.75 for COD prediction and 0.30 for NH;,
demonstrating its precision. For MAPE, it exhibits
superiority with the lowest recorded values of 0.18 and
0.04 for COD and NHj;, respectively. In contrast, the
unimodal models tended to overestimate NH, levels,
particularly during the 100-300 and 800-900 min, as
suggested by their higher RMSE and MAPE values.

For the 1-h interval predictions (Figs. 5(c) and 5(d)),
the BITF-CL model continues to demonstrate its
exceptional performance. Despite the rise in RMSE by
17.59% and 16.67% for COD and NH,, the BITF-CL
model remains robust. The R? declined modestly by
421% and 4.12%, while the MAPE exhibited minor
increases of 16.67% and 25.00%, underscoring the
model’s capability in longer-period prediction. In
contrast, LSTM and CNN-LSTM models struggle with
abrupt changes in actual COD values, reflected by their
heightened RMSE and MAPE values. Significantly, the

Table 1 Performance comparison among different models (1-min)

COD NH,
Index Model
RMSE MAPE R? RMSE MAPE R?
Model 1 BITF-CL  20.75 0.18 0.95 030 0.04 097
Model 2 CNN-LSTM 2694 021 091 052 0.05 092
Model 3 LSTM 29.69 025 0.87 0.56  0.06 0.89
Table 2 Performance comparison among different models (1-h)
COD NH,
Index Model
RMSE MAPE R? RMSE MAPE R?
Model 1 BITF-CL 2440 0.21 091 035 0.05 093
Model 2 CNN-LSTM 3212 023 0.86 0.61  0.07 0.89
Model 3 LSTM 3541 027 0.81 0.67 0.10 0.86
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BITF-CL model uses multimodal inputs, which combine
different data types such as images and time series data.
This feature contributes to its consistently superior
prediction performance across 1-min and 1-h intervals.
Although 1-h predictions were slightly less precise than
1-min predictions, the model still produced results within
an acceptable range. The lessened precision over the 1-h
is attributed to the increased variability inherent to
longer-duration wastewater quality data. Despite intrinsic
challenges, the BITF-CL model provides accurate
predictions, further validating our method’s potential.
Future analyses and experiments continue to use the 1-
min predictions as the foundation, given their higher
precision and lesser variability. This decision is driven by
the increased accuracy of shorter-duration predictions,
which offer a more reliable basis for further research.

The experimental results underscore the importance of
the image feature extraction and fusion module in the
BITF-CL model, which enhances unimodal time series
data by incorporating visual elements from images, such
as texture patterns, color shifts, and contour differences.
These visual components represent physical attributes and
chemical reactions pertinent to water quality parameters
(Boztoprak et al., 2016; Tomperi et al., 2017). Previous
studies have confirmed the correlation between the image
particle size, shape, sludge distribution, and target water
quality parameters (Khan et al., 2018; Costa et al., 2022).
Conventional time series data fail to independently
capture these properties and reactions. By integrating
images and time series data, the BITF-CL model achieved
superior COD and NH; level predictions compared with
the LSTM and CNN-LSTM models. This enhanced
performance can be attributed to the comprehensive

representation of complex water quality patterns,
addressing the limitations of unimodal models that rely
on complex feature engineering, numerous water quality
sensors, or manual variable selection.

4.2 Camera and sensor combination analysis

This section aims to ascertain the minimal sensor group
required for stable prediction. To achieve this, we utilized
data collected under regular conditions as outlined in
Section 4.1, guaranteeing that the evaluation reflects the
model’s performance during the system’s stable
operation. This section focuses on model performance
and examines the impact of various water-quality sensor
and camera combinations. We performed ten replications
of the test set to ensure a robust evaluation. Such repeated
evaluations help capture the variability and ensure our
findings’ reliability based on RMSE, MAPE, and RZ
results.

We used eight setups of cameras and water quality
sensors: CALL (using Camera, DO, SS, pH, EC, ORP,
and temperature sensors), ALL (CALL without camera),
CNS (CALL excluding SS sensor), NS (CNS excluding
camera), CND (CALL excluding DO sensor), ND (CND
without camera), CNDS (CALL without DO and SS
sensors), and NDS (CNDS without camera). We use these
abbreviations throughout the study to refer to their
respective setups.

Figure 6 illustrates the predictive performance of
different sensor configurations. The CALL configuration
notably outperformed in predicting NH; and COD levels,
evidenced by its average RMSE (mg/L) of 26.4, MAPE
of 0.21, and R? of 0.457 for COD. Meanwhile, the CNS,
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CND, ALL, and CNDS configurations also exhibited
commendable outcomes with RMSE values ranging from
27.2 to 32.5 mg/L, MAPEs between 0.23 and 0.26, and
R? values from 0.930 to 0.943. For NH,, the CALL
configuration achieved an average RMSE of 0.41 mg/L,
MAPE of 0.07, and R? of 0.964, capturing 96.4% of the
variance. These configurations produced consistent
results, characterized by RMSE values between 0.43 and
0.52 mg/L, MAPESs from 0.08 to 0.11, and R? values from
0.946 to 0.961.

Moreover, to evaluate the significance of the
differences among the configurations, we performed a
one-way analysis of variance and Tukey’s Honestly
Significant Difference test on the RMSE, MAPE, and R?
values of each configuration. The results are shown in
Fig. 6, where n.s. indicates no significant difference,
* indicates a difference of p < 0.05, and ** represents a
more significant difference at p < 0.01. We found that
CALL, which included all sensors, performed best in
predicting COD and NH; levels. ALL showed a
significant performance decline (p < 0.05), indicating the
importance of image data for water quality prediction.
Compared with ALL, CNDS lacked SS and DO sensors
but achieved similar results after adding image features
(p > 0.05). This demonstrates that benefiting from the
multimodal feature fusion mechanism of the BITF-CL
model, the camera can partially replace SS and DO
sensors to achieve accurate sewage quality prediction.
The finding is noteworthy because a camera is more cost-
effective and easier to maintain than the aforementioned
sensors for practical applications.

The NS, ND, and NDS configurations without image
data significantly underperformed compared with CALL
(p < 0.01). This underperformance suggests that the
model can not capture the essential visual characteristics
of water quality parameters such as chromaticity,
transparency, and bubble shape. Evaluating the
performance across setups, CALL exhibited exceptional
performance, while CNS and CNDS achieved results
comparable to ALL despite having fewer sensors. These
results indicate that we can occasionally use fewer
sensors without compromising predictive accuracy.
Therefore, we focused on three configurations for further
study: CALL for its top-tier performance, CNS for its
robustness without a sensor, and CNDS for achieving
comparable results to ALL with fewer sensors.

4.3 Predictive performance under varying aeration velocity

To further evaluate the robustness of the BITF-CL model
under anomalous conditions, as detailed in section 2.3, we
focused on three sensor configurations identified in the
last section: CALL, CNS, and CNDS. We introduced a
real-world disturbance by adjusting the aeration velocity
of the SBR from 15 to 5 L/min. Such an intentional
modification simulates deviations of crucial control
parameters, reflecting common incidents like the block of
aeration discs that typically lead to significant decreases
in aeration velocity, impacting the effluent quality.
Although this modified period persisted for 4 d, our
analysis focuses on the most pivotal 1500 min marked by
pronounced NH, and COD fluctuations.
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We used this selected data as a test set to evaluate the
model’s performance, which was pre-trained under
regular conditions. Our goal was to assess its ability to
predict and adapt to unfamiliar anomalies accurately.
Figure 7 shows a comparison between the values
predicted by the model using the three sensor configura-
tions and actual values after a sudden reduction in
aeration. Error curves are plotted below the line graphs to
intuitively reveal the differences among these
configurations. The smaller the area between the error
curve and x-axis, the more accurate its prediction.

After the reduction in aeration velocity, the DO amount
decreased in the reactor. This decrease inhibited the
activity of nitrifying bacteria and prevented the efficient
conversion of NH, to nitrite and nitrate, leading to a
continuous rise in NH; levels. As demonstrated in Figs. 7
(a) and 7(c), the CALL configuration outperformed the
CNS and CNDS configurations in predicting the NH,
level. However, all three configurations achieved close
predictions of the actual values. The error plots reveal
that during the initial 800 min, the model underestimated
the actual data peak and overestimated valley values. The
model underestimated the concentration during the
subsequent 800 to 1500 min interval. This problem may
be due to the model allocating more weight to track its
variation trend, thereby compromising its fitting
capability for local parameters. Nevertheless, the
maximum error values for all configurations were lower
than 1.5 mg/L. Meanwhile, CALL, CNS, and CNDS
achieved excellent prediction performance with RMSEs
of 0.37, 0.48, and 0.65 mg/L, respectively. These
experiments demonstrated that an accurate prediction of
NH, level can be realized using the BITF-CL model with
the assistance of image data and fewer water quality
Sensors.

The predicted and measured results for the COD level
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after reducing the aeration velocity are shown in Figs. 7
(b) and 7(d). The actual value had a noise of
approximately 200 mg/L owing to sensor interference by
the mixed liquid of sludge and water during aeration. The
COD measurement returned to normal after aeration was
stopped. Reducing the aeration velocity decreased aerobic
bacterial activity and organic matter transformation,
thereby continuously increasing COD levels in the valley
area.

The CALL configuration exhibits the best prediction
performance throughout the error curve, with a maximum
error of < 6.5 mg/L in the trough section. Compared with
CNDS, the CNS configuration had an approximately 43%
lower error in the trough section on average. Overall,
CALL, CNS, and CNDS exhibited excellent performa-
nces in the valley interval of interest, with RMSEs of
25.94, 27.42, and 33.67 mg/L, respectively. However,
this model is unsuitable for predicting the step peaks
caused by sensor errors.

Figure 8 presents scatter plots for different sensor
combinations predicting COD and NH, levels. The dotted
line indicates perfect prediction, where the predicted
value is equal to the observed value. The colors indicate
the point density and data frequency across various
intervals. The results revealed that the CALL, CNS, and
CNDS sensor combinations closely followed the actual
trends for predicting the concentrations of both pollutants.
For NH, prediction, the respective R? values were 0.96,
0.94, and 0.91. For COD prediction, the overall fitting
accuracy of the three sensor combinations was
acceptable, except for a slight underperformance in fitting
high abnormal peaks. The R? values for these
combinations were 0.94, 0.91, and 0.90, respectively.
Ultimately, while the CALL combination achieved the
highest accuracy, the BITF-CL model captured the main
characteristics and trends of the COD and NH, data when
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Fig.7 Comparison of predicted and actual values of NH; and COD concentration after aeration velocity reduction. Predicted vs
actual (a) NH; and (b) COD values; Error curve for (¢) NH; and (d) COD values.
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employing fewer sensors, such as the CNS and CNDS
combinations. By eliminating costly DO and SS sensors,
these alternative configurations still delivered compara-
tively excellent predictive performance at reduced
expense.

4.4 Practical implications

Using the BITF-CL model, we applied a brain-inspired
method to jointly analyze wastewater surface images and
water quality sensor data, achieving high-precision
effluent water quality predictions. When all water quality
sensors and image data are accounted for, this model’s
predictive capability significantly surpasses traditional
unimodal models, especially over forecasting intervals of
I-min and 1-h. Remarkably, even without critical sensors
(DO and SS), the model’s performance rivals traditional
methods when image information is integrated. This
multimodal fusion strategy enhances data dimensionality,
ensuring sustained prediction stability even during sensor
malfunctions or abnormalities. Economically speaking,
the cost of obtaining image data are considerably lower
than that of traditional sensors. The BITF-CL model
effectively reduces the overall expenditure for WWTP
monitoring systems. Additionally, it introduces tangible
efficiency improvements for everyday operations.
Leveraging non-contact image data as auxiliary
prediction variables dramatically streamlines system

maintenance and substantially reduces maintenance costs
associated with traditional submerged sensors (Storey
et al., 2011). This model allows wastewater treatment
plants to swiftly adjust treatment processes over 1-min
and 1-h forecasting scales, effectively mitigating risks.

Given the advantages outlined, the model adaptively
extracts beneficial information from multiple data sources
for water quality predictions. This multifaceted fusion
strategy presents a novel solution for current wastewater
treatment and holds promise for future applications, such
as industrial wastewater analysis and lake and river
quality forecasting. Of course, there remains room for
optimization in the BITF-CL model, particularly in areas
like image acquisition, data fusion algorithms, and
computational capabilities. Nonetheless, its current
iteration has showcased impressive performance and
extensive application potential. Considering its cost-
effective deployment, it holds immense value for both
urban wastewater treatment facilities and decentralized
rural wastewater treatment structures.

5 Conclusions

This study aimed to improve the prediction of COD and
NH,; levels in wastewater treatment facilities using the
BITF-CL model, which mimics human cognitive abilities
to integrate multimodal data, including image and time
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series data. We compared the performance of our
proposed model with that of conventional methods, such
as LSTM and CNN-LSTM, and explored the potential for
reducing the dependency on sensor data using our
approach. In summary, the main findings are: 1) The
BITF-CL model demonstrated superior prediction
accuracy compared with LSTM and CNN-LSTM,
effectively incorporating additional visual features into
the unimodal time series through its unique image feature
extraction and fusion mechanism. 2) This study
highlighted the significance of sewage surface image data
in improving water quality predictions, emphasizing the
potential to reduce monitoring costs and maintenance
requirements when specific DO and SS sensors are
missing. 3) The BITF-CL model remained stable and
accurate even when the aeration speed in the SBR
suddenly changed, indicating its potential for practical
application in wastewater treatment facility management.
Future work should focus on refining the model,
exploring more advanced feature extraction and fusion
techniques, and evaluating its performance in different
scenarios and applications. We aim to enhance the
efficiency and cost-effectiveness of monitoring and
managing water quality in wastewater treatment facilities
and beyond by further optimizing the model and
expanding its capabilities.
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