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Abstract Decomposition analysis has been widely used
to assess the determinants of energy and CO, emissions in
academic research and policy studies. Both the methodology
and application of decomposition analysis have been
largely improved in the past decades. After more than 50
years’ developments, decomposition studies have become
increasingly sophisticated and diversified, and tend to
converge internally and integrate with other analytical
approaches externally. A good understanding of the litera-
ture and state of the art is critical to identify knowledge
gaps and formulate future research agenda. To this end,
this study presents a literature survey for decomposition
analysis applied to energy and emission issues, with a
focus on the period of 2016-2021. A review for three
individual decomposition techniques is first conducted,
followed by a synthesis of emerging trends and features
for the decomposition analysis literature as a whole. The
findings are expected to direct future research in decompo-
sition analysis.
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1 Introduction

Decomposition analysis is a useful tool in energy and
climate policymaking. As an accounting approach,
decomposition analysis distributes a change in an aggregate
indicator of interest to policymakers to a set of pre-
defined factors that have policy relevance. The decompo-
sition results can therefore explain the change in the indi-
cator, which provides a quantitative understanding of the
underlying dynamics with managerial implications.
Applying the decomposition approach, for example, IEA
(2022) examines the effectiveness of energy efficiency
improvement on global energy use, IPCC (2022) assesses
the technical and socioeconomic drivers of global CO,
emissions, and Keramidas et al. (2021) evaluates how the
COVID-19 and 2 °C target affect energy system and
emissions. Such information is usually fundamental to
the formulation and assessment of energy and climate
policies. As a result, decomposition analysis has been
widely used in policy studies by international organizations
(Zhong, 2015; World Bank, 2015; UNFCCC, 2021) and
governments worldwide (Rermose, 2010; Wright, 2014;
Natural Resources Canada OEE, 2016; Emele et al.,
2022; US EIA, 2022).

Due to its widely-recognized practical usefulness,
decomposition analysis has flourished in academic
research since proposed in the 1970s. As of March 2023,
over 10000 decomposition studies are found on Google
Scholar. A large body of the literature are devoted to
studying the methodological and application issues of
decomposition analysis. Since similar to the construction
of index numbers in nature, a key theoretical pillar of
decomposition analysis relies on the index number theory
(Boyd et al., 1988; Hoekstra and van den Bergh, 2003).
From a systems science viewpoint, the methodological
foundations of decomposition analysis are built from the
perspectives of energy, economic and production systems
(Ang, 2004; Lenzen, 2016; Wang et al., 2017a). A wide
variety of decomposition models are developed to
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respond to the diverse needs and challenges in policy
analysis (Su and Ang, 2012; Wang et al., 2018b; Ang and
Goh, 2019). To better perform decomposition, theoretical
properties of calculation methods are studied to ensure
consistent results across decomposition strategies and no
residual exists (Ang, 2015; de Boer and Rodrigues, 2020).
With these methodological progresses, the application of
decomposition analysis has also been significantly
expanded in terms of scope, scale and dimension.

After more than 50 years’ developments, decomposition
analysis has become increasingly mature with new
features ever emerging. At present, three branches of
decomposition analysis exist in the literature, i.e., index
decomposition analysis (IDA), structural decomposition
analysis (SDA) and production decomposition analysis
(PDA).D With the same purpose of assessing determinants
of indicators, the three techniques differ in modelling,
application and thus implications delivered. More
recently, decompositions become sophisticated and tend
to converge internally and integrate with external
approaches. These diversities in decomposition studies
create ambiguities and even confusions to researchers and
analysts. A good understanding of the literature and
particularly recent developments helps to better grasp the
state of the art and identify research gaps. To this end,
this paper presents a systematic review of the decomposi-
tion analysis literature. Given its main application area
and to avoid overlapping with previous surveys, this
review is confined to decomposition analysis applied to
energy and CO, emission issues and mainly focuses on
the literature for 2016-2021. We first present an
overview of the decomposition studies collected,
followed by a detailed review for the three decomposition
techniques separately. The key features and trends of the
entire decomposition analysis literature are then analyzed.
The findings are expected to direct future research agenda
setting for decomposition analysis.

The rest of this paper is structured as follows. Section 2
briefly introduces the decomposition approach. Section 3
conducts a bibliometric analysis of the decomposition
literature. Section 4 identifies key developments for three
decomposition techniques separately, and Section 5
presents a synthesis. Section 6 concludes and discusses
future research directions.

2 Decomposition analysis approach

Decomposition analysis begins with modelling an aggre-
gate indicator in the form of index numbers, e.g.,
V =, uuy -+ u,, where a change in the aggregate indi-
cator V during a time period can be explained by changes

in the pre-defined factors u at sub-aggregate level i.
Following this idea and adapting to varying needs of
analysis, three decomposition analysis techniques are
developed.

Originating from energy balance analysis, IDA aims to
track the flow within and reveal the dynamics of energy
systems. Generally IDA models an aggregate indicator
from three aspects, i.e., the intensity, structure, and overall
scale of relevant activities. Taking national energy
consumption as an example, the simplest three-factor
IDA model is given in Table 1. Accordingly, an energy
consumption change is decomposed into the intensity
effect that indicates the impacts of energy use technolo-
gies, the structure effect arising from shifts in composition
of energy end-use activities, and the activity effect that
captures the scale of overall energy end-use activities, as
shown in Table 1. In this manner, IDA quantifies the
determinants of energy and emissions by end-use activities
from an energy systems perspective.?)

SDA aims to capture the energy and emission conse-
quences of structural changes in both production and
demand. To this end, SDA is built upon the input—output
(I0) model that portrays economic dependencies between
sectors and regions. With the relationship between supply
and demand established by the 10 model and combined
with energy intensity multipliers, a country’s energy use
can be modelled with production flows that satisfy
consumption, as shown in Table 1. An energy use change
can therefore be decomposed into the intensity effect that
signals energy use technological change, the production
structure effect that captures changes in production link-
ages between sectors/regions, the demand structure effect
that reflects shifts in consumption pattern, and the total
demand effect that indicates the scale of final demand
(see Table 1). As a result, SDA, from an economic
systems perspective, examines the structural impacts of
production and demand on energy and emissions.

PDA scrutinizes the energy and emission impacts of
technological issues in production processes. For this
purpose, PDA is built upon the production theory that
well characterizes the general production processes. With
technical performance measured, a country’s energy
consumption is modelled focusing on the technological
factors underlying energy use in production, as given in
Table 1. Consequently, an energy consumption change
can be decomposed into the potential energy intensity
effect that captures the impacts of non-energy technologies
(e.g., production technology and inputs substitution), the
technological change effect that indicates energy-use
technology innovation, and the efficiency change effect
that reflects energy use efficiency impacts, in addition to
the activity structure effect and total activity effect as

1) The approach is also termed as the “production-theoretical decomposition analysis” to highlight that it is built upon production theory (Zhou and Ang,
2008). Since the approach primarily focuses on the technological issues involved in production systems, a number of studies also term it as “production
decomposition analysis”, e.g., Tan and Lin (2018) and Zhou and Kuosmanen (2020). We adopt the simplified term in this study.

2) Representative variants of decomposition models and commonly used decomposition methods are given in Appendix A in the Supporting Information.
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Table 1 Basic decomposition approaches

Decomposition model

Determinants

Decomposition effects Explanation

IDA E; X; Energy intensity of sector i (/;)  Energy intensity (AEin) Energy use technology changes
E=%; X }X =i liSiX
! Share of activity for sector i (S;) Activity structure (AE, Shifts in composition of ener;
E" —E% = AEin + AEgy + AEqq Y ) Y (A end—usrc)a activities &
Total activity (X) Total activity (AEac) Changes in scale of overall energy
end-use activities
SDA Y; Energy intensity of sector i (/;)  Energy intensity (AEin) Energy use technology changes
E= Zij’fLi.fy"Y =2 LiLijFS;Y ‘
ET —EO = AEy + AE gy + AEggs + AEiia Production structure (L;) ~ Production structure (AEpsy) ~ Changes in production linkages
P between sectors/regions
Share of final demand for sector Demand structure Shifts in consumption pattern
J(FS) (AEgsy)
Total final demand (Y) Total final demand (AEiq)  Changes in scale of final demand
PDA Ei/Dig X; Potential energy intensity of ~ Potential energy intensity Non-energy technology changes
E=3%,; IXVI Di,EYIX =2 PEIITE:S; X sector i (PEL) (AEyei)

1
ET —E® = AEpei + AEc + AEec + AEg + AEoy

Share of output for sector i (S;)

Total output (X)

Technical inefficiency of
sector i (TE))

Technological change (AE;)
Efficiency change (AEc)

Energy technology innovation
Energy use efficiency changes

Output structure (AEs) Shifts in composition of energy

end-use activities

Total output (AEoy) Changes in scale of overall energy

end-use activities

Notes: E denotes national energy consumption, the superscripts 0 and 7 denote time period, and the term D; f is the distance function that measures the gap between

a production entity’s performance and the best practice frontier.

appeared in IDA (see Table 1). Thus PDA looks into the
technological issues in energy use and emissions from a
production systems perspective.

3 Literature overview

As aforementioned, we confine the survey to peer-
reviewed articles in English published during 2016-2021.
The articles surveyed are collected from Web of Science
(WoS), which is one of the world’s largest academic
databases. A total of 1890 studies are found using the
keywords “decomposition analysis”, “index decomposi-
tion”, “logarithmic mean Divisia index”, “structural
decomposition”, “input—output”, “production-theoretical
decomposition”, “energy”, and “emission”. After initial
screening and filtering, a sample of 983 articles is
obtained, which covers 602 IDA papers, 314 SDA papers,
and 67 PDA papers.

Figure 1 shows the top 10 journals for decomposition
analysis literature. They account for 63%, 64% and 68%
of the collected papers for IDA, SDA and PDA, respec-
tively. This implies the decomposition analysis literature
is fairly concentrated. A number of journals are found
popular across the three strands, e.g., Journal of Cleaner
Production, Environmental Science and Pollution
Research, Energy Policy, Energy Economics, and
Applied Energy. A reason is their interdisciplinary nature
and large amount of publications. IDA has become
matured in energy system analysis, which makes Energy
Efficiency and Renewable and Sustainable Energy
Reviews also popular for IDA studies. As SDA is more

frequently applied to environmental studies, a significant
number of SDA studies appear in environmental science
journals, e.g., Journal of Environmental Management and
Science of the Total Environment. Similarly, since PDA
is rooted in production technology modelling, journals
such as Technological Forecasting and Social Change
and European Journal of Operational Research are
important outlets for PDA studies.

Key articles in the decomposition analysis literature are
identified using the citation-based method. We calculate
the local citation score (LCS) and global citation score
(GCS) for each article. The former indicates the citation
frequency of a paper within our sample, while the latter
shows that of a paper in the entire WoS database. Since it
focuses on the local database of decomposition analysis,
the LCS conveys a higher reference value and has widely
been used to measure the relative importance of articles
(Yu and Shi, 2015; Zhou et al., 2018). According to LCS,
the most influential articles in our sample are identified
for each of the three decomposition branches, which are
listed in Appendix B in the Supporting Information.

The top 50 articles with the largest LCS value are visu-
alized in Fig. 2. Of the 50 studies, there are 29 IDA stud-
ies, 17 SDA studies, 3 PDA studies and one review article
on both IDA and SDA studies. Generally the bulk of
these articles concentrates on methodological develop-
ments. For instance, Ang et al. (2016) and Su and Ang
(2016) introduce decomposition models catering for
multiple dimensions, and Su and Ang (2017) and Wang
et al. (2017b; 2017c) deal with intensity indicators
modelling. From these studies, common interests are also
found across the three decomposition techniques, e.g.,
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Fig. 1 Distribution of papers among the top 10 journals for (a) IDA, (b) SDA, and (c) PDA (note: red/blue parts refer to the common/
unique journals for the three branches of decomposition analysis).
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Fig. 2 Citation graph of top 50 decomposition studies (note: the size of circle reflects the magnitude of LCS (the value before author-
year in labels); red circles indicate IDA studies, green circles indicate SDA studies, blue circles indicate PDA studies, and yellow circles

indicate interdisciplinary studies).

decoupling analysis (Zhao et al., 2016; Roinioti and
Koroneos, 2017) and embodied energy/emissions (Su and
Thomson, 2016; Lan et al., 2016). These similarities in
methodology and application make the literature of three
decomposition branches intertwined, as shown in Fig. 2.

4 Recent developments

4.1 IDA

IDA has been extensively studied and applied in energy
and emission studies. Due to its simplicity, IDA can be
flexibly adapted to various dimensions (e.g., temporal
and spatial) and scales (e.g., economies, sectors, firms,
and plants) with customizations and extensions in
modelling. As IDA is able to isolate the impact of activity
intensity on energy use from other factors, it has become

a standard tool in monitoring energy efficiency. To operate
the decomposition, a number of decomposition methods
have emerged, and logarithmic mean Divisia index
(LMDI) has been most widely used in the literature given
its desirable properties in theoretical foundation and
application. As the methodology matures, IDA has pene-
trated to a broader range of application areas, e.g., air
pollutants, material, water, and particularly CO, emissions
with the rising concern on climate change. These devel-
opments of IDA literature up to 2015 are well documented
in earlier reviews by Ang and Zhang (2000), Xu and Ang
(2013), and Wang et al. (2017a).

Over the period of 2016-2021, the IDA literature
generally follows the past trends in terms of key method-
ological and application features. Figure 3(a) shows that
IDA has been widely applied to energy and emissions at
both the economy-wide and sectoral levels. CO; emission
studies take a growing weight, which is four times more
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Fig. 3 Methodology and application features of IDA studies, 2016—-2021: (a) Total number of IDA studies involving both energy/emissions
and at economy-wide/sectoral level; (b) number of studies by single-level and multi-level analysis; (c) number of studies by aggregate
indicator and decomposition form; (d) number of studies by decomposition methods.

than energy studies, while a small fraction of IDA studies
is devoted to other environmental issues. The multi-level
IDA analyses increase steadily!), which reflects a need for
more detailed results by practitioners and policymakers,
as shown in Fig. 3(b). Figure 3(c) indicates that most
IDA studies deal with quantity indicators, where additive
decomposition is usually adopted to facilitate results
interpretation. Figure 3(d) shows a greater popularity of
Divisia-linked methods and the dominance of LMDI in
decomposition method selection.

Several new developments are found in the IDA literature
since 2016. As to the methodology, the decomposition
modelling tends to become detailed. In particular, the
decomposition identities are usually expanded to detail
energy and environmental technologies. Taking the elec-
tricity studies as an example, other than the overall intensity
and structure of electricity generation as specified in
conventional IDA analyses, technological factors, e.g.,
transmission and distribution (Goh et al., 2018), carbon
capture and storage (Ang and Goh, 2019), renewable
electricity (Goh and Ang, 2018), and combined heat and
power (CHP) (Goh and Ang, 2021; Harmsen and Crijns-
Graus, 2021), are increasingly studied. Similar extensions

are also found for the building (Zhang et al., 2020a) and
transport (Dennehy and O Gallachoir, 2018) sectors. This
development coincides with the general recognition that
technology is central to energy transition and decar-
bonization (Zhou et al., 2022; Yang et al., 2022; Chen
et al., 2022). Based on the advanced modelling and with
the more readily available high-resolution data, an
increasing number of micro-level IDA applications has
been reported. For instance, in addition to the conventional
national and provincial analyses, the decomposition of
energy use and emissions at the levels of city (Shan et al.,
2022), firm (Qian et al., 2021) and end-use devices
(Huang, 2020) emerge. Such detailed and micro-level
analysis delivers more informative results for policy
formulation and evaluation.

Prospective IDA analysis has gained growing attention.
Different from retrospective analyses that deal with
observed changes in the past, prospective decomposition
examines energy/emissions issues in the future, e.g.,
possible paths and scenarios (Ang and Goh, 2019). Based
on the understanding of past energy/emissions patterns
and combined with relevant assumptions, IDA modelling
from a prospective perspective helps to develop future

) Multi-level IDA generally refers to the decomposition at two or more levels with hierarchical data, e.g., regional and sectoral air pollutants in Hang et al.
(2021). As a counterpart of multi-level decomposition, single-level IDA is only constructed at a particular level based on single-dimension data. See Xu

and Ang (2014) for detailed explanations of these two models.
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trajectories of energy use (Wang et al., 2018a) and CO;
emissions (Shahiduzzaman and Layton, 2017). The fore-
casting is more suitable for short-term analysis as energy/
emissions patterns are usually assumed to remain
unchanged in such studies. Focusing on a specific energy/
emissions path, prospective IDA can quantify the under-
lying determinants (Mathy et al., 2018; Kone and Buke,
2019). The results present an outlook on the dynamics
and driving forces of a particular energy/emissions
scenario. To further assess the variation across scenarios,
prospective IDA can also be used to capture the sources
of differences between scenarios (Yeh et al., 2017,
Palmer et al., 2018), which helps to identify barriers and
potential opportunities in energy and emissions manage-
ment. Since uncertainty is inherent in projections and
scenarios, several studies attempt to account for the
uncertainty issues in prospective IDA studies by combining
with Monte Carlo simulation (Zhang et al., 2017; Chen
etal., 2021).

IDA has been increasingly used in conjunction with
other analytical approaches. As a descriptive technique,
IDA is limited in revealing complex interplays between
energy/emissions and underlying factors. To overcome
this shortcoming, IDA has long been combined with
econometric approaches. Recent examples include Cheng
et al. (2020) that combines IDA with an econometric
regression model to examine the causal effect between
fiscal decentralization and CO, emissions, and Luo et al.
(2021) which couples IDA with the Granger causality
analysis. Integrating IDA with optimization models
further enables the estimation of energy savings and
greenhouse gas reduction potentials (Olanrewaju and
Mbohwa, 2017; Fetanat and Shafipour, 2017). Moreover,
the coupling of IDA with energy system models, e.g.,
PRIMES (Fragkos et al., 2017), MESSAGE (Kone and
Buke, 2019), TIMES (Yue et al., 2020) and IMAGE (van
den Berg et al., 2021), helps to uncover the impact mech-
anisms behind these “black box” models, which is useful
to explore possible trajectories of energy and emissions
in mid- and even long-term.

4.2 SDA

To disentangle the complex economic structure and its
energy/emissions impacts, SDA has been largely
improved and widely applied. Detailed insights regarding
the organizational structure of production, e.g., factor
inputs and substitution, can be derived by the two-stage
decomposition. The demand side can also be scrutinized
to explore pattern changes in consumption, investment
and export. With the increasingly integrated global/
regional production network, SDA has been extended
beyond individual economic systems to a multi-region
framework. Beyond conventionally temporal analyses,
SDA has been adapted to compare energy/emissions
disparities across regions and databases. In terms of

modelling, other than the usually studied quantity indica-
tors, SDA models with intensity indicators have emerged.
Different from IDA, the decomposition method proposed
by Dietzenbacher and Los (1998) (hereafter the D&L
method) is the convention in SDA, especially for two-
stage decomposition analysis. With the methodological
progress, SDA has been applied to study energy and
emissions issues from different perspectives, e.g.,
production, consumption, and embodiments in particular
supply/demand segments. Key features of SDA literature
prior to 2016 are summarized in previous reviews by Su
and Ang (2012), Lenzen (2016) and Wang et al. (2017a).

During 20162021, the SDA literature largely continues
the past trends, as shown in Fig. 4. Figure 4(a) shows that
SDA studies are usually confined to the economy-wide
level since it is built on the 1O table. Arising from the
increasing concern on climate change, the emission-
related studies have become the majority. Figure 4(b)
presents a growing number of two-stage SDA analysis,
which reflects a rising interest in assessing the restructuring
production network. While the additive decomposition of
quantity indicators still dominates the SDA literature, the
multiplicative decomposition of intensity indicators has
increased, as shown in Fig. 4(c). As to the decomposition
method selection, Fig. 4(d) shows that Divisia-linked
methods, mainly the LMDI, have become more popular
despite the most widely used Laspeyres-linked methods.

Some emerging trends are observed in the SDA studies
since 2016. The SDA modelling of technological and
structural factors of production has been largely advanced.
In the context of energy transition, transformation and
generation processes of the energy sectors are investigated
in greater details by disaggregating production technolo-
gies (Guevara and Rodrigues, 2016; Li et al., 2019),
which improves the modelling of technological changes
in economic systems. The organizational structure of
production networks is studied from a variety of aspects,
e.g., goods composition, regional distribution and firm
type (Wood et al., 2020; Dietzenbacher et al., 2020;
Zhang et al., 2020b). With the rising trade protectionism
and changing geopolitical landscape, the relocation of
global production networks and its energy/emissions
consequences are increasingly examined (Hoekstra et al.,
2016; Jiang and Guan, 2017). This helps to identify barriers
and opportunities for sustainable supply chain manage-
ment. Given the deepening production fragmentation, the
production structure of economic systems is studied from
the perspective of global value chains to further reveal
the determinants of both value creation and environmental
impacts in a comprehensive manner (Wang et al., 2021a;
Zhang et al., 2021).

The demand-side modelling in SDA has become
detailed. As the energy and environmental impacts of
consumption as well as investment are increasingly
recognized, targeted demand-side measures are urgently
needed. To this end, the production activities and
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associated energy/emissions induced by particular types
of demand, e.g., consumption (Zhang et al., 2016; Duarte
et al, 2021), investment (Sodersten et al., 2018;
Kobayakawa, 2022), and domestic/foreign components
(de Vries and Ferrarini, 2017; Chang and Han, 2022), are
examined separately. With the rapidly changing population
structure, household consumption and embodied energy/
emissions are further scrutinized with various demographic
features, e.g., urban and rural (Zhang et al., 2016),
income (Duarte et al., 2021) and age (Shigetomi et al.,
2019). Moreover, to integrate the supply-side and
demand-side efforts, the sourcing structure of demand
can be disaggregated to track supplier pattern changes
(Kaltenegger et al., 2017). These extensions reveal the
structural changes in consumption preferences, which
offers insights into policy formulation regarding green
consumption and investment.

SDA studies have been refined with higher-resolution
data. For the temporal dimension, conventionally IO
tables are only available for some individual years. To
scrutinize the changing patterns of economic systems,
annual 1O datasets are compiled at national (Su and
Thomson, 2016), regional (e.g., Asian Development
Bank (ADB)-Multiregional Input—Output Table (Marias-
ingham, 2015) and European Multiregional Input—Output

Table (European Commission JRC, 2020)) and global
(e.g., World Input—Output Database (Timmer et al.,
2015), Eora (Lenzen et al., 2012; 2013), and EXIOBASE
(Tukker et al., 2013)) levels, which facilitate the chaining
decomposition. Also, the IO data that are usually lagged
can be updated to recent periods (Wei et al., 2020), which
makes SDA analysis more timely. Further to the yearly
10 data, the granularity of IO tables can be improved, e.g.,
to a monthly basis (Su and Ang, 2022), to study the
dynamics of energy and emissions in a more detailed
manner. For the spatial dimension, conventional country-
level 10O tables are extended to finer geographic scales,
e.g., province (Fan and Fang, 2020) and city (Li et al.,
2018), to derive detailed assessments. Going a step
further, sub-national datasets can be linked to global
multiregional input—output tables to study both the intra/
inter-national patterns of energy and emissions (Mi et al.,
2017). For the sectoral dimension, a single aggregate
sector in IO tables can be split to reveal differences in
production technology and emission performance across
subsectors (Ma et al., 2019). Also, the modelling of
energy sectors in IO tables can be augmented with physical
data on energy flows and transformation processes, which
helps to look into energy-economic system changes in
greater details (Guevara and Domingos, 2017).
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43 PDA

Within the production theory framework, PDA focuses
on the technology-related impacts on energy and emissions
from a production systems perspective (Zhou and Ang,
2008). To perform the decomposition, entities’ technical
performances in production and energy/emissions need to
be first measured, which is usually estimated using the
nonparametric frontier approach (Pasurka, 2006). The
decomposition results therefore capture the impacts of
both energy/emissions and productive technologies.
Determinants of the productive performances, e.g., allo-
cation of and substitution between inputs, can be further
studied with two-stage decomposition on the potential
activity intensity. In calculation, two main decomposition
methods used for PDA are direct decomposition and
generalized fisher index, only the latter of which is appli-
cable to the two-stage decomposition. Prior to 2015, PDA
is mainly applied to assess economy-wide technological
impacts on energy and emissions at country level.

Since 2016, PDA studies have tripled, as shown in
Fig. 5(a). While economy-wide studies, especially for
China, dominating this area, analyses at the regional,
sectoral, and plant levels have emerged. Figure 5(b)
further suggests that emission studies have become the
majority. Proposed in 2017, the additive PDA studies
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have grown and accelerated in recent years, though still
less than the multiplicative decompositions (Fig. 5(c)).
As to the decomposition methods, LMDI has been
increasingly penetrated into the PDA literature, despite
the conventionally used direct decomposition and gener-
alized fisher index, as shown in Fig. 5(d).

Several new developments of the PDA literature over
2016-2021 are found. As a foundation of the PDA tech-
nique, the measurement of technical performance has
been largely improved. First, the modelling of production
technology better reflects the reality. Rather than the
traditional assumption of mutual independence between
inputs and outputs, the principle of material balance is
adapted in PDA models to rationalize the environmental
outcomes from the production process (Wu et al., 2020;
2022). To characterize the negative behavior of emission
mitigation by reducing production, the natural disposability
of inputs and outputs is applied to the PDA studies
(Sueyoshi et al., 2019). To reflect the possibly varying
scale efficiency in production, the non-increasing and
variant returns to scale assumptions are adopted in PDA
models beyond the usual constant returns to scale
assumption (Liu et al., 2017; Wang and Feng, 2020).
Second, distance functions that measure entities’ technical
efficiency are improved. Conventionally the Shephard
distance function is the most widely used in PDA models,
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studies by decomposition methods.
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which can only deal with radial changes in inputs/outputs
without proper treatment of undesirable outputs. To over-
come these shortcomings, radial and non-radial directional
distance functions that allow for reducing undesirable
outputs while increasing inputs and desirable outputs are
introduced to PDA studies (Chen and Duan, 2016; Wang
et al., 2018b; 2019b). This yields a more accurate estima-
tion of technical performance for further PDA decompo-
sition.

Heterogeneities in energy use and emissions have been
better modelled with PDA. Energy/Emissions patterns
tend to vary across production units in different sectors
and regions with different technologies (Wang et al.,
2018b). A good understanding of the heterogeneities is
necessary for formulating targeted policies. As to the
regional and sectoral heterogeneities, when decomposing
an aggregate energy/emissions indicator, technical perfor-
mances of sub-aggregates (e.g., sub-regions and sub-
sectors) can be first measured separately, which are then
aggregated following the principle of index number
theory (Wang et al., 2018b). Examples of studies include
Wang et al. (2018b), Tan and Lin (2018) and Xie and Lin
(2019). Such studies usually involve multi-level decom-
position with disaggregated data, which requires
advanced decomposition methods, e.g., LMDI. To
account for the technology heterogeneity, the meta-frontier
technique is adapted to the PDA modelling (Wang et al.,
2019a; Liu et al., 2022). By grouping production entities
according to technological features first, entities’ technical
performances are measured within individual groups and
among all entity groups, respectively. The productivity
and energy/emissions performances of entities with
respect to homogenous peers as well as the technological
gaps with respect to the best practice are revealed, based
on which the technology heterogeneity and its energy/
emissions impacts can be captured. A recent example is
Wang and Feng (2020) that tracks the emission conse-
quences of heterogeneities in production technology and
energy technology between the heavy and light indus-
tries.

The application scope of PDA has been significantly
expanded. Further to the traditional economy-wide analy-
ses, PDA empirical studies go deeper to sectoral and firm
levels. Examples include PDA applications for food (Xie
and Lin, 2019), civil aviation (Liu et al., 2017), manufac-
turing sectors (Wang et al., 2020), and power plants
(Wang et al., 2019a). These studies yield sector- and firm-
specific results and thus generate tailored managerial
implications. Other than energy use and CO; emissions,
PDA has increasingly been applied to investigate other
issues, e.g., air pollutants (Wang et al., 2021b) and envi-
ronmentally sensitivity growth (Zhao et al., 2020). Similar
to IDA and SDA, PDA is also extended to the spatial
dimension to compare regional disparities in energy and
emissions (Wang and Zhou, 2018).

5 Trends and features of the decomposition
analysis literature

The preceding reveals some key trends and salient
features of the decomposition analysis literature since
2016. First, decomposition studies have become increas-
ingly sophisticated. To generate results that are specific
with richer policy implications, a growing number of
factors appear in decomposition models, even nearly 30
factors used to model energy and emission patterns at
finer levels. For example, transformation and distribution
of energy are formulated by technologies using multi-
level IDA models to assess energy system transition
(Mohlin et al., 2019), the energy/emissions cost of a wide
variety of trade patterns and demand categories are exam-
ined using SDA models with highly disaggregated supply
and use data (Wang et al., 2019c; Duarte and Serrano,
2021), and the impacts of resources allocation/substitution
and mitigation behaviors in production processes are
captured by the two-stage PDA model (Wang et al.,
2020). These expansions better characterize the operational
features of energy and economic systems in greater
details. This is driven by practical needs and accompanied
with the available high-resolution data. To inform
targeted and tailored policymaking, decomposition analy-
ses that contain more information, better account for
heterogeneity and carry more managerial implications are
desired. The increasingly advanced digital technologies
and data science also boost such analysis (Moran et al.,
2020; Qian et al., 2021).

Second, the decomposition techniques tend to converge
internally and combine with other modelling approaches.
Originally the three decomposition techniques emerge
and develop separately with few overlaps (Hoekstra and
van den Bergh, 2003; Zhou and Ang, 2008). More
recently, particularly since 2016, the similarities and
common grounds between them have been increasingly
recognized. As to the methodological foundation, the
decomposition principles built on the index number
theory are found universally applicable to all the three
techniques (Wang et al., 2017a). The shared decomposition
principles facilitate the convergence between the three
techniques in terms of modelling. For example, drawing
on the IDA approach, PDA strengthens its modelling of
heterogeneity (Wang et al., 2018b), and the modelling of
IDA and SDA are linked (Wang et al., 2017c). Largely
following the development trend of IDA, the modelling
exercises of SDA and PDA extend beyond the traditional
temporal analysis to cross-sectional analysis. Also,
decomposition methods are commonly applied across the
three techniques (de Boer and Rodrigues, 2020). For
instance, LMDI that was proposed in the context of IDA
has been introduced to SDA and PDA, and the Shapely/
Sun method in the IDA literature and the D&L method in
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SDA are found identical. On the other hand, the decom-
position techniques have been more frequently combined
with other approaches. For instance, to test the causality
of energy/emissions determinants, decomposition analysis
can act as an initial step to isolate the technological and
structural impacts, which are then regressed on possible
determinants using econometric approaches. Serving as
an add-on, the decomposition techniques help to quantify
the drivers behind a changing indicator derived from
other analytical tools, e.g., the marginal abatement cost
curves from energy system modelling (Kesicki, 2013)
and emissions paths from scenario analysis (Ang and
Goh, 2019). These convergences and extensions address
certain methodological limitations of decomposition tech-
niques and further promote their practical usefulness.

Third, the application of decomposition techniques has
been largely diversified. With its rising popularity in
energy and emission studies, all the three decomposition
techniques penetrate to a broader spectrum of environ-
mental and even socioeconomic issues, e.g., land use,
water, poverty, inequality, healthcare, and social change.
Given the improved modelling and data quality, decom-
position analysis also goes deeper and moves from macro-
level (e.g., economy-wide and sector) toward micro-level
(e.g., firm, plant and household). Adapting the usual
temporal studies to a cross-sectional setting yields
decompositions along various dimensions such as spatial,
scenario and database. Furthermore, traditional decompo-
sition studies that are solely retrospective extend to a
prospective perspective that deals with future trajectories
of energy use and emissions. These diversifications
enrich the application of decomposition techniques and
help to understand the dynamics behind energy/environ-
mental/economic issues in a more comprehensive manner,
which markedly enhance the practical usefulness of
decomposition analysis.

6 Conclusions and outlook

This study provides a systematic literature survey of
decomposition analysis applied to energy and emission
issues, focusing mainly on the period of 2016-2021. Key
journals and articles in this area are identified through a
bibliometric analysis of 983 studies published during the
six years, which presents the development trends of
decomposition analysis literature. The review reveals
several new features of decomposition analysis. Generally
the decomposition techniques become sophisticated with
refined modelling of technologies and economic systems.
Convergences among decomposition models/methods as
well as couplings with other analytical approaches
increasingly appear in the decomposition analysis litera-
ture. Accompanied with methodological improvements,

the application of decomposition techniques significantly
extends toward broader areas, finer disaggregation levels,
and diversified dimensions. These academic research
progress also enable a wider use of decomposition tech-
niques by governments and international organizations in
climate scenarios assessment, emissions mitigation paths
planning, policy portfolio formulation and evaluation.

Looking forward, more efforts are needed to advance
both the methodology and application of decomposition
analysis, and some issues may deserve particular atten-
tion. First, it is necessary to establish a generalized and
comprehensive methodological framework for decompo-
sition analysis. A more systematic view on decomposition
analysis could better clarify the linkages between decom-
position techniques and facilitate possible integrations of
individual technique’s strengths. This also helps to guide
application of decomposition techniques. Second, uncer-
tainty needs to be better studied in decomposition analy-
sis. With prospective studies flourishing, decomposition
is increasingly performed with respect to projections and
scenarios, where uncertainty is an inherent nature and
may largely affect decomposition results. Better under-
standing the role of uncertainty in decomposition thus
helps to clarify associated ambiguities and enhance
robustness in policy formulation. This requires to develop
decomposition models and data analytics tools considering
uncertainty as present decomposition is confined to the
certainty condition. Third, it is meaningful to accelerate
micro-level decomposition analysis. Further to the usual
country/sector level studies, assessing energy/emissions
patterns at a more micro level (e.g., firm, production line,
and equipment) is able to offer more targeted managerial
implications and inform actionable measures. However, a
key barrier to micro-level studies is usually the lack of
data. This could be overcome with the increasingly avail-
able high-resolution data (e.g., big data collected from
remote sensing, industrial internet and smart meter) in
conjunction with advanced data technologies. These
issues also present challenges and opportunities for
decomposition analysis, and we encourage more studies
in these directions.
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