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Abstract The advancement of renewable energy (RE)
represents a pivotal strategy in mitigating climate change
and advancing energy transition efforts. A current of
research pertains to strategies for fostering RE growth.
Among the frequently proposed approaches, employing
optimization models to facilitate decision-making stands
out prominently. Drawing from an extensive dataset
comprising 32806 literature entries encompassing the opti-
mization of renewable energy systems (RES) from 1990 to
2023 within the Web of Science database, this study
reviews the decision-making optimization problems,
models, and solution methods thereof throughout the
renewable energy development and utilization chain
(REDUC) process. This review also endeavors to structure
and assess the contextual landscape of RES optimization
modeling research. As evidenced by the literature review,
optimization modeling effectively resolves decision-
making predicaments spanning RE investment, construc-
tion, operation and maintenance, and scheduling. Predomi-
nantly, a hybrid model that combines prediction, optimiza-
tion, simulation, and assessment methodologies emerges

Received Jun. 13, 2023; revised Jul. 26, 2023; accepted Aug. 28, 2023

Shiwei YU (B4), Limin YOU, Shuangshuang ZHOU

Center for Energy Environmental Management and Decision-making,
China University of Geosciences, Wuhan 430074, China; School of
Economics and Management, China University of Geosciences,
‘Wuhan 430074, China

E-mail: yusw@cug.edu.cn

This work was financially supported by the National Natural Science
Foundation of China (Grant Nos. 72293572, 72174188, and
31961143006) and Hubei Natural Science Foundation, China (Grant
No. 2019CFA089).

as the favored approach for optimizing RES-related deci-
sions. The primary framework prevalent in extant research
solutions entails the dissection and linearization of estab-
lished models, in combination with hybrid analytical
strategies and artificial intelligence algorithms. Noteworthy
advancements within modeling encompass domains such
as uncertainty, multienergy carrier considerations, and the
refinement of spatiotemporal resolution. In the realm of
algorithmic solutions for RES optimization models, a
pronounced focus is anticipated on the convergence of
analytical techniques with artificial intelligence-driven
optimization. Furthermore, this study serves to facilitate a
comprehensive understanding of research trajectories and
existing gaps, expediting the identification of pertinent
optimization models conducive to enhancing the efficiency
of REDUC development endeavors.

Keywords renewable energy system, bibliometrics,
mathematical programming, optimization models, solution
methods
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List of abbreviations

Al Artificial intelligence

AHP Analytic hierarchy process

APSO Adaptive particle swarm optimization

BESS Battery energy storage system

BP Bilevel programming

CCHP Combined cooling, heating, and power
CDPSO  Chaotic Darwinian particle swarm optimization
CVaR Conditional value-at-risk

DDRO Data-driven robust optimization

DE Differential evolution
DEA Data envelopment analysis
DL Deep learning

DNP de Novo programming

DP Dynamic programming

DPPO Distributed proximal policy optimization

DR Demand response
DRG Distributed renewable generation
DRL Deep reinforcement learning

DROCCP Distributed robust optimization chance constraint programming

DSM Demand-side management
DSO Distribution system operator
EFI Ecological footprint index

ELECTRE Elimination et choice translating reality

EV Electric vehicle

FCP Fuzzy compromising
FIT Feed-in tariff

FL Fuzzy logic

FMCDA  Fuzzy multicriteria decision analysis

GA Genetic algorithm

GEP Generation expansion planning

GHG Greenhouse gas

GP Goal programming

GRG Generalized reduced gradient

GTEP Generation and transmission expansion planning

HRES Hybrid renewable energy system

IoT Internet of Things
KKT Karush—Kuhn—Tucker
LCA Life cycle assessment

LCOE Levelized cost of electricity
LP Linear programming

LPSP Loss of power supply probability
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MADM
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MCS
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MINLP
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QPP
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SAE
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SQP
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Monte Carlo simulation

Mixed integer linear programming

Mixed integer nonlinear programming
Machine learning

Multiobjective

Multiobjective decision making
Multiobjective genetic algorithm
Multiobjective glow-worm swarm optimization
Multiobjective gray wolf optimizer
Multiobjective optimization problems
Multiobjective particle swarm optimization
Multiobjective wind-driven optimization
Mathematical program with equilibrium constraints
Nonlinear programming

Net present value

Nondominated sorting genetic algorithm
Optimal power flow

Probability distribution function

Proximal policy optimization

Particle swarm optimization

Quadratic programming problem

Renewable energy

Renewable energy development and utilization chain
Renewable energy system

Reinforcement learning

Robust optimization

Renewable portfolio standard

Stacked autoencoder

System average interruption frequency index
System dynamics

Stochastic programming

Sequential quadratic programming

Support vector regression

Transmission expansion planning

Technique for order of preference by similarity to ideal solution

Unit commitment
Web of Science
Weighted product model
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1 Introduction

To mitigate reliance on fossil fuels and mitigate greenhouse
gas (GHG) emissions, nations are adopting a suite of policies
to stimulate the advancement of renewable energy (RE).
For instance, the European Commission indicated in the
2021 draft amendment to the Renewable Energy Directive
that a collective augmentation of the overall share of RE to
40% by 2030 is anticipated (Kougias et al., 2021). Simi-
larly, China, in its “14th Five-Year Plan for Modern
Energy Systems” released in 2022, articulated its objective
of achieving a rise in the proportion of nonfossil energy
consumption to approximately 20% by 2025. The strategic
planning and implementation of RE systems (RESs) will
steer forthcoming energy systems to be predominantly
underpinned by RE (Deng and Lv, 2020). Nonetheless, the
functionality of RESs is notably impeded by the nonuniform
spatial allocation of renewable resources, the stochastic
and uncertain nature of RE advancement, and the challenge
of integrating diverse forms of RE power generation (e.g.,
wind, solar, hydro, and biomass power) (Yan et al., 2023).
Moreover, the expansion of RE should not be pursued
without due consideration to practical constraints such as
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cost and technological limitations (Wang et al., 2022).
Hence, to ensure the proficient utilization of RE, the
enhancement and efficient operation of RESs necessitate
the incorporation of economic and technological feasibility
aspects, alongside the evaluation of environmental and
societal benefits.

An RES can be partitioned into five constituent subsys-
tems founded upon the entire sequence of the renewable
energy development and utilization chain (REDUC).
These subsystems encompass resource planning and
exploitation, production, transmission and distribution,
consumption, and storage, as depicted in Fig. 1. Each
subsystem is associated with distinct facets of optimal
decision-making challenges. For example, within the
resource exploitation subsystem, endeavors should be
directed toward optimizing site selection and arrangement
(Wang et al.,, 2019), as well as the provisioning of
biomass feedstock to augment resource utilization (Sarker
etal., 2019). In the realm of the RE production subsystem,
judicious planning for power generation, heat supply, and
hydrogen synthesis is imperative to ensure maximal effi-
ciency while maintaining harmonious coordination with
other subsystems, thereby ameliorating system costs,
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mitigating investment risks, and curtailing system opera-
tion vulnerabilities (Bloess, 2020). To harmonize energy
supply and demand, the transmission subsystem catering
to RE must be intricately designed, encompassing the
layout of transmission and distribution lines, heat
conveyance conduits, hydrogen refueling stations, and
transportation routes (He et al., 2017; Wei et al., 2018;
Shao et al., 2021a; Le et al., 2023; Moradi-Sepahvand
et al.,, 2023). Crafting policies for incentives is vital
within the consumption subsystem to minimize the cost
of RE consumption, necessitating the strategic enhance-
ment and optimization of consumer propensity toward
RE adoption (Wang et al., 2020a). The energy storage
subsystem, tasked with the dissipation of peak loads and
the optimization of RE utilization efficiency, mandates a
rational design and systematic scheduling of the energy
storage technology portfolio (He et al., 2020). Within the
overarching REDUC framework, synergistic optimizations
manifest among subsystems, such as the harmonization
between power generation and electricity transmission
planning (Yi et al., 2016), multiagent market supervision,
optimization of incentive structures, and profit distribution
strategies concerning power generation and consumption
entities (Come Zebra et al., 2021).

Researchers have formulated distinct optimization
models to address the aforementioned facets of decision-
making requisites within RES, a subject that has garnered
attention in the literature. For instance, Oree et al. (2017)
undertook a review of strategies employed to manage
conflicting objectives and the uncertainties stemming
from stringent environmental policies, power supply
sufficiency, and operational flexibility in the context of
optimizing RE capacity expansion. Siddaiah and Saini
(2016) presented a summary of the configuration of off-
grid or grid-connected hybrid renewable energy systems
(HRES:s), exploring aspects such as technology mix and
geographical scope. They also delved into models such as
linear programming (LP), dynamic programming (DP),
and optimization techniques such as the genetic algorithm
(GA). In the context of technological selection flexibility
for RESs, Luo et al. (2015) examined the categorization
and diverse application scenarios of electric energy storage
technologies. Furthermore, Esther and Kumar (2016)
provided an overview of existing demand-side manage-
ment (DSM) optimization models, elucidating their clas-
sification, objectives, and constraints, particularly in the
context of residential demand response (DR) for enhancing
flexibility. Correspondingly, Bloess et al. (2018) evaluated
the potential flexibility offered by power-to-heat tech-
nologies, considering both technical possibilities and
mathematical optimization modeling procedures. Yu et al.
(2022) conducted an analysis encompassing renewable
power generation uncertainty, impacts on grid connection,
and techno-economic performance within the framework
of transmission expansion planning (TEP). Similar
reviews have addressed various aspects of RES, including

cost-effectiveness (Crespo del Granado et al., 2018),
technical diffusion (Zhou et al., 2021), environmental
performance (Bertasini et al., 2023), prediction errors
(Ahmad et al., 2020), and uncertainty (Zakaria et al.,
2020).

This body of literature has been aptly categorized,
offering an elucidation of optimization issues within RES.
These encompass modeling characteristics and the identi-
fication of prospective avenues for future advancement.
However, there exists a notable gap in terms of a compre-
hensive review that offers a holistic optimization analysis,
encompassing the entirety of the RE development and
utilization process. Furthermore, a generalization of solu-
tion methodologies applied to these models is also lack-
ing. Moreover, most investigations concerning the
models and techniques pertinent to the aforementioned
issues primarily focus on optimization frameworks,
scenario analyses, and the utilization of energy system
modeling tools such as MARKAL and Long-range
Energy Alternatives Planning (LEAP) (Plazas-Nifio et al.,
2022). Furthermore, a more systematic approach is neces-
sary for reviews of RES. In light of these gaps, this study
embarks on a comprehensive examination of optimization
modeling and solution methodologies featured in the
literature, encompassing the entire REDUC process,
underpinned by bibliometric analysis.

This review’s contributions are outlined as follows:
First, the division of subsystems facilitates a comprehen-
sive and contemporary survey of optimization challenges
within RES, thereby facilitating a thorough understanding
of the merits and demerits of different models and solution
methodologies, along with their suitability for specific
decisions. Second, this study offers a generalization of
optimization techniques, pinpointing modeling criteria
and juxtaposing model and algorithm characteristics,
thereby enhancing researchers’ comprehension of the
process, principles, and procedural steps involved in RES
modeling. Finally, this study offers insights into potential
research directions and decision-making guidance for the
future. It serves to elevate the application of optimization
modeling and advanced solution methodologies within
the realm of RES, particularly in the context of substantial
RE penetration.

The subsequent sections of this study are organized as
depicted in Fig. 2. Section 2 furnishes an overview of
published papers through the application of text-mining-
based bibliometric analysis. In Section 3, a comprehensive
exposition of decision-making predicaments and pragmatic
scenarios for optimization models throughout the
REDUC process is presented. This section also delves
into modeling criteria. Building upon these criteria,
Sections 4 and 5 examine and compare the characteristics
and potential applications of optimization models and
solution methodologies. Finally, the study concludes by
introducing overarching findings and outlining future
trends in Section 6.
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Fig. 2 General procedure and flowchart of RES optimization.

2 Bibliometric analysis

In the context of this review, the Web of Science (WOS)
database was chosen as the primary source. The search
query #1 AND (#2 OR #3 OR #4) outlined in Table 1,
with the inclusion of the SCI-expanded, SSCI, and CPCI-
S indexes, was employed to scrutinize a total of 22341
pertinent papers, conference proceedings, and reviews
spanning the timeframe from 1990 to 2023 (as of February
18, 2023).

The publications and citations of the past decade are
depicted in Fig. 3. As observed, the predominant portion
consists of journal articles (63.22%). Earlier papers
exhibit higher citation rates, reaching their zenith in 2018.
The mean number of citations per article is 24, displaying
fluctuations between 2003 and 2014.

Table 1 Research results from the WOS search

Figure 4(a) illustrates the publication and citation landscape
of the top 10 journals. Notably, Renewable & Sustainable
Energy Reviews and IEEE Transactions on Smart Grid
emerge prominently, with average citation counts of 76 and
55, respectively. In Fig. 4(b), the predominant term
“Renewable energy” takes center stage, while the preeminent
field proves to be “Energy & Fuels”.

The author keywords are organized into clusters using
VOSviewer, employing a co-occurrence frequency
threshold set at more than 15 instances. Figures 5(a) and
5(b) present network visualizations of keyword clustering
occurrences and average overlays per year. In Fig. 5(a),
Cluster 1 is focused on RE management and scheduling,
encompassing topics such as energy storage, smart grid,
electric vehicles (EVs), load management, energy sharing,
and game theory as auxiliary studies. Cluster 2 centers on
RE optimization scenarios, aided by studies related to

Number of articles WOS search categories

Keyword equations

32806 Topic
20261 Abstract
1044 Title

3247 Author keywords
22341 Total articles

#1 TS=(((renewable energy) OR (renewable power) OR
(renewable electricity) OR (renewable heat*)) AND (optimiz*))

#2 AB=(((renewable energy) OR (renewable power) OR
(renewable electricity) OR (renewable heat*)) AND (optimiz*))

#3 TI=(((renewable energy) OR (renewable power) OR
(renewable electricity) OR (renewable heat*)) AND (optimiz*))

#4 AK=(((renewable energy) OR (renewable power) OR
(renewable electricity) OR (renewable heat*)) AND (optimiz*))

#1 AND (#2 OR #3 OR #4)
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energy supply and operation within integrated RES,
hydrogen energy, hydrogen production processes,
sustainability, efficiency, and energy policy. Cluster 3
revolves around HRES scale and cost optimization, amal-
gamating methodologies such as techno-economic analy-
sis, sensitivity analysis, and life cycle assessment (LCA)
to mitigate the risks in energy optimization decisions.
Cluster 4 concentrates on RES optimization algorithms,
including particle swarm optimization (PSO), GA, and
fuzzy logic (FL). Cluster 5 is concerned with multimicro-
grid modeling and encompasses issues such as unit
commitment (UC), economic dispatch, and voltage
control, emphasizing system reliability and stability stud-
ies. In Cluster 6, with increased system uncertainty, the
focus shifts toward microgrids (MGs) and distributed
renewable generation (DRG) system modeling, under-
scored by the flexible employment of multicriteria decision

making (MCDM), stochastic programming (SP), and
robust optimization (RO).

Figure 5(b) portrays the evolution of keywords over
time, serving as a tool for analyzing trends in hot
keywords across years. Before 2017, research primarily
delved into modeling methods for various RE sources.
Analytical methods centered on optimization modeling,
simulation, and assessment, with tools such as Hybrid
Optimization of Multiple Energy Resources (HOMER)
playing a significant role. From 2017 to 2019, the focus
transitioned toward enhancing energy efficiency and
auxiliary services within multienergy systems. During
this period, research attention shifted from individual RE
sources, hydrogen energy, RE efficiency, and intelligent
algorithms to encompass energy storage, MGs, EVs,
DSM, and energy policy. This phase saw an expansion
toward the latter stages of the REDUC. Between 2019
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and 2020, the research emphasis turned toward refining
energy modeling methods in the context of deep decar-
bonization while also incorporating multiobjective (MO)
optimization. There was rapid progress in methodologies
such as Benders decomposition, distributed optimization,
machine learning (ML), and neural networks (NNs).
Moreover, topics related to RES security, reliability, and
uncertainty gained traction, and new areas such as DR,
MGs, battery energy storage systems (BESS), decar-
bonization, and the water-energy nexus emerged.

Over the past three years, with the advancement of
modeling techniques and the proposition of China’s
“Dual Carbon” objective, research has increasingly
focused on real-time RE dispatch and modeling uncer-
tainties on the demand side, emphasizing the influence of
human factors. Green hydrogen has gained significance
due to its role in the deep decarbonization of RE
consumption. The theme of cost remains constant, espe-
cially within programming models, including the deploy-
ment and enhancement of RE infrastructure. Carbon
neutrality, load modeling, predictive modeling, real-time
systems, game theory, information gap decision theory,
probabilistic logic, and peer-to-peer computing have
emerged as new focal points, offering diverse data-driven
tools for optimizing RES. As research becomes more
saturated and topic boundaries expand, new contexts,
such as the energy policies of major countries, are receiving
increased attention. Furthermore, there is a discernible
trend toward more comprehensive, refined, and intelligent
hybrid models and methodologies in research orienta-
tions.

3 Overview of optimization fields in the
RES

3.1 Optimization problems and potential scenarios

Building upon the insights presented in Fig. 1, which
illustrates the division of RES, the optimization problems
and their corresponding models across all phases of the
REDUC can be systematically categorized, as depicted in
Fig. 6.

The optimization process within the RE development
planning and exploitation stage encompasses activities
such as evaluating the potential, setting development
goals, and optimizing plant location and layout. This
stage takes into account factors such as resource avail-
ability (Salehin et al., 2016), investment estimation
(Ziemba, 2022), and analysis of environmental and social
impacts (Li et al., 2020a). The evaluation of RE potential
is undertaken using methods such as MCDM and deep
learning (DL) models, which are applicable at regional,
national, and global scales. Examples include assessing
the photovoltaic (PV) potential in Wuhan, China (Zhang
et al., 2021a), wind power potential in India (Saraswat
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et al., 2021), and a global inventory of PV generation
(Kruitwagen et al., 2021). Models such as hybrid MCDM
and fuzzy LP are utilized for site optimization and the
optimal design of biomass transportation networks
(Sarkeretal.,2019). Additionally, the investment decisions
for planned wind farm projects in Poland are made
employing the fuzzy multicriteria decision analysis
(FMCDA) method (Ziemba, 2022).

The RE production stage focuses on optimizing the
generation of renewable electricity, heat, or processing
methods. This may involve proposing uncertain renewable
power system planning models to amplify RE generation
(Chen et al., 2020b). Traditional power plants, including
thermal power plants, are adapted to align with the variable
RE output (Li et al., 2016; Zhu et al., 2021). Moreover,
the decommissioning of wind farms and PV panels may
be undertaken (Hoti et al., 2021; Mackie and Velenturf,
2021).

Optimization within the energy transmission stage
centers on planning and scheduling the configuration of
transmission and distribution systems, considering the
integration of technologies and mechanisms for stability
control (Keane et al., 2013; Yu et al., 2022). Notably,
nonlinear transmission expansion models optimize
network layout and capacity across regions in China (Yu
etal., 2022).

Efforts directed toward optimizing the energy
consumption stage involve scheduling between subsys-
tems, equitable distribution of benefits among market
agents (such as generators, transmitters, distributors, and
marketers), and designing and operating distributed RESs
(Chennaif et al., 2022) and MGs (Huy et al., 2020).
Furthermore, research addresses the consequences of
implementing RE public policies and explores optimal
pathways (Watts et al., 2015; Siddiqui et al., 2016). For
instance, Ding et al. (2020) developed a DP model to
optimize the feed-in tariff (FIT) price in China, supporting
RE technologies.

The optimization of the energy storage stage concen-
trates on configuring energy storage systems and devising
operation strategies for the generation, grid, and demand
facets (Denholm and Margolis, 2007; Yang et al., 2020).
Models such as LP or mixed integer linear programming
(MILP) are employed to optimize the configuration and
timing of novel energy storage systems (such as electro-
chemical and hydrogen storage) (Parrish et al., 2019).
These models extend to designing energy storage systems
for European countries (Cebulla et al., 2017), the IEEE
Reliability Test System (Hannan et al., 2020), and inves-
tigating arbitrage behavior and profits (Chen et al., 2021).

In addition to optimizing individual subsystems, some
studies extend their scope to optimizing the entire RES.
For instance, the EnergyPLAN modeling tool was used to
optimize an economically viable configuration for a 100%
renewable smart energy system across Europe’s power,
heating, cooling, and transportation sectors (Connolly
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Fig. 6 RES modeling in the optimal planning and operation of subsystems.

et al., 2016). Similarly, multiagent game models (Chuang
et al., 2001) and general or partial equilibrium models
(Jaskolski, 2016) are applied throughout the RES to
achieve optimization objectives.

3.2 Optimization modeling criteria for RES

The modeling of RES optimization decisions is
commonly grounded in economic, technical, social, and
environmental objectives and constraints (Atabaki and
Aryanpur, 2018), as outlined in Table 2. Economic
considerations entail evaluating costs or profits. Technical
aspects encompass stability and safety assessments
(Memon et al., 2021). Social criteria encompass metrics
such as the number of jobs (Atabaki and Aryanpur, 2018)
to gauge factors such as employment opportunities,
energy security, societal well-being, and policy implica-
tions. Environmental criteria are intricately linked to
aspects such as CO; emissions, temperature control

targets, and biodiversity preservation (Edwards and Tran-
cik, 2022). Addressing the trade-offs that arise between
numerous criteria becomes essential during the modeling
process for reaching decisions within RESs. For instance,
elevated technical requisites may yield increased employ-
ment and reduced emissions but result in higher costs.
Security and reliability typically take precedence over
economic gains in power transmission and microgrid
design (Dehghan and Amjady, 2016). Conversely, greater
profits are favored in market transactions, DSM, and
distribution scheduling (Acufia et al., 2018).

4 Optimization models in the RE system

The optimization models encompassed within this review
span various methodologies, including programming
(both single- and multi-objective), multiattribute decision
making (MADM), game models, and hybrid optimization
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Table 2 Summary of evaluation criteria in RES modeling

Decision objective Criteria/Constraint

Description

Economic Total annual cost or annual system cost

(Xuan et al., 2021)

Net present value (NPV) (Li et al., 2016;
Tezer et al., 2017)

Levelized cost of electricity (LCOE)
(Memon et al., 2021; Chennaif et al., 2022)

Life cycle cost (Tezer et al., 2017;
Chennaif et al., 2022)

Life cycle unit cost (Tezer et al., 2017)

Cumulative savings (Afful-Dadzie et al., 2017)
Fuel consumption (Gbadamosi et al., 2018;
Xu et al., 2020)

Learning rate (Yu et al., 2022)

Technical Loss of power supply probability (LPSP)

(Feng et al., 2018; Memon et al., 2021)
Difference in net loads (Feng et al., 2018)

Loss of load risk (Sinha and Chandel, 2015)
Loss of energy or load hours expectation
(Tezer et al., 2017)

Unmeet load (Sinha and Chandel, 2015;
Dehghan and Amjady, 2016)

Loss of power produces probability (Feng et al., 2018)

Variable renewable energy (VRE) curtailment rate
(Peker et al., 2018; Xu et al., 2020)

Renewable energy penetration (Liu et al., 2022a)

Job creation (Al-Falahi et al., 2017,
Atabaki and Aryanpur, 2018)

Social

Human Development Index (Al-Falahi et al., 2017)

Herfindahl-Hirschman Index (HHI) or
Shannon—Weiner Index (Grubb et al., 2006)

Social acceptance (Stigka et al., 2014)

Social cost of carbon (Koltsaklis et al., 2014;
Xu et al., 2020)

Total CO, or fuel emission
(Atabaki and Aryanpur, 2018; Hu et al., 2019)

Land use (Wang, 2023)

Environmental

Ecological footprint index (EFI) (Fakher et al., 2023)
Life cycle assessment (Li et al., 2011; Yu et al., 2019)

All costs for capital, installation, operation, and delivery

The sum of lifetime incoming and outgoing cash in the form of
discounted present values

For generation: The ratio of total antioxidant capacity (TAC) to the total
generated energy
For storage: Costs and energy consumed per operating hour

All expenses are expected to occur, except manufacturing and disposal costs

Unit energy cost is calculated by dividing life cycle cost by the total
energy produced

Sum of money saved due to fuel saving

The total amount of energy consumption by nonrenewable plants

The cost reduction path of RES-related technologies

The probability of load deficit over total energy produced

Load shifting capacity to smooth the difference between load
peaks and valleys

The probability of failure to meet daily energy demand for RE generation

The excepted number of hours for energy or load deficit, exceeding available

generation capacity, excluding breakdown and maintenance time

The ratio of unsatisfied load to total load after consuming power
generation and storage

Expected probability of energy surplus

Maximum VRE share allowed to be curtailed

The ratio of energy generated from RE to total load demand

Job amounts created by RES, including manufacturing, installation, and

operation and maintenance (O&M), throughout the lifetime of components
A country development indicator considering life expectancy at birth, years

of schooling, and average national income, related to power consumption
Describe diversification of the energy matrix

Social performance evaluation criteria to consider social resistance to the
installation of RES

An additional cost is imposed on society
The total amount of CO, emissions produced by the system

The area of renewable power related land
The comprehensive resource pressure of environmental degradation

The cost includes pollution, health effects, and environmental impacts

models. Across the five-subsystem optimization challenge
presented by the REDUC framework, single-objective
models find extensive application in tasks such as plant
site layout, generation and transmission expansion plan-
ning (GTEP), storage deployment, charging/discharging
strategies, and optimization of distributed grid-connected
consumption issues (Ramakumar et al., 1986; Wang et al.,
2020a). MADM models are frequently employed for RE
resource assessment and subsystem planning, primarily
due to their capacity to handle concurrent conflicts
(Atabaki and Aryanpur, 2018). Game models exhibit a
robust capability to encapsulate planning and operational
predicaments involving the divergent interests of distinct
agents or stakeholders (Jenabi et al., 2013). Optimization
models are effectively integrated with prediction models,

system simulations, and assessment models. For instance,
the nonlinear mapping capabilities of NNs can be
harnessed to optimize the planning of RESs, relying on
forecasts of wind and solar power output, as well as load
levels (Mertens et al., 2021).

Figure 7 illustrates the overarching framework for
modeling RES optimization. The selection of an appro-
priate model type hinges on the inherent characteristics of
the problem at hand. Subsequently, parameters such as
spatial and temporal resolution, as well as energy demand,
are precisely defined. Following this, decision variables
pertaining to installation choices and installed capacities,
along with objective values encompassing parameters
such as total cost, RE power supply, and GHG emissions,
are ascertained.
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Fig. 7 Framework of optimization models in RES.

4.1 Programming models (single- and multi-objective)

Programming models within the realm of RES are
predominantly rooted in economic considerations. Conse-
quently, the optimization of RES decisions is commonly
structured as a programming model aimed at minimizing
resource consumption or maximizing economic gains, as
depicted in Fig. 8.

Given the widespread acceptance of sustainable devel-
opment principles, optimization objectives for RESs
encompass not only economic factors but also technical,
environmental, and social considerations. However, these
objectives frequently stand in contrast to one another.
Consequently, achieving the best possible outcomes for
all objectives necessitates compromises, resulting in a
Pareto optimal solution (Coello Coello, 2006). In contrast
to single-objective programming models, MO models
prove more realistic, as they concurrently account for
multiple evaluation aspects, akin to the complex nature of
actual decision-making processes. This is articulated
through the inclusion of objective functions rather than
being restricted to economic indicators or constraints
(Mavrotas et al., 1999).

4.1.1 Linear programming

Linear equations or inequalities serve as the objective
functions and constraints in LP mathematical models
(Dantzig, 2002). When modeling RESs, variables are
typically assumed to be linear or approximately linear,
rendering LP a widely applicable and convenient method
for resolution. Objectives that aim to curtail overall costs
are frequently employed (Ramakumar et al., 1986).
Constraints encompassing factors such as resource poten-
tial, investment budgets, and outage rates are typically

expressed using energy policy parameters (Frew et al.,
2016; Yu et al., 2021) and linearized relational equations
(Li et al., 2016). The utilization of LP is extensive in RES
optimization, particularly for tasks such as generation
expansion planning (GEP) across various countries and
regions. For instance, Liu et al. (2009) devised a
MESSAGE-China LP model to design a combination of
solar, biomass generation, and carbon capture and storage
(CCS) technologies for the purpose of cost minimization.
Neumann and Brown (2021) employed the LP model to
optimize a European power system striving for 100% RE
integration.

Incorporating macro policies’ influence on GEP deci-
sions often entails introducing policies as linear
constraints in the LP model. For instance, Wang et al.
(2020a) considered scenarios involving renewable portfo-
lio standards (RPS) and developed a mid- and long-term
optimization model for the RE power system within
China’s Southern Power Grid. Goop et al. (2017)
approached PV generation policies involving RPS and
FITs, developing a linear model for investment cost
minimization and power dispatch.

Moreover, LP models have found utility in optimizing
the siting of RE power plants. Jeong and Gonzalez-
Gomez (2020), for example, formulated a Fuzzy LP
model to evaluate site suitability and select locations for
five biomass power plants. Additionally, de Laporte et al.
(2016) explored the influence of biomass prices on feed-
stock supply in Ontario, Canada, employing an economic
LP model.

In scenarios where multiple conflicting objective
functions are at play, LP transitions into an MO LP
framework, incorporating constraints in the form of linear
equations or inequalities. Such models typically consider
various objectives, such as economic cost and RE
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consumption ratio (Karaki et al., 2002; Bakhtavar et al.,
2020). For instance, Chen et al. (2015) addressed power
generation, total cost, and CO, emissions as objectives
within the GEP problem. Karaaslan and Gezen (2022)
employed MO LP models with interval coefficients for
unit investment scheme optimization. Yu et al. (2019)
developed a fuzzy MO optimization model for renewable
power system planning in China, seeking to minimize
investment costs, maximize RE utilization hours, and
achieve maximum life cycle carbon emission reduction.

4.1.2  Nonlinear programming

LP hinges on precise data accuracy and solely accommo-
dates linear relationships among variables (Razavi et al.,
2019). However, objectives or constraints in RES decision
problems frequently exhibit nonlinear relationships,
particularly within optimization scenarios involving
dispatch operations encompassing distribution networks
and MGs. This is notably relevant to optimal power flow
(OPF) and node voltage control (Kannan et al., 2005).
For instance, Brown et al. (2016) introduced a nonlinear

OPF problem into a European power system optimization
model. The nonlinear objective or constraint functions
inherent to nonlinear programming (NLP) models give
rise to nonconvex feasible regions (Razavi et al., 2019).
Consequently, it is plausible that the optimal local solution
may not necessarily be globally optimal. Thus, alongside
numerically determining the optimal value, the optimiza-
tion process necessitates assessing the accuracy of the
results. The consideration of exact penalty methods, such
as measuring constraint infeasibility, has been explored in
this regard (Gonzaga et al., 2004).

Within RESs, the broader resource scheduling challenge
remains an NLP problem, even in the absence of the OPF
component. For instance, Xu et al. (2020) established a
24-hour dispatch model for wind-battery HRES that
addresses wind power curtailment and investor interests
by incorporating the nonlinear aspect of battery degrada-
tion costs. Similarly, Wang et al. (2020c) devised a
nonlinear objective function for minimizing operating
costs and risks to tackle the coordination problem of
combined cooling, heating, and power (CCHP) MGs.

The scope of the objective function can be extended to
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encompass multiple conflicting objectives. Liu et al.
(2022b) formulated a nonlinear MO optimization model
to optimize distributed energy system configurations and
energy storage system operation strategies, taking into
account considerations such as carbon emissions, costs,
and network interactivity. In addressing RE abandonment
within a wind-solar-coal dispatch system, Tan et al.
(2019) adopted objectives that encompass total costs and
the rate of RE spillage.

4.1.3 Mixed integer linear programming

The transformation of the LP problem into an MILP
problem arises when integer variables are introduced into
the decision variables (Gomory, 2010) within the context
of RESs. Examples include employing binary 0—1 variables
to determine the installation or construction of new lines
(Afful-Dadzie et al., 2017), regional interconnections
(Koltsaklis et al., 2014), storage charging and discharging
strategies (Moradi-Sepahvand and Amraee, 2021b), and
unit on and off states (Bakirtzis et al., 2012). Macro
models frequently hinge on linear equations. Binary deci-
sion variables are frequently utilized to extend transmission
system optimization, signaling whether a transmission
line should be established (Gbadamosi et al., 2018). The
optimization of facility capacity involves the investment
costs of generating units and transmission lines as the
objective function (Li et al., 2020b). The MILP model
explicitly takes financial constraints into account to
prevent costly emergency plans and mitigate the risk of
disrupted unit investments (Afful-Dadzie et al., 2017).

Beyond decisions related to infrastructure expansion,
integer variables encompass decommissioning decisions
(Bakirtzis et al., 2012) and operational choices (Chen
et al.,, 2020a). MILP approaches can also delve into
impact assessment and feasibility analyses (Shu et al.,
2017). In their examination of decommissioning decisions
within the Greek renewable power system, Bakirtzis et al.
(2012) devised an MILP model incorporating binary vari-
ables to represent the old units eligible for refurbishment.
MILP models are also constructed for generation-trans-
mission-storage co-optimization, featuring binary vari-
ables to indicate BESS construction, as well as charging
or discharging statuses (Moradi-Sepahvand and Amrace,
2021b). Similarly, decisions pertaining to the techno-
economic viability of RE options can be addressed. For
instance, Liu et al. (2016) employed an MILP model to
optimize and assess biomass combined combustion tech-
nology in Missouri, USA.

In conjunction with MO optimization, the amalgamation
of objectives leads to the formation of mixed integer MO
optimization models. For example, Lotfi et al. (2022)
established objectives encompassing the maximization of
government energy production and supplier profits to
optimize the siting of RE sources. Binary decision variables

indicated whether to deploy RE and, if so, the chosen
type. Similarly, Ghaithan et al. (2022) determined the
quantities of PV modules and wind turbines, aiming to
minimize total life cycle costs, GHG emissions, and the
share of grid contributions.

4.1.4 Dynamic programming

DP models exhibit an optimal substructure while lacking
Markov properties, underscoring the criticality of defining
problem states and state transition equations (Akella et al.,
2007). The crux of the DP challenge involves partitioning
and resolving redundancy, thereby streamlining the size
of the solution space. This approach resembles the top-
down greedy algorithm (Li et al., 2014). In the realm of
RES decision optimization, DP models find extensive
utility, particularly in scenarios infused with risks and
uncertainties (Lu et al., 2016), as depicted in Fig. 9. The
notion of a stage manifests in the multistage aspect of DP
when it is structured based on temporal or spatial consid-
erations. The term “state” pertains to the variable values
and characteristics associated with a particular stage
(Putz et al., 2021). Consider GEP DP, where the stage
represents the decision-making timeframe, the number of
newly constructed units delineates the path, and the
cumulative unit count signifies the state. Constraints
within the model can be classified into two groups: Path-
related constraints and state-related constraints (Su et al.,
2000).

In macro-optimization scenarios for RESs, DP applica-
tions often incorporate changes in external conditions to
define the state. As an example, Afful-Dadzie et al. (2017)
introduced a dynamic model for GEP in developing
countries. They identified two stages, each corresponding
to the time when actual demand, constrained by budget
considerations, materialized. The quantity and capacity of
generators constituted the “here and now” decision vari-
ables, while generation, imported power, and unmet
demand in the subsequent phase were deemed “wait and
see” decision variables. Mertens et al. (2021) devised a
DP model based on estimated carbon prices and annual
electricity demand for medium- to long-term power
system planning. Lu et al. (2016) proposed a DP model
for GEP grounded in conditional value-at-risk (CVaR)
theory, deploying it in a regional grid case within China
to address the trade-off between benefits and risk control.

In the context of RES micro-operation optimization
using DP, technical challenges such as UC, distribution
network considerations, and feeder line optimization
frequently arise. This calls for the inclusion of physical
characteristics encompassing the variability of RE
resources and power output, as well as voltage and
current parameters in grid operation. For instance, Li et al.
(2014) effectively employed DP to capture hydraulic
connectivity and water balance, optimizing the dynamic
operation of large-scale hydropower dispatch in the
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Yangtze River. Employing the state space of cost under
variable RE power and generation, Putz et al. (2021)
implemented backward DP with state prediction, decom-
posing the problem into smaller subproblems to address
the discrete UC issue in Austria.

Moreover, DP finds application in distribution network
planning to address optimization challenges related to
technology selection and sizing. For example, Boulaxis
and Papadopoulos (2002) introduced a DP model to opti-
mize optimal feeder routing. Borges and Martins (2012)
adopted the Backward Path and Forward Path techniques
to formulate multistage problems, establishing a DP
model for planning distributed active distribution
networks. Similarly, Mufioz-Delgado et al. (2016) estab-
lished a multistage cost-minimizing dynamic planning
framework grounded in stochastic scenario simulations of
RE generation and demand uncertainty.

DP rooted in MO optimization augments comprehensive
economic, environmental, and social considerations while
accounting for technical attributes. Sharma et al. (2022)
developed an MO DP model to optimize the trading strat-
egy of HRESs in collaboration with the grid. The model
encompassed dynamic aspects such as wind and PV
output characteristics, along with load profiles, while
minimizing operating costs, non-RE utilization, and fuel
emissions. Das et al. (2021) optimized real-time charg-
ing/discharging strategies for EVs within residential
settings driven by RE sources.

4.1.5 Stochastic programming

SP models constitute an extended version of LP, specifi-
cally tailored to scenarios in which the coefficients or
parameters are treated as random variables. This frame-
work finds application in handling uncertainty-based
decisions within RESs (Abdalla et al., 2019). The intro-
duction of random distributions into the optimization
model is typically accomplished through the utilization of
probability distribution functions (PDFs), which capture
the stochastic nature inherent in RESs (Zakaria et al.,
2020). Instances include wind speed fluctuations, energy
price variations, demand uncertainty, and unanticipated
system risk factors. For instance, Namilakonda and
Guduri (2021) harnessed Latin hypercube sampling to
generate uniform random samples of wind speed and
solar radiation within a stochastic power system dispatch
model. Abdalla et al. (2019) utilized PDFs to calculate
the probabilities of uncertainty scenarios, thereby predict-
ing solar radiation, environmental temperatures, and wind
speeds for RES applications.

Moreover, RO serves as a complementary counterpart
to SP, offering outcomes endowed with robustness and
worst-case applicability without necessitating assumptions
about parameter distributions (Zakaria et al., 2020). RO
techniques have been employed for planning tasks,
including addressing uncertainties associated with loads
and wind power generation (Dehghan and Amjady, 2016).
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Wang et al. (2020c) established conditional risk operational
constraints under RO scenarios, ensuring the safety and
stability of CCHP MGs.

Stochastic MO optimization models extend beyond
single-objective planning models. Zandrazavi et al. (2022)
minimized stochastic MO models incorporating total cost
and voltage deviation indices, tackling the issue of micro-
grid grid imbalances. They generated scenarios encom-
passing uncertainty using a roulette mechanism to
account for RE generation, EV charging demand, elec-
tricity load, and electricity prices. In the context of RE
site optimization, Lotfi et al. (2022) adopted a data-driven
robust optimization (DDRO) approach that augments the
energy and profit objectives (pertaining to government
and supplier interests) with minimum functions, thereby
accommodating risk considerations.

4.1.6 Bilevel programming models

MO optimization offers a comprehensive approach that
thoroughly considers the solutions for each objective
function, yielding comprehensive results. However, in the
realm of bilevel programming (BP), objectives cater to
distinct decision-makers. Optimization progresses in an
alternative manner, based on the outcomes of preceding
optimization steps (Lotfi et al., 2021), as illustrated in
Fig. 10. Variables within the objective function are
subjected to constraints that enforce them to be optimal
solutions of another optimization problem. Put differently,
the parameters of the primary problem are bound by
constraints to optimize a subproblem. Termination of the
solution occurs once either the discrepancy between the
upper and lower-level decision results meets a predeter-
mined threshold or the maximum iteration count is
attained. The output encompasses the results of decision
variables, including factors such as RE output and the
transmission capacity of subsystems.

RESs frequently encompass interconnected subsystems
with interrelated and mutually dependent interests. For
instance, problems such as GEP and TEP are formulated
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as upper and lower levels of BP (Jenabi et al., 2013).
Similarly, models for both planning and operation (Zhang
et al., 2016), as well as decisions in environmental and
energy sectors (Chen et al., 2016), are considered. This
extends to collaborations involving generation, transmis-
sion, distribution, and storage subsystems within the RES
or even joint optimization with external factors such as
the environmental and transportation sectors. In this
context, BP captures the dynamic interaction process of
decision-making.

For instance, Zhang et al. (2016) structured an integrated
planning model for a power system supply system, using
the upper level as a planning model and the lower level as
a UC model. To optimize decisions related to distribution
grid operation and DRG, Asensio et al. (2017) formulated
the upper level with generation and grid investment
constraints, influenced by the lower level’s objective of
minimizing payments for consumer participation in DR.

The bilevel MO optimization model encompasses two
scenarios: Either a single level with multiple objectives or
both levels having MOs. Shang et al. (2023) established a
bilevel framework with three objectives: Maximizing net
present value (NPV) benefits, minimizing annual carbon
emissions, and minimizing energy conversion losses.
This framework optimizes the size of the electricity-
hydrogen system at the upper level and microgrid opera-
tions at the lower level. In another example, Matin et al.
(2022) set upper-level objectives to minimize total costs
and the System Average Interruption Frequency Index
(SAIFI), and lower-level objectives aimed to optimize the
daily operation strategy of the distribution system operator
(DSO) by minimizing the deviation in reporting scheduling
time and SAIFIL.

4.2 MADM models

The MCDM approach, a subset of operations research, is
employed to derive optimal outcomes in intricate scenarios
involving diverse indicators and conflicting objectives
and criteria (Kumar et al., 2017). This approach finds
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Fig. 10 Bilevel optimization models in RES.
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extensive utility in addressing concerns such as the
sequence of RE exploitation, the siting of power plants
and facilities, energy planning, and the development of
energy policies (Horasan and Kilic, 2022). The MCDM
method can be categorized into two main categories:
Multiobjective decision making (MODM) and MADM,
as depicted in Fig. 11.

The previous section has already provided an overview
of representative multiobjective optimization problems
(MOPs) within the MODM framework. Another type is
MADM, which is a model based on the MCDM approach
with a finite decision space. While some studies directly
employ MCDM, most make use of the MADM approach,
which offers a suitable option for evaluating and comparing
the characteristic properties of alternatives (Villacreses
et al., 2017). This approach encompasses various tech-
niques, including the weighted product model (WPM),
the weighted sum model (WSM), the analytic hierarchy
process (AHP), TOPSIS, fuzzy AHP/TOPSIS, and the
elimination et choice translating reality (ELECTRE)
(Mardani et al., 2017).

In research focused on assessing RE potential, optimiz-
ing site selection, and developing RE mechanisms, Salehin
et al. (2016) considered factors such as financial invest-
ment, emission levels, local infrastructure, and durability
in selecting technical and economic components for a PV-
wind-diesel RE system on Kutubdia Island, Bangladesh.
To determine the best power generation solution for
Nigeria, Emovon and Samuel (2017) utilized the MADM

approach to incorporate factors such as funding
constraints, maintenance challenges, corruption, man-
power shortages, military activities, and inappropriate
siting. The MADM methodology was also applied to
establish evaluation criteria for the state of RE develop-
ment in China from energy, economic, technological,
environmental, and social perspectives (Li et al., 2020a).

4.3 Game models

Game theory examines decision-making and equilibrium
when the actions of decision-makers directly interact. It
operates on the premise of the “rational man” hypothesis
and is applied to oligopolistic economic markets. This
model extends an individual’s utility function from an
indirect pricing system to a nonprice system, acknowl-
edging that optimal choices are influenced by rationality
and the strategies of others (Khare et al., 2016). Given
that the energy industry often functions within an oligo-
poly market, game theory finds frequent application (Khare
et al.,, 2016). In the context of RE, the term “player”
pertains to entities such as power generation, transmis-
sion, and distribution companies, various energy and
environment sectors, or local and central governments.
The theory is categorized into noncooperative and coop-
erative games based on individual and collective rational-
ity. Noncooperative games reach equilibrium when players
cannot further increase profits by altering their individual
strategies. In contrast, cooperative games involve the
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RES coalition aiming to maximize joint profits through
binding agreements (Churkin et al., 2021). Figure 12
illustrates the game modeling involving players, decision
objectives, and variables within the realm of RES.

The noncooperative game refers to a process where
players make independent decisions, often resulting in a
Nash equilibrium. Chuang et al. (2001) devised a
Cournot model to depict expansion plans in the power
generation industry, focusing on investment choices and
market participation decisions. He et al. (2012) integrated
cap-and-trade and carbon tax policies into a bilevel game
GEP model, assessing policy effects on RE generation
and grid companies’ investment through Nash equilib-
rium. Ng et al. (2009)’s Cournot model of strategic inter-
action between power generation and transmission
companies and Tao et al. (2021)’s bilevel game model
involving thermal plants, RE plants, and power to gas
(P2GQ) stations in an oligopolistic market present compa-
rable noncooperative game models in RES.

The cooperative game model is increasingly applied in
RES decision-making processes. Acuia et al. (2018)
developed a bilevel model based on Stackelberg’s
duopoly cooperative game to address profit maximization
and distribution between power generation companies
and marketers. Additionally, Liu et al. (2021) formulated
a cooperative game scheduling optimization model
between MGs and distribution network operators, encom-
passing considerations for CCHP, heat pumps, and elec-
trical and thermal energy storage.

While cooperative and noncooperative games provide
static descriptions of energy market interactions, real

markets are dynamic. The evolutionary game model
emphasizes the dynamic equilibrium process within a
group, departing from classic “rational man” and
“complete information” assumptions and merging rational
analysis with dynamic evolutionary processes. The
primary assumption is that players will enhance their
choices myopically based on imitation schemes (Sand-
holm, 2010). In RESs, evolutionary game models are
often employed to address the strategic choices of
governments, power generation companies, and users.
For example, Dong et al. (2022) established a tripartite
evolutionary game model involving regulators, RE
companies, and grid companies, fostering policy synergy
between FIT and RPS. To tackle grid-connected wind
power curtailment, Coninx et al. (2018) devised an evolu-
tionary game model involving flexibility providers and
users. Jamali et al. (2022) established a one-population
evolutionary game model involving manufacturers,
power suppliers, and the government, exploring power
purchase strategies in RES.

4.4 Hybrid models

A hybrid model, which complements theoretical or
data-driven support for mechanisms within optimization
models, offers enhanced applicability and validity. Such
models often involve combining two or more existing
models to create a new approach (e.g., an optimization-
prediction hybrid model, a simulation-optimization
model, etc.) to overcome limitations inherent in a single
methodology or theory (Pan et al.,, 2018). In RES
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and distribution, market companies,
or local and central governments, energy
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modeling, frameworks incorporating probability analysis,
simulation, LCA, cost—benefit analysis, and modern port-
folio theory are commonly employed (Dagoumas and
Koltsaklis, 2019). Among these approaches, prediction
models typically provide crucial parameters such as RE
power or heat demand, which serve as inputs for system
simulation or optimization models to compute variable
values such as RE capacity, electricity price, and demand
or to explore causal relationships between variables.
Furthermore, assessment models are often utilized to
evaluate portfolio risk associated with RE power genera-
tion technologies and other related topics, as illustrated in
Fig. 13. Soft-linking methods play a vital role in connecting
these various components.

Prominent studies involving hybrid models for RESs,
including system dynamics (SD) and mixed integer
programming (MIP) models, have been combined to
address RE power expansion plans in Portugal (Pereira
and Saraiva, 2011) and Spain (Pereira and Saraiva, 2013)
and the policy effects of FIT and RPS optimization by
Dong et al. (2022) through the combination of an evolu-
tionary game model and SD model. Curto et al. (2020)
merged an LCA model, LCOE optimization model, and
failure condition simulation to optimize the stability of an
RES energy mix. Likewise, Hou et al. (2016) employed a
nonlinear optimization model alongside a wind farm
layout simulation for a decommissioning scheme. The
layout planning for a wind power hydrogen manufacturing
plant was determined by Olateju et al. (2016) through a
fusion of the wind energy forecasting model, nonlinear
optimization, and discounted cash flow evaluation model.
Khanjarpanah et al. (2018) integrated a multiperiod opti-
mization model with a double frontier network data

Renewable energy system modeling tools
* RETScreen
* LEAP

envelopment analysis (DEA) model to assess efficiency
and select suitable locations for HRESs in Iran.

Commonly used energy models such as LEAP,
HOMER, and RETScreen are often integrated to form
hybrid models. For instance, Kumar (2016) employed the
LEAP energy model to simulate and optimize RE devel-
opment and scheduling, predicting the impact of energy
demand, consumption, and environmental emissions in
Indonesia and Thailand under varying policy scenarios.
Salehin et al. (2016) utilized the HOMER tool for opti-
mizing the scale of RES on Kutubdia Island, Bangladesh,
and combined it with the RETScreen energy assessment
tool to conduct a comprehensive analysis of technical and
financial feasibility (Liu et al., 2009). Similar hybrid
models include MESSAGE-China (Liu et al., 2009), the
System Advisor Model (Aly et al., 2019), and Energy-
PLAN (Prina et al., 2019).

Various models are frequently combined, especially
when long- and short-term models are integrated. Soft-
linking is often employed to connect different models,
enhancing the level of model detail. This approach
utilizes varying temporal, technical, and spatial details to
express two levels of resolution for the same or related
problems, rather than directly increasing resolution or
introducing additional equations for higher resolution
(Deane et al., 2012). The execution of hybrid models
occurs sequentially, allowing input from the latter model
to be merged with output from another. Feedback loops
between models can also aid in parameter or constraint
adjustments, as seen in bidirectional soft links (Collins
et al., 2017). For instance, Mimica et al. (2022) utilized
soft-linking methods to enhance temporal resolution from
1 to 0.5 hour. Similarly, Deane et al. (2012) increased the
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temporal resolution for renewable technology parameter
analysis by conducting TIMES energy system optimization
models with a target year of 2030, followed by connecting
the output to the PLEXOS UC and economic dispatch
model using a unidirectional soft-linking method.

Drawing from the review, a comparison of the advan-
tages and disadvantages of the four models is presented
in Table 3.

5 Solution methods for RES modeling

The solution methods for models developed by RESs can
be categorized into conventional, probabilistic, artificial
intelligence (Al), and hybrid approaches, as depicted in
Fig. 14. Selecting a more efficient solution method
requires careful consideration of model types and their
characteristics.

5.1 Conventional methods
5.1.1 Analytical methods

The analytical method is a deterministic approach based
on mathematical analysis and computational techniques.

Table 3 Comparison of different models

It involves performing repeated calculations or simulations
using algebraic functions developed for the feasibility
and convergence of the RE subsystem to obtain a set of
feasible system configurations (Yang et al., 2020). By
comparing the performance indicators of different config-
urations, the optimal system solution can be determined
(Koltsaklis et al., 2014). Analytical methods encompass
techniques such as simplex, gradient descent, and interior
point methods, which are often integrated into commercial
solvers.

Analytical methods involve iterative algorithms that
perform recursion on the derivative of the objective func-
tion. The calculations continue until the optimal configu-
ration is reached (Acufa et al., 2018). For instance,
Memon et al. (2021) employed the generalized reduced
gradient (GRG) method for nonlinear processing to solve
a hybrid RES planning model. Ng et al. (2006; 2009)
utilized the equivalent quadratic programming problem
(QPP) with discrete constraints as additional constraints
and employed an iterative search method to solve the
independent GTEP Cournot model.

Commercial model solvers such as Lingo and CPLEX
often include simplex techniques, interior point methods,
and branch-and-bound methods for various applications
(Sharan and Balasubramanian, 2012; Koltsaklis et al.,

Models Advantages Limitations
Programming LP ‘Most widely used in every corner of RES -Limited linear relation and expression
models -Have mature solvers -Strictly rely on data accuracy
NLP -Iteration methods and lots of heuristic algorithms -Local optimum
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-Help decide whether to do, e.g., RE facility location -Hard to solve large-scale models by an exact
problem algorithm
DP -Widely used in optimization with risks and uncertainties  -Curse of dimensionality
-Solve problems with multistage attribute -Large space requirement
Sp -Uncertainty decisions in RESs -Difficult to analyze the running time
-Flexible and alternative models -Unknown probability of getting an incorrect
solution
BP -Interaction between different decision-makers -Difficult to guarantee the optimal solution
-Suitable with different energy sectors or subsystems ‘May only get the strong stationary solution
of RES
MCDM models MODM ‘Economic, technical, environmental, and social -Hard to deal with inconsistent units among
perspectives objectives
-Suitable with conflicts in energy management and -Optimal Pareto fronts are hard to obtain
decision
MADM -Evaluate the characteristic properties comprehensively -Strong subjectivity to determine the weight
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-Individual rationality
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2014). For instance, Arbabzadeh et al. (2019) used the
CPLEX solver to address optimization models for energy
storage technology deployment and operation strategies
in California and Texas, USA. Tan et al. (2021) used
Lingo to address the Xinjiang power dispatching nonlinear
model in China with a 24-hour operation period under
RPS price fluctuations. Chen et al. (2021) employed
GAMS to solve a flexible GEP model integrating renew-
able power generation and consumer storage in Sichuan
Province, China.

Nonlinear solvers are also popular for larger RES
models and are available in platforms such as GAMS,
including CONOPT (Yi et al., 2016), Bonmin (Zhang
et al., 2016), and Gurobi (Xu et al., 2020). For example,
Yi et al. (2016) utilized the CONOPT solver in GAMS to
solve the bottom-up Chinese transmission planning
model. Ahmadpour et al. (2021) applied the BARON
solver to optimize the welfare impact of RE power planning
and policy in a mixed integer nonlinear programming
(MINLP) model.

The graphical construction method is employed to visu-
ally construct output curves using the average irradiance
and wind speed of the RES. It also involves solving prob-
lems through calculus to determine tangent points
(Amara et al., 2021). For instance, Markvart (1996)
constructed the intersection of power supply and demand
curves to determine the optimal configuration of two off-
grid PV generators to meet energy demand, similar to the
approach used in Borowy and Salameh (1996). However,
this method disregards physical conditions such as the
angle, height, or area of wind and solar modules and
variations in BESS and load demand curves (Amara et al.,
2021).

5.1.2  Decomposition methods

Decomposition methods are valuable for streamlining

complex RES optimization models, particularly those
involving high nonlinearity and dimensionality, especially
in cases of long- and short-term optimizations across
multiple subsystems. The concept of decomposition falls
within the realm of indirect solution methods, aiming to
reduce the computational burden associated with direct
solution methods (Moradi-Sepahvand and Amraee,
2021a). Methods such as Benders decomposition and
Dantzig-Wolfe decomposition involve breaking down the
model problem into a master problem and subproblems
(Flores-Quiroz et al., 2016; Zhuo et al., 2020). Zhuo et al.
(2020) employed Benders decomposition to partition the
master RE investment problem into multiple operational
subproblems, thus enhancing efficiency and effectiveness.
The approach has been used similarly to solve MILP
models of RESs (Moradi-Sepahvand and Amraee, 2021a;
2021b; Li et al., 2022a). Moreover, Flores-Quiroz et al.
(2016) utilized the Dantzig-Wolfe decomposition and
column generation method to address the MILP model in
the planning of the Chilean power system.

5.1.3 Convexification methods

Nonconvex optimization problems commonly encountered
in RES, such as MIP and NLP, are often converted into
extensively studied convex optimization problems
(Neumann and Brown, 2021). Furthermore, Benders
decomposition can be achieved through methods such as
linearization substitution/approximation or specific relax-
ation conditions, which are widely employed for solving
NLP and bilevel models. Relaxation, dual and elimination
approaches, as well as penalty function methods, are typical
strategies to transform problems into unconstrained opti-
mization forms.

Solving NLP problems directly using standard algo-
rithms can be challenging, prompting the use of lineariza-
tion methods to transform the constrained problem into
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multiple unconstrained ones for solving. Methods such as
the gradient method of calculus derivation and the
Lagrange multiplier method are used for this purpose
(Bertsekas, 1997). Fitiwi et al. (2016) utilized tangent or
traversing linear inequality with an upper bound and
piecewise linear approximation to solve the medium- and
long-term TEP loss model. Brown et al. (2016) employed
power transfer distribution factors to linearize and repre-
sent the Alternating Current (AC) load-flow equations.
Peker et al. (2018) employed a Big-M type linearization
technique to convert the problem into a solvable MILP
model.

The BP model of RES is typically addressed by reducing
the problem to a single level using techniques such as
Karush—-Kuhn—Tucker (KKT), duality, penalty function,
and so on (Jenabi et al., 2013; Siddiqui et al., 2016), or by
iterating a heuristic algorithm (Chen et al., 2016). To
handle the nonlinearity involved, the original problem
can be approximated as a quadratic problem using methods
such as sequential quadratic programming (SQP) and
further solved (Siddiqui et al., 2016), or it can be trans-
formed into a linear form (Wu et al., 2018). For instance,
Tao et al. (2021) used KKT to convert the condition into
a single-level game payoff function, enabling the solution
of the bilevel game model involving cooperation between
the RE power plant and P2G station. Jenabi et al. (2013)
utilized duality theory and KKT optimal conditions to
formulate a mathematical program with equilibrium
constraints (MPEC) for the bilevel Stackelberg game,
subsequently simplifying the model to MINLP. Siddiqui
et al. (2016) transformed the corresponding MPEC into
an unconstrained NLP.

5.1.4 MO solution methods

MO solution methods that address conflicts within the
RES can be categorized into various approaches, including
priori methods (such as the single-objective transformation
method (Gunantara, 2018), the e-constraint method
(Esmaili et al., 2011), and goal programming (GP)
method (Bakhtavar et al., 2020)), interactive methods
(such as the STEM method (Luz et al., 2018), weighted
Tchebycheff method (Fan et al., 2020), and FL method
(Yu et al., 2019)), and Pareto-dominated methods that use
intelligent algorithms to directly obtain the optimal front
(Tekiner et al., 2010) (as detailed in Section 5.3).

The priori method entails the decision maker providing
sufficient preference information before initiating a one-
time optimization process. The single-objective transfor-
mation method usually involves combining multiple
objectives into one using various weighting techniques,
which are then solved as a single-objective problem
(Gunantara, 2018). Various objective weighting
processes for MOPs include the simple weighted sum
(Karaki et al., 2002), Grey-based weighting (Bakhtavar
et al., 2020), distributed weights with steps (Yu et al.,

2022), and proportion form to reduce objectives (Chen
et al.,, 2015). The weighted sum method is a specific
instance of the weighted metric method with an exponent
set to one. Through this transformation, nondominated
solutions are generated without relying on decision pref-
erence information.

The e&-constraint method involves determining the
boundary & for each objective function based on prior
experience, designating one objective as the optimization
target while considering the others as constraints (Tan
et al.,, 2019). For example, Hu et al. (2019) modeled
emissions as an emission-constrained cost using a carbon
price floor, thus simplifying the dynamic economic emis-
sion scheduling model for traditional power plants and
wind farms into a single cost objective. Similarly, when
dealing with the economic and technical objectives of
BESS operation, Weckesser et al. (2021) employed prior
knowledge to establish reasonable e-constraints.

In the goal programming approach, each objective
function corresponds to an objective deviation, often
categorized as positive and negative deviation variables.
The problem is then transformed into minimizing these
deviation objectives. For instance, Bakhtavar et al. (2020)
utilized goal programming to transform MOPs related to
energy mix optimization in net-zero energy communities,
introducing undesirable deviation variables in objective
functions. Zhuang and Hocine (2018) utilized meta-goal
programming to address the de Novo programming prob-
lem in MODM for optimal planning of wind energy
resource development. However, it is important to note
that goal programming does not guarantee a Pareto-optimal
solution.

Interactive methods involve the decision maker provid-
ing local preference information iteratively, modifying
objective values gradually, and treating targets with
reduced requirements as new constraints (Luz et al.,
2018). For example, Luz et al. (2018) obtained an ideal
solution set for an MO optimization model in GEP using
the e-constraint approach and then employed this ideal
solution as a benchmark to estimate effective solutions.
They subsequently identified objective functions that
could be relaxed in each iteration, using the relaxed
values to enhance other objectives. Fan et al. (2020)
employed the weighted Tchebycheff method to solve the
MO integrated distribution expansion planning problem.

Additionally, FL utilizes membership functions within
the range of 0 to 1 to express the associated evaluation or
priority of RES components in objectives (Su et al.,
2000). For example, Yu et al. (2019) used fuzzy member-
ship functions to handle the multidimensional objectives
in RE development planning, effectively converting the
model into a single-objective formulation. Waseem et al.
(2021) proposed the Fuzzy Compromising (FCP) method
to select the optimal solution from the Pareto front set,
addressing the residential distributed power scheduling
model.
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5.2 Probabilistic methods

Probabilistic methods offer robust tools to handle uncer-
tainty, encompassing the processing and resolution of
uncertainty models and the establishment of PDFs or
probability model generation along with parameter analy-
sis. This approach can be realized through various tech-
niques, including stochastic methods (Abdalla et al.,
2019), which entail employing the expected value
method and chance constraint method to transform
models from stochastic to deterministic using mean
values, probabilities, or simulations. Additionally, numer-
ical methods such as the widely utilized Monte Carlo
simulation (MCS) and Markov chain (MC) methods play
a significant role (Tekiner et al., 2010).

Deterministic transformation solutions convert SP into
equivalent deterministic programming by utilizing the
PDFs of uncertain variables (Abdalla et al., 2019). The
expected value method entails computing the mean prob-
ability of the random variables. For instance, Sun et al.
(2018) proposed a method involving vine copulas for
random scenario generation and expected value conversion
to address random variables such as load, RE generation,
and power transmission. This approach transformed the
problem into deterministic programming. On the other
hand, the chance constraints method addresses problems
with random variables in the constraints, with decisions
made prior to the realization of these random variables.
This approach allows decisions to possibly deviate from
constraints to a certain extent while ensuring that the
probability of adhering to the established constraints is
not lower than a confidence level a (Abdalla et al., 2019).
As an example, Li et al. (2022b) introduced a distributed
robust optimization chance constraint programming
(DROCCP) method to resolve coordination challenges in
RES.

Probability-based numerical methods, often referred to
as scenario methods, involve generating a representative
set of random variable samples. By attaining optimal
performance across all scenarios, approximate solutions
are achieved, which are particularly effective when dealing
with uncertainties such as loads and external energy
prices. Among these methods, MCS and MC are the most
widely adopted (Abdalla et al., 2019). For instance,
Tekiner et al. (2010) utilized MCS to generate system
component state scenarios and subsequently solved the
SP model for renewable power systems. Gbadamosi and
Nwulu (2020) employed MC to assess the time-varying
probabilities of renewable power system outage states,
failure rates, and repair rates. They then solved the SP
model concerning power generation and transmission
system reliability.

5.3 Artificial intelligence methods

Al methods encompass intelligent computer programs

that replicate or unveil natural phenomena or intelligent
behavior observed in biological groups. These methods
are grounded in scientific theories and engineering prac-
tices, offering a refined approach akin to the analytical
method. They refine the search space with each iteration,
leading to swift performance (Hannan et al., 2020) and
solution flexibility that mitigates the risk of getting
trapped in local optima. Notable among these methods
are metaheuristic algorithms, exemplified by the GA,
PSO, differential evolution (DE), and the nondominated
sorting genetic algorithm (NSGA) (Hou et al., 2016;
Salkuti and Kim, 2019; Namilakonda and Guduri, 2021).
These algorithms generate individuals randomly, with
populations guided by constraints. In addressing the
extensive optimization required by RESs, traditional
methods struggle to traverse the search space swiftly. Al
methods exhibit versatile characteristics, are easily paral-
lelizable (Hannan et al., 2020), and adeptly manage the
nonlinear attributes of RES components, including the
intermittent nature of RE resources (Su et al., 2018).

Original Al methods have found consistent application
in the realm of RE. For instance, Sarker et al. (2019)
employed GA to tackle a MINLP model for optimizing a
biomethane gas production system’s transportation
network. Huy et al. (2020) harnessed a DE algorithm to
address an MO model related to integrated distributed
generation and distribution system planning. Haghighi
et al. (2021) utilized PSO to resolve a GEP to achieve a
Nash equilibrium between a government agent and power
plants.

In response to the substantial computational burden
imposed by nonlinearity in RES, researchers have intro-
duced diverse Al improvement algorithms to enhance
solutions. For instance, Namilakonda and Guduri (2021)
introduced a modified Chaotic Darwinian Particle Swarm
Optimization (CDPSO) to address a transmission conges-
tion management model with nonlinear OPF. Hou et al.
(2016) employed an adaptive PSO (APSO) algorithm to
solve a wind farm decommissioning planning model with
a life cycle cost objective.

Regarding MO optimization models in RES, heuristic
Al algorithms such as NSGA-II, NSGA-III, and multi-
objective PSO (MOPSO) frequently come into play to
achieve the Pareto front (Hajebrahimi et al., 2017). For
example, Hajebrahimi et al. (2017) applied NSGA-II to
resolve a probabilistic MO model concerning smart grid
expansion planning. He et al. (2021) employed NSGA-III
to address a capacity optimization model for a combined
storage-electricity-heat production system. Siddiqui and
Dincer (2021) employed a multiobjective genetic algo-
rithm (MOGA) to optimize the design of an HRES with
hydrogen production. Sadeghi et al. (2020) utilized the
MOPSO algorithm to solve an optimization model
involving HRES with EVs. Ullah et al. (2021) proposed a
multiobjective wind-driven optimization (MOWDO)
algorithm and MOGA to address an operational
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optimization model for smart MGs.

ML algorithms are data-driven and require fewer
system modeling details, making them adept at handling
stochasticity (Musbah et al., 2022). These algorithms
encompass techniques such as DL, NNs, and reinforcement
learning (RL). Numerous studies have applied ML methods
to solve RE-related optimization models. For instance,
Xiong et al. (2018) utilized a single hidden layer neural
network to fit the investment-benefit relationship of
distribution networks, resolving an investment decision
model. Narayanaswamy et al. (2023) introduced regular-
ized deep neural network algorithms to optimize PV
topology reconfiguration. Wang et al. (2020b) employed
a stacked autoencoder (SAE) to evaluate the efficiency of
distribution network asset utilization, solving a distribution
network expansion planning model across multiple years.
Remani et al. (2019) introduced an RL approach to
address residential load scheduling in RESs. Zhang et al.
(2019a) proposed deep reinforcement learning (DRL) to
optimize wind energy operations in an integrated energy
system. Similar studies have also emerged (Ye et al.,
2020; Shao et al., 2021b; Li et al., 2023).

Furthermore, improved ML algorithms have surfaced
in recent research, finding continued utility in the RE
domain to accommodate growing problem dimensions
and scenarios. These algorithms offer optimal solutions
by selecting appropriate architectures, identifying
network parameters, and adjusting learning rates according
to real-time environmental conditions and uncertainties
(Zhang et al., 2019b). Schulman et al. (2017) introduced
proximal policy optimization (PPO) grounded in RL,
offering multiple epochs of mini-batch updates of policy
gradients compared to DRL. Zhang et al. (2021b) applied
the PPO algorithm to train agents (power system opera-
tors) for optimal energy management strategies, solving
an MO scheduling optimization model for distributed
RESs. Zhou et al. (2020) devised distributed proximal
policy optimization (DPPO) to address a CCHP system
scheduling model, effectively responding to system emer-
gencies.

5.4 Hybrid methods

A hybrid tool or algorithm, combining two or more of the
methods mentioned above, can overcome the technical
limitations inherent in a single approach and facilitate
interactive information exchange across different levels
or categories of the model (Neshat and Amin-Naseri,
2015). This encompasses the fusion of heuristic methods
with FL, iterative or decomposition techniques within
traditional methods (Samper et al., 2021), as well as the
integration of multiple heuristic hybrid algorithms (Li
etal., 2019).

Heuristic methods can strike a balance between accuracy
and speed through amalgamating FL, iterative, decompo-
sition, and probabilistic approaches (Samper et al., 2021).

Combining FL with PSO, Li et al. (2019) addressed a
collaborative planning model involving RE generation
and energy storage within an active distribution network.
Ding and Wei (2021) merged the NSGA-II algorithm
with the interior point method to solve a bilevel optimiza-
tion model for district energy planning and operation.
Dufo-Lopez et al. (2016) employed a hybrid approach of
GA and MC simulation to tackle a stochastic model for
an off-grid HRES power supply.

Various heuristic algorithms are integrated to enhance
the solution efficiency of RE optimization models (Li
et al., 2019). For example, Zhang et al. (2019b) resolved
a wind-solar-hydrogen HRES scale optimization model
for remote areas by blending chaotic search, harmony
search, and simulated annealing into a novel algorithm,
which demonstrated superior performance. Li et al. (2019)
addressed nonlinear bilevel MO models using an NSGA-
II-based enhanced PSO algorithm, facilitating collabora-
tive planning between RE units and energy storage hier-
archically. Salkuti and Kim (2019) introduced a two-
objective congestion management optimization model,
followed by the design of a multiobjective Glow-Worm
Swarm Optimization (MOGSO) algorithm. To tackle a
novel dynamic economic emission scheduling model, Hu
et al. (2019) employed a hybrid approach of GA and SQP.
Shakibi et al. (2023) resolved an MO optimization model
for power and freshwater cogeneration involving solar
and natural gas by combining DL algorithms, support
vector regression (SVR) methods, and a multiobjective
gray wolf optimizer (MOGWO). The integration of
heuristic algorithms, especially for the nonlinear chal-
lenges in RES, accelerates the search for approximate
solutions. Additionally, depending on the need for an
exact solution and the level of satisfaction needed, such
hybrid approaches can significantly reduce the computa-
tional cost of finding solutions (Twaha and Ramli, 2018).
Hybrid algorithms incorporating emerging Al techniques
demonstrate robust calculations, improved convergence,
and enhanced accuracy (Afzal et al., 2023).

Drawing from the aforementioned insights, a comparison
of the advantages and disadvantages of the four methods
is presented in Table 4.

6 Summary of future trends
6.1 Trends regarding optimization modeling in RES

Based on the comprehensive literature analysis presented
in the preceding sections, the following trends pertaining
to optimization modeling of RESs have been identified.
(1) Substituting deterministic models, uncertainty
models are poised to assume prominence. Driven by the
inherent attributes of RE resources, forthcoming RES
optimization modeling endeavors will exhibit heightened
parameter uncertainties. Examples of such uncertainties
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Methods Advantages

Drawbacks

Conventional methods ‘Mathematic simplify methods
-Flexibility with models

-Enable mechanistic analysis

‘Eliminate the need for time-series data
-Overcome restriction of limited data

Probabilistic methods

-Uncertainty consideration of subsystems

Artificial intelligence methods -High convergence speed
-Accurate prediction
-Variable and Bionic algorithm

-Strong robustness and noise immunity
Hybrid methods

‘Most robustness

-Balance between local and global exploration
-Improved searching capability and accuracy

-Limited space and speed
‘Rely on commercial software or numerical approximations
-Require explicit mathematical formulation

-Difficult to represent dynamics of systems
-Vast resource data
‘Need accurate historical data

‘Rely on data amount and hardware facility
-Difficult to find suitable models
‘Internal black box lacks mechanistic explanation

-Complexity of system and information exchange
‘Difficult to balance different methods and design codes

encompass volatile oil, electricity, and carbon prices,
prognostications for electricity and heat load values,
surveillance of RES system failure or condition in smart
grids, and fluctuations in electricity supply and demand
attributed to EVs’ integration with the grid. Within the
framework of uncertainty models, methods of data-driven
parameter identification and prediction are listed.

(2) Models featuring comprehensive energy carriers
can leverage soft-linking techniques to encapsulate inter-
actions between the renewable power system and other
energy systems or sectors. These interactions encompass
the exchange of information regarding energy quantities,
prices, water cycles, and similar aspects. Moreover, atten-
tion must be directed toward considering the technical
attributes of electricity, heat, and gas networks. Addressing
the multifaceted challenges of multiscale and multitime-
scale synchronization is imperative, particularly in the
context of confronting dynamic uncertainty in multienergy
systems.

(3) Elevation in spatiotemporal resolution modeling
and the employment of time series aggregation tech-
niques, exemplified by the representation of days or peri-
ods, are poised to gain ascendancy. This entails adopting
a finer temporal resolution, such as 15 minutes, along
with an extended time horizon, reaching up to a year.
Beyond national and regional contexts, specific locales
such as islands and remote regions have garnered
augmented interest due to distributed generation. Conse-
quently, research has been refined to encompass power
plants and even individual units. Notably, studies pertain-
ing to DRG incorporate ML models to bolster decision
optimization due to the extensive scope of UC and OPF
challenges.

(4) The integration of advanced simulation programs
within the modeling framework is projected. This inte-
gration encompasses intricate aspects of intermittent
systems with high penetration of RE sources, capturing
real-time conditions and intricate details. Instances
include short-term DR within smart grids, power plant
decommissioning, energy storage operation, and
instances of extreme weather and events. Timely feedback

is provided, accompanied by insights into simulation and
optimization findings. Additionally, the techno-economic
performance evaluation, along with an assessment of user-
perceived value of RES, is furnished.

(5) A pivotal trajectory for RES modeling lies in Al-
based generative models. Specifically, generative models
rooted in Al emerge as a critical avenue. By way of illus-
tration, the production of high-quality scenarios pertinent
to RE is facilitated by training and distinguishing samples
utilizing generative and discriminative models embedded
within the generative adversarial network framework.
These generative models serve to predict RE output,
energy prices, and similar variables. This augments the
representation of volatility and uncertainty, subsequently
enhancing the operational and scheduling optimization
models for RES. Integrating the generative model with
the optimization framework introduces AI’s predictive
capacity, effectively amalgamating historical data and
static models with the intricate constraints, MO criteria,
and distinctive attributes inherent to the optimization
model, ultimately enhancing the accuracy of optimization
decisions.

6.2 Trends regarding solution methods for optimization
models in RES

The scope of RES modeling and the requisite computa-
tional memory are poised to expand. As such, forthcoming
endeavors warrant an exploration of algorithmic facets,
encompassing the following dimensions.

(1) Consideration should be given to the amalgamation
of analytical and heuristic methods to enhance solution
efficiency. This amalgamation could entail the fusion of
heuristic algorithms to approximate solutions, particularly
when addressing nonlinear RES problems. Subsequently,
the determination of the necessity for an exact solution
can be made.

(2) A deeper investigation into approximation
techniques, including linearization and relaxation, is
imperative. In instances where intricate models entail
nonlinear, high-dimensional power flow equations and



664 Front. Eng. Manag. 2023, 10(4): 640-671

thermodynamic constraints, simplification or convexifi-
cation can be harnessed. This facilitates equivalent trans-
formations or the establishment of more succinct and
appropriate linear relationships.

(3) The application of Al-based optimization algorithms
rooted in DL or reinforcement learning is an avenue to
explore within the realm of RE. Notably, techniques such
as DRL, the model-free DRL approach, PPO, DPPO, and
multiobjective PPO hold potential. This is particularly
pertinent in expediting RES configuration planning and
optimizing operations, encompassing renewable power
generation or load prediction. While ML methodologies
have witnessed a surge in research activities, their appli-
cation in the RE domain remains relatively constrained.
Future endeavors should be directed toward automatic
parameter adjustment within optimization algorithms,
devising operational strategies through simulations of
smart grids, the Energy Internet of Things, and the main-
tenance and fault detection of RESs. Despite the consid-
erable demand for data and prolonged parameter training,
progress in this realm stands to significantly influence
solution performance.

7 Conclusions

Based on the comprehensive examination of the REDUC
process, this review segment delineated the RES into five
distinct subsystems, subsequently summarizing the spec-
trum of optimization models and corresponding solution
methodologies. The ensuing conclusions are as follows.

(1) Optimization within the ambit of RE systems is
oriented toward addressing decision quandaries encom-
passing investment, construction, operation, maintenance,
and dispatch. Within the exploitation and production
subsystem, optimization endeavors center around devising
plans for power plant investment and construction.
Emphasis in the power transmission and distribution
subsystem pertains to optimizing grid layout investments
and fostering collaborative operations. In the consumption
subsystem, paramount consideration is accorded to ensur-
ing secure dispatch and equitable alignment of interests
among all stakeholders. Explorations in the energy storage
subsystem predominantly revolve around distinct invest-
ment scale configurations for energy storage systems,
coupled with charging and discharging strategies.

(2) The prevailing paradigm for current RES decision-
making optimization prominently revolves around the
amalgamation of theories and methodologies culled from
diverse domains, including prediction, optimization,
simulation, and assessment. These hybrid models
predominantly amalgamate principles from power engi-
neering, environmental science, and computer science.
Moreover, they incorporate elements of uncertainty,
human factors, and dynamic attributes. Predictions and
simulations often serve to calibrate parameters during the

modeling process. Furthermore, optimization decisions
are frequently conjoined with models such as LCAs,
techno-economic assessments, and cost—benefit analyses.

(3) The prevailing solution framework for extensive
RES configurations necessitates an amalgam of model
decomposition, linearization techniques, hybrid analytical
approaches, and Al algorithms. Addressing the intricate
task of coupling optimization across multiple subsystems
entails substantial computational burdens. Conventional
direct solutions and iterative techniques exhibit sluggish-
ness in their convergence. Consequently, strategies of
simplification, typified by linearization or relaxation, are
commonly employed to navigate the complexities of
intricate models. This, when harmonized with traditional
analytical methods and Al algorithms, augments the
efficacy of solutions by streamlining computational
demands.
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