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  HIGHLIGHTS
● This study clarified the critical processes and
major factors that nitrogen transport from farm
fields to surface water bodies.

● Soil storage, exogenous inputs and
meteorological hydrology were found to
influence nitrogen loss from farmland.

● Hydrology, biogeochemistry and nitrogen inputs
were found to influence the transformation of
nitrogen in the ditches and rivers.
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  GRAPHICAL ABSTRACT
 

  ABSTRACT
Agricultural  non-point  source  pollution  is  increasingly  an  important  issue
affecting  surface  water  quality.  Currently,  the  majority  of  the  studies  on
nitrogen  loss  have  focused  on  the  agricultural  field  scale,  however,  the
response of surface water quality at the watershed scale into the nitrogen loss
at  the  field  scale  is  poorly  understood.  The  present  study  systematically
reviewed the critical processes and major factors that nitrogen transport from
farm fields to surface water bodies. The critical processes of farmland nitrogen
entering surface water bodies involve the processes of nitrogen transport from
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farmland  to  ditches  and  the  transformation  processes  of  nitrogen  during
migration in ditches/rivers. Nitrogen transport from farmland to ditches is one
of  the  prerequisites  and  critical  processes  for  farmland  nitrogen  transport  to
surface water bodies. The transformation of nitrogen forms in ditches/rivers is
an intermediate process in the migration of nitrogen from farmland to surface
water  bodies.  Nitrogen  loss  from  farmland  is  related  to  soil  storage  and
exogenous  inputs.  Therefore,  nitrogen  input  management  should  not  only
consider the current input, but also the contribution of soil storage due to the
historical  surpluses.  Ditches/rivers  have  a  strong  retention  capacity  for
nitrogen,  which  will  significantly  affect  the  process  of  farmland  nitrogen
entering surface water bodies. The factors affecting nitrogen transformation in
river/ditches  can  be  placed  in  four  categories:  (1)  factors  affecting  hydraulic
retention time, (2) factors affecting contact area, (3) factors affecting biological
activity,  and (4)  forms and amount of  nitrogen loading to river/ditches.  Ditch
systems are more biologically (including plants and microbes) active than rivers
with biological  factors  having a greater influence on nitrogen transformation.
When  developing  pollution  prevention  and  control  strategies,  ecological
ditches  can  be  constructed  to  increase  biological  activity  and  reduce  the
amount  of  surplus  nitrogen  entering  the  water  body.  The  present  research
should be valuable for the evaluation of environment impacts of nitrogen loss
and the non-point source pollution control.

© The Author(s) 2023. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

  

1    INTRODUCTION
 
Nitrogen  is  one  of  the  most  active  nutrients  in  farmland
ecosystems  and  one  of  the  major  factors  affecting  the
environment.  The  mechanism  of  nitrogen  loss  and  its
environmental impact in farmland is currently a research focus
in plant nutrition, soil science, environmental science, ecology
and  others.  Due  to  the  pressing  need  for  food  security,
increasingly exogenous nitrogen is being added to agricultural
ecosystems, but nitrogen use efficiency is declining, resulting in
a surplus of nitrogen in farmland[1–3]. Under some conditions,
excessive nitrogen is lost to the atmosphere through ammonia
volatilization,  denitrification  and  other  processes,  or  lost  to
water  bodies  in  runoff  or  through  leaching[4–10],  which  cause
environmental  problems  such  as  air  pollution  or  the  water
eutrophication. In the 1980s, the problem of nitrogen loss from
farmland  in  China  gradually  attracted  attention  from  the
government  because  of  the  growing  problem  of  water
eutrophication.  Loss  of  nitrogen  from  farmland  caused  by
inappropriate  fertilizer  application  (including  excessive
fertilizer application) and low utilization efficiency has become
one  of  the  major  reasons  for  the  increasing  nitrogen
concentration  in  surface  water[11–14].  Additionally,  movement
in  runoff  is  the  direct  way  for  farmland  nitrogen  to  enter
surface  water[12,15].  The  problem  of  nitrogen  loss  from

farmland  has  become  a  serious  constraint  to  green
development  of  agriculture  in  China.  Therefore,  research  on
pollution  through  nitrogen  loss  from  farmland  should  be
widely prioritized.

In recent years, as non-point source pollution control has been
raised to the national strategic height, many studies have been
conducted  on  the  status  and  impact  of  nitrogen  loss  from
farmland. The characteristics and main factors of nitrogen loss
at  the  field  scale  have  been  clarified.  However,  most  of  the
current studies focus on the farm field scale[7,16,17], the research
on  the  response  of  surface  water  quality  at  the
watershed/regional scale to the nitrogen loss at the field scale is
relatively insufficient, furthermore, most the studies are mainly
based on empirical  analysis[18–22].  Therefore,  it  is  necessary to
understand  the  environmental  effects  of  nitrogen  loss  from
farm  field  on  the  surface  water  quality  at  the
watershed/regional scale. It is important to sort out the critical
processes and major factors that nitrogen transport from farm
fields  to  surface  water  bodies.  The research would be  valuable
for  evaluating  the  water  environment  effect  of  farmland
nitrogen loss and the non-point source pollution control.

The  critical  processes  of  farmland  nitrogen  entering  surface
water  bodies  involve  the  processes  of  nitrogen  transport  from
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farmland  to  ditches  and  the  transformation  processes  of
nitrogen during migration in ditches/rivers. Nitrogen transport
from farmland to ditches is one of the prerequisites and critical
processes  for  farmland  nitrogen  transport  to  surface  water
bodies.  Ditches/rivers  are  the  major  channels  for  nitrogen
transport  from  farmland  to  surface  water  bodies.  The
transformation of nitrogen in ditches/rivers is an intermediate
process in the migration of nitrogen from farmland to surface
water bodies, which is another important factor in the nitrogen
transport into the surface water bodies. In summary, this paper
reviewed  the  critical  processes  and  major  factors  of  nitrogen
transport  from  farmland  to  ditches  and  transformation  in
ditches/rivers through literature research.
 

2    CRITICAL PROCESSES OF NITROGEN
TRANSPORT FROM FARMLAND TO
SURFACE WATER BODY
 
The  nitrogen  transport  from  farmland  into  the  surface
receiving  water  body  needs  to  go  through  multiple  processes
such  as  nitrogen  transport  in  soil-water  interface,  nitrogen
transport  farmland  to  ditches,  and  nitrogen  transformation
during ditch during delivery in ditches/rivers, corresponding to
the three scales of nitrogen transport from farmland to surface
bodies,  namely,  field  scale,  farmland  unit  and  watershed  scale
(Fig. 1).  The  process  of  farmland-to-ditch  export  is  the  initial
process  of  farmland nitrogen entering the  surface  water  body,
and  nitrogen  migration  at  the  soil-water  interface  is  the
premise and key link of farmland nitrogen export to ditches[23].

Only when nitrogen in soil water or runoff is fed into the ditch
does it mean that farmland nitrogen actually enters the surface
water.  A  series  of  physical,  chemical  and  biological
transformation processes  occur during the nitrogen migration
in ditches/rivers[24].
 

3    CRITICAL PROCESSES AND MAJOR
FACTORS OF NITROGEN TRANSPORT
FROM FARMLAND TO DITCHES
  

3.1    The critical processes of nitrogen transport
from farmland to ditches
Nitrogen  loss  at  the  field  scale  is  a  prerequisite  for  farmland
nitrogen  transport  to  the  surface  body.  Among them,  the  loss
of  nitrogen  at  the  field  scale  includes  the  loss  of  soil  nitrogen
and the loss processes of exogenous nitrogen (Fig. 2). The soil-
water  interaction  process  is  a  key  link  in  nitrogen  transport
from  farmland  to  ditches[25].  Soil  is  a  complex  composite
structure. Nitrogen exists in many forms on the surface of soil
particles,  inside  or  in  soil  solution.  In  different  forms  and
interacts  with  soil  particles  and  water  in  different  ways.
Nitrogen may enter the soil water solution and runoff from the
soil  by  different  modes  of  action  such  as  dissolution,
desorption,  ion  exchange,  and  suspended  particle  carryover.
Niu et al.[26] further pointed out that mineral nitrogen was the
major loss-prone nitrogen in soils,  and that it was also subject
to  common  competition  from  other  processes  such  as  crop
utilization  and  denitrification  processes.  The  correlation

 

 
Fig. 1    The critical processes of nitrogen transport from farmland to surface water body (审图号: GS 京 (2023) 2266 号).

 

Wenchao LI et al. Critical processes and factors of farmland nitrogen transport to surface water 543



between the loss (leaching) of nitrogen at the field scale and the
nitrogen  (endogenous  nitrogen)  produced  by  soil  organic
nitrogen  mineralization  was  higher  than  that  of  exogenous
nitrogen[27,28].  Mineralization  processes  promote  the  increase
of  nitrogen  transport  from  farmland  to  ditches.  At  the  same
time,  nitrogen  transport  from  farmland  to  ditches  has  a
regulatory effect on the mineralization process of soil nitrogen.
When the nitrogen content of easy loss reaches a certain level,
the soil mineralization process is inhibited[26].

Field-scale nitrogen loss also includes exogenous nitrogen loss
processes.  Sebilo  et  al.[29] continuously  tracked  the
whereabouts  of 15N-labeled  nitrogen  fertilizer  for  30  years,
revealing  the  mechanism  of  nitrogen  loss  of  residual  fertilizer
nitrogen  by  soil  fixation  and  then  slowly  through  the
mineralization  and  nitrification  process.  Ju[30] noted  that  the
process  of  fertilizer  nitrogen  loss  through  soil  fixation,
remineralization  and  nitrification  was  only  the  critical  loss
mechanism  of  exogenous  nitrogen  under  the  conditions  of  a
low nitrogen supply. Under the condition of excessive nitrogen
supply,  part  of  the  applied  fertilizer  nitrogen  directly  entered
the  leakage  water  without  going  through  the  soil  fixation  and
mineralization  process.  It  also  pointed  out  that  the
contribution  of  endogenous  and  exogenous  soil  nitrogen  to
nitrogen  loss  was  limited  by  the  balance  between  exogenous
inputs  and  crop  utilization  in  the  current  season:  When  the
crop utilization is  higher  than the exogenous input  (inorganic
nitrogen),  the  inorganic  nitrogen  produced  by  the
mineralization  process  of  organic  nitrogen  remaining  in  the
soil  will  be  the  main  source  of  nitrogen  easily  lost  in  the  soil.
However,  when  the  exogenous  input  is  higher  than  the  crop
utilization,  the  contribution  of  exogenous  input  to  nitrogen
loss may increase[30]. 

3.2    The critical factors of nitrogen transport from
farmland to ditches
Related studies pointed out that soil nitrogen stock contributed
significantly  to  nitrogen  loss  at  the  field  scale.  Hou  et  al.[31]

found  that  background  sources  (soil  nitrogen)  contributed
more  than 50% to  the  nitrogen loss  from rice  fields  in  China.
Based on the isotope tracing technique,  Li  et  al. [9] found that
the  nitrogen  loss  from  soils  with  high  nitrogen  content  was
significantly  higher  than  that  from  soils  with  low  nitrogen
content.  With  the  change  of  soil  nitrogen  content,  the
contribution rate  of  nitrogen loss  is  multiplied.  Therefore,  the
loss  of  nitrogen  at  the  field  scale  is  limited  by  soil  nitrogen
stocks.  As  the  main  source  of  soil  nitrogen,  exogenous  inputs
such  as  fertilizer  application  have  a  significant  impact  on  the
level of nitrogen that is easy to lose in soil. Excess nitrogen not
taken up by crops remains in the soil, resulting in a short-term
increases  or  long-term  accumulation  of  soil  nitrogen
stocks[3,32–34].  Also,  fertilizer  application  affects  nitrogen
transformations  in  soil.  Mineralization  of  soil  nitrogen  is
negatively  correlated  with  soil  carbon  to  nitrogen  ratio[35].
Fertilizer  application  leads  to  changes  in  soil  carbon  to
nitrogen  ratio,  which  in  turn  affects  mineralization  of  soil
organic  nitrogen[36].  It  has  been  shown  that  with  the
continuous  development  of  agriculture,  a  large  amount  of
nitrogen enters the farmland ecosystems in the form of reactive
nitrogen  such  as  inorganic  nitrogen  from  fertilizers,  which
changes  the  nitrogen  cycling  processes[37],  causing  the
accumulation  of  soil  nitrogen[30],  and  aggravates  the  loss  of
nitrogen[38].  This  is  an  important  reason  why  the  intensity  of
nitrogen  loss  from  farmland  ecosystems  is  much  higher  than
that  of  natural  ecosystems,  such as  woodlands and grasslands,
which  are  less  affected  by  human  activities[39–41].  In  addition,
with  the  increase  of  exogenous  nitrogen  input,  nitrogen

 

 
Fig. 2    The process of nitrogen transport from farmland to ditches.
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movement  from  watersheds  to  rivers  and  other  water  bodies
increases,  resulting  in  an  increase  in  water  nitrogen
concentration, aggravating water pollution[42–44].

Various  studies  have  found  that  the  output  load  of  nitrogen
from  farmland  is  significantly  correlated  with  meteorological
and  hydrological  conditions,  including  rainfall  runoff[45],  and
rainfall runoff is the main factor for farmland nitrogen output
in  most  watersheds[44,45].  In  watersheds  with  different  runoff
intensities,  the ratio of  farmland nitrogen output to input was
between  10%  and  35%,  but  the  ratio  of  farmland  nitrogen
output  to  input  in  watersheds  with  large  runoff  was
higher[39,46].  Li  et  al.[15] found  that  rainfall  led  to  seasonal
variation  in  the  migration  pathway  (runoff/baseflow)  of
nitrogen  from  farmland  in  the  watershed.  This  was  mainly
related  to  the  control  of  nitrogen  transport  from  farmland  to
ditches by runoff factors.  Hou et al.[31] found that rainfall  was
one  of  the  main  factors  controlling  nitrogen  loss  from  rice
fields,  and  rainfall  and  soil  clay  content  had  the  highest
contribution to nitrogen loss variation in rice fields. Sinha and
Michalak[20] concluded  that  rainfall  was  the  main  factor
leading  to  spatial  differentiation  of  nitrogen  loss  and  extreme
rainfall  events  have a  greater  impact  on the seasonal  variation
in nitrogen loss.

In  general,  as  rainfall  increases,  agricultural  runoff  increases,
nitrogen  transport  from  farmland  to  ditches  increases[47],  the
attenuation rate decreases during migration downstream of the
watershed[38] and  the  nitrogen  output  load  of  the  watershed
increases[45]. In addition, rainfall conditions alter the pathways
of  nitrogen  loss  from  farmland.  Fu  et  al.[48] found  that  the

nitrogen  loss  pathway  from  rice  fields  in  the  dry  season  was
dominated  by  subsurface  leaching,  while  the  contribution  of
the  runoff  to  nitrogen  loss  increased  in  the  rainy  season.
Hydrological  conditions  are  limited  to  meteorological  factors,
including  rainfall,  temperature  and  wind  speed.  Rainfall  type
and  rainfall  intensity  all  affect  nitrogen  transport  from
farmland to ditches[47,49].  Temperature is also one of the most
important factors affecting nitrogen output. The proportion of
nitrogen  loss  from  farmland  is  inversely  proportional  to
temperature within a certain temperature range. It is related to
both  the  increase  in  evaporation  due  to  the  increase  in
temperature  and  the  decrease  in  runoff[50] and  the
denitrification  loss  of  nitrogen  exacerbated  by  higher
temperature[51,52].
 

4    CRITICAL PROCESSES AND MAJOR
FACTORS OF NITROGEN TRANSFOR-
MATION IN DITCHES AND RIVERS
  

4.1    Major processes of nitrogen transformation in
ditches and rivers
The  transformations  that  occurs  when  nitrogen  migrates  in
ditches/rivers  can  be  categorized  as  retention  and  release
(Fig. 3).  Retention  is  the  phenomenon  in  which  nitrogen  is
affected by adsorption, deposition, absorption and gaseous loss
(including  ammonia  volatilization  and  denitrification)  in
ditches/rivers,  so  that  the output  nitrogen load decreases  after
migrating  through  ditches/rivers,  that  is,  the  occurrence  of

 

 
Fig. 3    Processes and factors of nitrogen transformation in ditches/rivers.
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attenuation.  Release  is  the  phenomenon  in  which  nitrogen  is
affected  by  resolution,  dissolution,  degradation  and  other
effects  in  ditches/rivers,  and  nitrogen  is  re-released  in
ditches/rivers,  increasing  the  output  load.  Retention  can  be
divided  into  temporary  and  permanent  retention.  Temporary
retention  mainly  refers  to  the  transfer  of  nitrogen  from  the
aqueous  phase  to  other  locations  of  the  aquatic  ecosystem
through  various  processes  (i.e.,  to  sinks),  and  under  certain
conditions,  it  can  be  released  as  an  endogenous  source  and
re-enter  the  aqueous  phase  (i.e.,  as  a  source),  the  temporary
retention  process  is  reversible,  that  is,  a  process  of  retention
and  release,  including  absorption-degradation  processes  of
aquatic  plants,  the  adsorption-desorption  processes  of
sediment  and  deposition-dissolution  processes.  Permanent
retention mainly refers to the complete separation of nitrogen
from  aquatic  ecosystems  through  various  complex  processes,
including  as  volatilization,  absorption  by  organisms  and
denitrification.
 

4.2    Major factors of nitrogen transformation in
ditches and rivers
Nitrogen undergoes a series of complex physical, chemical and
biological  transformations  during  river  migration.  These
transformations  can  be  divided  into  two  processes:
(1)  retention  with  attenuation  effects,  including  adsorption,
deposition,  absorption,  and  gaseous  loss  (including  ammonia
volatilization  and  denitrification);  and  (2)  release  including
resolution,  dissolution  and  degradation[51].  The  above
processes are a result of the combined effects of various factors.
Generally,  according to whether there are organisms involved,
each  factor  can  be  classified  into  two  categories:  biotic  and
abiotic  factors[53,54].  Biotic  factors  include  aquatic  plants
(species,  cover  area,  plant  community  structure,  metabolic
processes  and  microbes  (including  algae,  bacteria,  fungi).
Abiotic  factors  include  river  geology  (including  soil  type,
texture  and  structure),  topography  (including  slope,  slope
length,  slope  fall),  river  morphology  (including  river  length,
river  width  and  curvature)[55–57],  river  location[58],
hydrological conditions (including flow, flow rate, water depth
and  sedimentation  rate)[59,60],  watershed  area  (scale
effect)[61,62],  land  use  type[63–65],  terrestrial  nitrogen  input
(concentration)[63,66–68], water temperature[69], and light.

The  mechanisms  of  different  factors  on  nitrogen
transformations differ and can be classified into four categories
according  to  their  mode  of  action:  (1)  factors  affecting
hydraulic  residence  time,  (2)  factors  affecting  contact  area,
(3) factors affecting biological activity, and (4) nitrogen inflow
morphology and amount. From the perspective of the reaction

process,  the  hydraulic  retention  time[60] determines  the
reaction  time.  The  shorter  the  residence  time,  the  shorter  the
reaction  time  and  the  less  complete  the  reaction.  The  shorter
the residence time of nitrogen in a river,  the lower the chance
of  nitrogen  being  in  contact  with  sediments,  biofilms  and  the
like,  so  the  chance  of  being  absorbed  by  these  is  smaller,  and
the  attenuation  efficiency  decreases  accordingly.  The  contact
area  of  nitrogen  with  sediments  and  biofilms  determines  the
area  where  the  attenuation  reaction  occurs.  The  larger  the
contact  area,  the  larger  the  area  of  reactive  surface,  and  the
higher  the  attenuation  rate.  Biotic  factors  (including  the
abundance  of  denitrifying  bacteria)  determine  the
responsiveness of  the active component.  The higher the biotic
activity  of  the  active  component,  the  stronger  its
responsiveness  and  the  greater  the  reaction  rate[70].  The  form
and  amount  of  nitrogen  entering  a  river  determines  the
substrate  concentration  in  the  reaction.  The  higher  the
substrate  concentration,  the  higher  the  rate  of  nitrogen
transformation.  In  general,  there  is  a  maximum  attenuation
rate  of  nitrogen  in  a  river.  When  the  attenuation  rate  is
maximum,  a  river  channel  has  the  greatest  ability  to  remove
nitrogen. As the amount of nitrogen entering a river continues
to increase,  the total  amount of nitrogen removed will  remain
unchanged but the removal rate will decrease[64,67].

Factors  that  affect  water  residence  time  include  river  length,
flow  rate,  river  curvature  and  slope.  The  greater  the  flow  rate
for the same river length, the shorter the time the water stays in
the river.  The longer the distance nitrogen migrates in a river,
the more completely it  is  attenuated[71,72],  that is,  the longer a
river,  the  greater  the  amount  of  nitrogen  removed  by  the
sediment  and  aquatic  ecosystem.  River  curvature  and  slope
change  the  residence  time  of  nitrogen  in  a  river  channel  by
affecting  the  flow  rate,  which  in  turn  affects  the  attenuation
rate. The more curved the river, the smaller its slope, the longer
the  water  residence  time,  the  more  completely  the  nitrogen  is
attenuated.  Factors  affecting  the  contact  area  include  water
depth,  river  width  and  geology.  Water  depth  affects  the
nitrogen  conversion  process  by  changing  the  contact  area
between the water body and the sediment.  With greater water
depth,  the  contact  area  between  a  unit  water  body  and  the
sediment  decreases,  that  is,  the  contact  chance  between  the
nitrogen in the water body and the self-purification active site
of  the  sediment  decreases,  resulting  in  a  decrease  in  the
nitrogen  attenuation  rate[73].  River  width  also  affects  the
contact  area  between  nitrogen  and  the  sediment.  In  general,
nitrogen has less contact area with the sediment per unit length
of a large river than a small river. In addition, the contact area
between nitrogen and sediment is related to the geology of the
riverbed.  The larger the rock grains in the riverbed,  the larger
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the gap between them, the larger the space for river water, and
the larger the contact area between nitrogen and the sediment.
Factors  affecting  biological  activity  include  water  temperature
and  light[51,52,57,69,74].  This  affects  the  biochemical  decay
process  by  affecting  the  growth  and  microbial  activity  of
aquatic  plants,  algae  and  other  organisms[75].  In  general,  the
photosynthesis  of  aquatic  autotrophs  will  increase  with  an
increase in water temperature and light, and the nutrients they
absorb  from  the  water  body  will  also  increase  synchronously.
Also,  increased  water  temperature  and  light  will  increase  the
activity  of  microorganisms  attached  to  biofilms  and  in
sediments,  accelerating  nitrogen  attenuation.  Numerous
studies  have  shown  that  the  rate  of  denitrification  of
river  nitrogen  is  positively  correlated  with  water
temperature[51,52,69].

In  addition  to  these  factors,  the  morphology  and  amount  of
nitrogen entering a river influences the attenuation process in a
river. The rate of nitrogen removal from rivers is closely related
to the concentration of nitrogen in rivers[64,66,69,76]. In general,
as  the  amount  of  nitrogen  entering  a  river  increases,  the
amount  of  nitrogen  attenuation  increases  and  the  rate  of
attenuation  initially  increases  and  then  decreases[77],  which  is
mostly  related  to  the  nitrogen  removal  capacity  of  a  river.
Wollheim et  al.[67] emphasized that there is  a  saturation point
in  the  removal  capacity  of  rivers  for  nitrogen.  When  the
amount  of  incoming  nitrogen  is  less  than  the  maximum
removal  capacity  of  a  river,  the removal  rate  of  nitrogen from
the  river  increases  as  the  amount  of  incoming  nitrogen
increases.  However,  when  the  amount  of  incoming  nitrogen
exceeds the maximum removal capacity of a river, the removal
rate  of  nitrogen  from  the  river  then  decreases.  They  also
emphasized that flow was an important indicator of how much
nitrogen  enters  a  river.  It  has  been  shown  that  the  higher  the
flow  rate,  the  lower  the  removal  rate  of  nitrogen  from  a
river[60],  which  is  mainly  related  to  the  hydrological
dependence  of  nitrogen  loss  from  the  land  surface.  Various
studies have shown that the loss of nitrogen on the land surface
is closely related to hydrological factors such as runoff[78–81]. In
addition,  the  removal  efficiency  of  incoming  nitrogen  varies
depending on the form of the nitrogen entering a river[24].

Generally,  the  hydrological  factors  and  biogeochemistry
interact  to  influence  nitrogen  retention[82].  The  hydrological
factors  determine  the  residence  time,  as  well  as  the  nitrogen
input  loading  to  river/ditches  due  to  their  influence  on  the
nitrogen  loss  from  farmland[83].  Typically,  the  effect  of
biogeochemistry  factors  depends  on  the  residence  time.
Therefore,  hydrological  factors  underpin  biogeochemistry
factors  that  influence  the  nitrogen  retention.  Also,  the
biogeochemistry factors in large rivers are generally weak, thus

the  hydrological  factors  dominates  nitrogen  retention  in  such
contexts. However, in the ditches, especially ecological ditches,
the  biogeochemistry  has  a  more  important  influence  on
nitrogen retention.
 

5    CONCLUSIONS AND RECOMMENDA-
TIONS
  

5.1    Conclusions
This  paper  has  systematically  reviewed  the  critical  processes
and  major  factors  in  nitrogen  transport  from  farm  fields  to
surface  water  bodies.  The  critical  processes  of  farmland
nitrogen entering surface water bodies involve the processes of
nitrogen  transport  from  farmland  to  ditches  and  the
transformations of nitrogen during migration in ditches/rivers.
Nitrogen  transport  from  farmland  to  ditches  is  a  prerequisite
and critical  process for farmland nitrogen transport to surface
water bodies. Nitrogen transformations in ditches/rivers are an
intermediate link and nexus for lost nitrogen from farmland to
enter surface water bodies.

The following is a summary of the article and the application of
future  prevention  and  treatment.  (1)  Nitrogen  loss  from
farmland  is  related  to  soil  storage,  exogenous  inputs  and
meteorological  hydrology.  Therefore,  management  practices
should  be  applied  to  limit  nitrogen  loss  from  farmland.
Reduction  of  nitrogen  input  should  not  be  the  only
consideration,  as  the  historical  contribution  nitrogen
application  resulting  in  soil  storage  must  also  be  considered.
The effects of climate change on nitrogen loss are also worth of
consideration.  (2)  Ditches/rivers  have  a  substantial  retention
capacity  for  nitrogen,  which  will  significantly  affects  the
process  of  farmland  nitrogen  entering  surface  water.  So  the
retention  capacity  of  ditches/rivers  needs  to  be  taken  into
account  when  assessing  the  impact  of  nitrogen  from
agricultural land on surface water, and for pollution prevention
and  control.  (3)  The  factors  affecting  nitrogen  transport  and
transformation  can  be  grouped  in  four  categories:  (a)  factors
affecting hydraulic retention time, (b) factors affecting contact
area,  (c)  factors  affecting  biological  activity,  and  (d)  nitrogen
inflow  pattern  and  amount.  Ditch  systems  are  more
biologically  active  than  rivers.  Biotic  factors  have  a  greater
influence  on  nitrogen  transformation  in  ditches  than  abiotic
factors.  When  developing  pollution  prevention  and  control
strategies,  ecological  ditches  can  be  constructed  to  increase
biological activity and to reduce the amount of excess nitrogen
entering water bodies. 
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5.2    Recommendations
At  present,  although  there  is  a  clear  understanding  of  the
critical processes and major factors of nitrogen migration from
farmland into surface waters, with the emergence of some new
issues, such as the increase in atmospheric nitrogen deposition
and  the  impact  of  historical  legacy  nitrogen  on  water  quality
improvement.  There  is  a  need  for  in-depth  research  on  the
pathways  of  nitrogen  migration  from  farmland  into  surface
waters,  the  relationship  between  nitrogen  from  farmland  and
atmospheric  deposition,  and  the  impact  of  historical  legacy
nitrogen on the watershed/regional scale environmental effects
of nitrogen loss from farmland.

Surface  runoff  is  the  main way for  nitrogen from farmland to
enter surface water bodies. However, increasingly studies have
found  that  in  addition  to  the  runoff  process,  other  pathways,
such as  underground tile  drain  and regression flow processes,
are also important ways for farmland nitrogen to enter surface
water  bodies[84,85],  and  even  become  the  main  way  in  some
areas.  Fu  et  al.[48] found  that  underground  leaching  was  the
main way of nitrogen loss from rice fields, which in turn leads
to an increase in nitrogen concentration in the base stream[86].
Therefore, the processes and mechanisms of nitrogen transport
and  transformation  along  pathways  other  than  runoff  should
also  receive  attention.  In  addition,  it  has  been  found  that
atmospheric  deposition  has  become  one  of  the  important
sources  of  nitrogen  in  surface  waters[87–89],  and  it  is  closely
related  to  agricultural  activities.  Ti  et  al.[90] found  that
ammonia  emitted  by  fertilizer  application  to  farmland  and
livestock  farming  contributed  more  than  60%  to  NHx-N
deposition  in  the  region.  Studying  the  critical  processes  and
major factors of nitrogen emissions from agricultural activities
that  pollute  surface  water  bodies  through  atmospheric
deposition is also one of the future research priorities.

At  present,  the  impact  of  historical  nitrogen  on  surface  water
quality  is  gradually  being  recognized[91].  Van  Meter  et  al.[92]

posited  that  due  to  the  influence  of  historical  nitrogen  in  the
Mississippi  River  Basin,  even  if  the  nitrogen  utilization  rate
reaches 100%, it will take decades to achieve the expected water
quality control target. Due to the limited ability to simulate the
historical nitrogen loss process at present, the simulation errors
of  the  existing  models  are  relatively  large[89],  and  the
understanding of  its  contribution is  not  yet  comprehensive.  It
is  also  one  of  the  current  research  focuses  to  strengthen  the
systematic  model  simulation  research  on  the  migration  and
transformation  process  of  historical  nitrogen  and  to
systematically  evaluate  the  impact  of  exogenous  and  residual
nitrogen  on  surface  water  quality.  In  addition,  by  integrating
soil hydrology and nitrogen cycle models, based on the concept
of  hydrological  soil  functional  units,  constructing  the
quantitative  relationship  between  key  parameters  of  the
nitrogen  cycle  and  hydrology-soil-landscape  is  one  of  the
important  ways  to  improve  understanding  of  the
environmental effects of legacy nitrogen[23].

The  migration  and  transformation  of  nitrogen  in  ditches  and
rivers is the key link that determines the migration of nitrogen
from  farmland  into  surface  water  bodies.  Therefore,
quantifying  the  transformation  process  of  nitrogen  migration
in  ditches  and  rivers  is  important  for  improving  the
watershed/regional  scale  of  nitrogen  loss  from  farmland.
Awareness  of  environmental  effects  is  crucial.  Currently,  the
methods used to quantify the transport  and transformation of
nitrogen  in  ditches  and  rivers  are  mainly  model  based,  with
fewer  studies  based  on  empirical  methods  to  elucidate  the
processes.  With  the  development  of  online  monitoring
technology, it has become possible to use online technology to
design segmented multilevel monitoring to study the migration
and  transformation  process  of  nitrogen  in  ditches  and  rivers.
Wollheim  et  al.[60] installed  online  nitrate  monitoring
equipment upstream and downstream of a river and found that
the removal of nitrate in a river was closely related to the flow
rate. Nitrogen removal rate is higher when the flow rate is low
than when the flow rate is high.
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