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ABSTRACT Accurately controlling the nodal lines of vibrating structures with topology optimization is a highly
challenging task. The major difficulties in this type of problem include a large number of design variables, the highly
nonlinear and multi-peak characteristics of iteration, and the changeable orders of eigenmodes. In this study, an effective
material-field series-expansion (MFSE)-based topology optimization design strategy for precisely controlling nodal lines
is proposed. Here, two typical optimization targets are established: (1) minimizing the difference between structural
nodal lines and their desired positions, and (2) keeping the position of nodal lines within the specified range while
optimizing certain dynamic performance. To solve this complex optimization problem, the structural topology of
structures is first represented by a few design variables on the basis of the MFSE model. Then, the problems are
effectively solved using a sequence Kriging-based optimization algorithm without requiring design sensitivity analysis.
The proposed design strategy inherently circumvents various numerical difficulties and can effectively obtain the desired
vibration modes and nodal lines. Numerical examples are provided to validate the proposed topology optimization

models and the corresponding solution strategy.
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1 Introduction

Ensuring that precision instruments are working safely
and reliably on the main body structure in a vibrating
environment is of considerable significance for many real
applications, such as aerospace structures and aviation
and microelectromechanical systems. An effective meth-
od for achieving precise vibration control is to manipu-
late the shape of structural eigenmodes while considering
the desired eigenfrequency value [1-4]. In the adjustment
and design of structural eigenmodes and eigenfrequen-
cies, the “nodal line” [5] is considered one of the critical
factors. This line is characterized by a series of nodes
with zero amplitude in a certain order of eigenmodes, and
the appropriate positions of the nodal line can effectively
control vibration response and considerably alleviate
damage to precision instruments. Therefore, designing
and optimizing structures with specific nodal lines are of
interest for practical engineering problems, enriching the
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dynamic design toolbox with an additional protection
mechanism against vibrations.

Topology optimization [6] is currently regarded as a
powerful design tool for improving structural perfor-
mance. In the past 30 years, topology optimization
methods, such as density-based method [7,8], evolutio-
nary structural optimization method [9,10], level-set
method [11,12], and phase-field method [13], have been
successfully applied to structural dynamic design
problems. Existing studies have focused on single or
multiple eigenfrequency indexes, such as maximizing
natural frequency [14-17] or obtaining the desired
eigenfrequencies of certain orders [18,19], minimizing
dynamic compliance [17,19-22], and maximizing
frequency bandgap [23-25]. Suppressing or utilizing
structural resonance caused by external excitation is
typically a major concern, and it has been comprehen-
sively studied in eigenfrequency optimization problems.
Meanwahile, specified eigenmode designs with topology
optimization methods have also been investigated further.
For example, setting the maximization of the vibration
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amplitude of a planar mechanism as the objective
function, Tcherniak [26] derived the modal sensitivity
involved in the modal superposition method. Nishiwaki
et al. [27] and Maeda et al. [28] proposed a topological
design method for vibrating structures with specified
eigenfrequencies and portions of specified eigenmode
shapes by adopting a multi-objective function that
comprehensively balances eigenfrequencies, eigenmode
shapes, and stiffness. Tsai and Cheng [29] introduced a
modal assurance criterion into structural topology optimi-
zation for maximizing the fundamental frequency and
obtaining user-defined vibration modes. Xue et al. [30]
studied an improved bidirectional evolutionary structural
optimization method to achieve modal control and
vibration suppression by minimizing amplitudes at
specific points. With the superior dynamic properties
obtained using topological optimization tools, new
conceptual configurations have been proposed for the
design of piezoelectric transducers [31-33], actuators,
and microplate resonators [34,35]. For most existing
methods, local or global approximation to the desired
mode shapes can be achieved by controlling eigenmode
amplitudes at certain points in the structures. However,
strict control of the nodal lines is not guaranteed.

Strictly controlling the shapes and positions of nodal
lines is highly significant for the structural optimization
design problems of some devices. Relevant studies have
confirmed that in the flutter mechanism of wings [36,37]
and solar sails [38], the nodal lines of each flutter
dangerous mode exert a considerable influence on it; in
rail transit, the nodal lines of the body should also be
designed within the specified areas to improve safety and
passenger comfort [39,40]. In addition, precision instru-
ments and attitude sensors are placed on nodal lines as
much as possible in various mechanisms, such as those in
rocket engines, space telescopes, and satellite solar
panels. Some researchers have attempted to solve this
problem by considering predefined orders of eigenmodes
on the basis of gradient-based topology optimization
methods. For example, Xiang et al. [36] established the
display relationship between the positions of nodal lines
and design parameters. They obtained the desired nodal
lines of a certain wing model by minimizing the area
enclosed by the current and desired node lines. Yu et al.
[5] performed thickness optimization by minimizing the
amplitude of some specific points in predetermined order
modes; they obtained the desired nodal lines for the
second- and fifth-order eigenmodes of a violin top plate.
Mao et al. [41] introduced the node line position
constraint of predefined order eigenmodes into the
eigenfrequency topology optimization problem and
solved it by using an evolutionary structural optimization
method. Existing optimization methods can be used to
achieve the desired nodal line of order-predefined
eigenmodes, in which sensitivity can be derived on the
basis of order-predefined eigenmode sensitivity analysis

methods [26,36]. However, when the modal orders of
eigenmodes switch during structural optimization or
when modal shapes cannot be specified in advance,
solving optimization problems with the existing gradient-
based optimization algorithm becomes extremely
difficult. Moreover, some numerical issues, such as
localized eigenmodes [15,24,26], eigenmode order
switching [20,42], and the nonexistence of the derivative
for repeated eigenvalues [23,24], also increase the
difficulty of solving dynamic optimization problems.
Although some aggregation techniques have been
developed to address these challenges, the high
nonlinearity of the objective or constraint functions also
makes obtaining satisfactory results difficult for the
optimization problem when considering nodal lines and
frequencies.

As early as 1993, Grandhi [1] pointed out that gradient-
free algorithms, such as neural networks and genetic
algorithms, can be used to solve dynamic topology
optimization problems. Recently, Luo et al. [43] provided
a new gradient-free topology optimization method that
combines the material-field series-expansion (MFSE)
method and the sequential Kriging surrogate model (KG).
The resulting KG-MFSE method has been successfully
used in the bandgap maximization design of photonic and
phononic crystals [44—46].

In the current study, we propose MFSE-based topology
optimization models for achieving desired nodal lines in
vibrating structures. Without introducing prespecified
eigenmode order requirements or additional eigenmode
order switching treatment techniques, two types of
topology optimization models are proposed. The first one
minimizes the difference between structural nodal lines
and their desired positions, and the second one optimizes
certain performance while keeping the position of the
nodal lines within the specified range. With the MFSE
method [47], structural topology can be decoupled from
the finite element mesh and sufficiently represented by a
small number of design variables. Therefore, we can
freely refine the finite element mesh to obtain more
accurate nodal lines and solve optimization problems
without increasing the number of design variables and
iteration steps. Here, the sequential Kriging-based
optimization algorithm [43] that does not require design
sensitivity information is adopted as the optimizer. With
the proposed optimization method, the potential mode
switching problem can be easily overcome and desired
nodal lines at undefined-ordered eigenmodes can be
obtained after optimization.

2 Identification of eigenmode nodal lines

For a freely vibrating structure without any external
excitation, the linear motion equation can be given in the
finite element form as
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Mii + Ku =0, 1

where K and M denote the structural stiffness and mass
matrices, respectively, and u and i are the vectors of the
degrees of freedom and accelerations, respectively. For
freely vibrating systems, the generalized eigenvalue
problem typically reads as

K-AM)®,=0,m=1,2,..., 2)
where the mth eigenvalue A, =w?, w, is the mth

eigenfrequency, and ®@,, is the corresponding eigenmode.

With the obtained eigenpair solutions of Eq. (2), the
eigenmode nodal lines can be identified by interpolating a
certain eigenmode contour field. Figure 1(a) shows the
contour of the mth eigenmode for a rectangular freely
vibrating flat plate (the left edge is fixed), in which the
gray areas represent the regions with an extremely small
eigenmode amplitude. The corresponding nodal lines L,
extracted from the zero-value lines in the mth eigenmode
is shown in Fig. 1(b), i.e., ®,,(r € L,,) =0, where r is the
coordinate vector. In the numerical implementation, the
continuous nodal lines can be approximately discretized
by a series of points, which are represented by red circles
in Fig. 1(b). In general, the nodes on the nodal lines do
not coincide with the finite element mesh but their
coordinates can be easily determined via piecewise
polynomial interpolation on ®,,.

3 Topology optimization models of freely
vibrating structures that consider desired
nodal lines

The topological design of frequency and nodal line
optimization problems can be defined as follows: to
maximize (or minimize) a certain frequency-dependent
performance function while (1) causing the nodal lines to
have desired positions and shapes, or (2) constraining the
nodal lines within a specified range. In both problems,
frequency orders that correspond to the desired nodal
lines are difficult to predestine and “mode switching”
may occur during optimization. In this regard, a total of

M (M is sufficiently large) orders of eigenfrequencies and
the corresponding eigenmodes are calculated and
incorporated into the optimization models. As shown in
Fig. 2, assume that an eigenmode has K desired nodal
lines (denoted by L;,L;,...,L;), whose order is unknown.
For the m,h order eigenmode (m,=1,2,..,M), the
corresponding nodal lines can be identified and the
number of current nodal lines is denoted by K'. If K’ = K,
then the difference between the desired nodal lines
L; (k=1,2,..,K) and the current nodal lines L, (k=
1,2,...,K) is quantified as the sum of the distances
between corresponding nodes. The nodal line measure-
ment function f,, for the m,th eigenmode is defined as

)y

k=1 j=1

10°, if K# K,

2), ifK =K,

r,—r k.j,mq’

m,=12,...M, 3)

where ||-||, denotes the 2-norm. For simplicity, the desired
nodal line L; and the current nodal line L,, are
discretized into N, nodes, denoted by r;; and r;,
(k=1,2,...K; j=1,2,...,N,), respectively.

For the first type of nodal line optimization problem,
the topology optimization model is described as finding
the optimal material distribution of structures that
achieves the desired nodal lines and frequency require-

ments; that is, optimization model 1:
I‘EEPCI =min{ln(f),In(f),....In(fy)} + {(w), (4

where y(r) € {—1, 1} represents the structural topology in
the design domain Q, and {(w;) (i =1,2,..., M) is a user-
specified function for some specific order eigenfrequen-
cies.

For the second type of nodal line optimization problem,
the objective is to maximize (or minimize) certain
performance function while keeping the position of the
nodal lines within the specified range. In such case, for
the m,th order eigenmode, a constraint function g, for
judging the nodal line position is defined as
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Fig. 1 Schematic of (a) the mth eigenmode contour and (b) evenly distributed points on the nodal line.
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Fig.2 Comparison of the desired and current nodal lines. The
red circles and solid lines represent the desired nodes and nodal
lines, respectively. The white circles and dashed lines represent
the current nodes and nodal lines, respectively.

K N,
D23 (max{0, |Iry, -7 l,-A}) i K=K,

k=1 j=1
if K+ K,

10°,
m,=12,..,M, 5)
where A; is the allowable deviation of the current nodal
lines from the desired nodal lines.

Then, the topology optimization model can be
formulated to minimize the user-specified frequency
function that considers the position constraints of the
nodal lines, i.e., optimization model 2:

8m, =

minC; = {(w)),
x(r)

s.t. G=min{g,,g,....eu} <O0. (6)

For aforementioned optimization models, the order of
the eigenmode with the most desired nodal lines is
determined during the optimization procedure by
min{Iln(f}),In(f,),...,In(fy)} or min{g,,g,,...,&x}. Notab-
ly, by using the linear weighting approach, the optimiza-
tion models in Eqs. (4) and (6) can be easily extended to
deal with optimization problems with the requirement of
nodal lines that consider multiple eigenmodes.

4 Optimization solution strategy

The two types of optimization models shown in Egs. (4)
and (6) involve the switch trap of eigenmode orders and
discontinuous objective functions during topology opti-
mization, and thus, they are difficult to solve directly by
using conventional gradient-based approaches. Although
some techniques, such as approximate aggregation
functions [48,49] and mode-tracking methods [20,42],
may be applicable, the optimization solution will be
extremely unstable due to its highly nonlinear and multi-
peak characteristics. In the current study, we adopted an
MFSE-based gradient-free framework [43] to solve
topology optimization problems that concerned nodal
lines and frequencies. First, this framework represents
structural topology with a few design variables. Then, it

employs a self-adaptive Kriging-based optimization
algorithm to solve the optimization problem effectively
without performing sensitivity analysis.

4.1 Topological description based on MFSE

In the MFSE model [47], structure topology is described
by a continuous material-field function ¢(r) € [-1, 1],
where re Qg is the coordinate vector in the design
domain, ¢(r) = —1 represents the void regions, and
@(r) =1 represents the solid regions. Heaviside function
projection is used to map the structural topology and
material-field function, namely,

() = p(r)-ef+1—-e? ifp(r)=0,
K=V o) -ef=1+e#0, if p(r) <0,

where § is a parameter that controls the smoothness of
the mapping.

With the rational approximation of material property
(RAMP) model [50] for material interpolation, the
Young’s modulus £ and mass density p in the design
domain are expressed by

(7

1+y(r)
24p(—x(r)
L+x(r)

o ®)
where E, and p, are the Young’s modulus and mass
density of the considered solid material, respectively, E.;,
and p.;, are the small values for avoiding single-element
matrices, and the penalty parameter is typically set as
p=4.

Here, the material-field function ¢(r) is constructed
with a certain spatial dependence defined by the
relationship C(r;,r;) = exp(||r,-—r,||2/ zg), where [, is the
given correlation length that represents topology complex-
ity [47]. In the numerical implementation, the design
domain is discretized into Nygp uniformly distributed
material points r; (i=1,2,...,Ny), and a so-called
correlation matrix C is expressed as

E(r) = Emin + (EO _Emin) >

p(r) = pmin + (p() _pmin)

1 C(r,r) C(rl’rNMFp)
C(ry,ry) 1 : C(rz,rNM,-,,)
C= . : . : C)
C(rNMFP’rl) C(rNMFP’rz) Tt 1

where C is an (Nygp X Nypp)-dimensional, symmetric
positive-definite real matrix.

In accordance with bounded field theory [51], the
material-field function ¢ (r) is approximately expressed as
a linear superposition based on the eigenpairs of C, i.e.,

p(r) ~ " A" ®Cy(r), (10)

where 5 = {5,,71,....11,}" is the vector of the undetermined
coefficients or design variables, A = diag(4,,4,,...,dy) and
D ={y,¥,,.... ¥y} are the diagonal matrix composed of
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the first N largest eigenvalues and the corresponding
eigenvectors, respectively, and C,(r) denotes the vector
{C(r,rl),C(r,rz),...,C(r,rNMFP)}T. In  general, the
dimensionality of the space of n for representing the
material field is small compared with the number of
material points Nygp.

4.2 Solution aspect

After using a small number of design variables # to
describe structural topology, the sequential Kriging-based
optimization algorithm in Ref. [43] is employed to solve
the optimization problems in Egs. (4) and (6). In the
gradient-free solution, in accordance with an adaptive
design-domain adjusting technique, the optimization
problem is reformulated into a series of suboptimization
problems that use Latin hypercube sampling to construct
Kriging surrogate models and then update the design
variables on the basis of the sampling criterion. After the
previous suboptimization problem is solved, the
optimization strategy will adjust the position of the next
suboptimization problem in accordance with the
optimization results, and then gradually reduce its range
to improve the accuracy of the Kriging surrogate models
by increasing the density of samples. In general, 1215
suboptimization problems must be solved to find the
optimal solution. For all the optimization problems in this
study, we set the sample center of the initial suboptimiza-
tion problem at x =0, and the corresponding design
space is denoted by Q, = {|t]—r]c|oo < 0.2}. During practi-
cal optimization, the smooth parameter 8 in Eq. (7) will
be gradually increased from 0 to 300 as suboptimization
problems progress. For details about the sequential
Kriging-based optimization algorithm, refer to Ref. [43].

5 Numerical applications and discussion

5.1 Nodal line optimization of a bi-material cantilever
plate

We first consider the nodal line optimization of a bi-
material cantilever plate. As shown in Fig. 3(a), a bi-
material plate is fixed on the left side with a thickness of
0.5 mm, and its length and width are 180 and 100 mm,
respectively. The properties of Material 1 are as follows:
Young’s modulus £, = 210 GPa, Poisson’s ratio y;, = 0.3,
and mass density p; = 7850 kg/m3. Meanwhile, the
properties of Material 2 are as follows: E, = 21 GPa,
w, =0.3, and p, = 785 kg/m3. In the optimization design
problem, the plate is divided into 180x 100 finite
elements, and the design domain is equally distributed by
Nurr = 90 X 50 observation points. The correlation length
of the material field is set as /[, = 100 x 0.25 = 25 mm.
With the MFSE model, the structure topology can be

S
QQ
180 mm P
y

~ ]
i_.

A (0, 50 mm)

C (131.67 mm, 0)

(b)

Fig.3 Bi-material cantilever plate: (a) design domain and
(b) two desired nodal lines.

represented by only N = 63 independent design variables.

The desired shapes and positions of two nodal lines,
denoted by L; and L; (the superscript * represents the
desired value), are shown in Fig. 3(b). With point O at the
lower left corner of this plate as the coordinate origin, L;
is the straight line passing through point 4 (0 mm,
50 mm) and point B (180 mm, 20 mm), and it is
represented by 46 uniformly distributed nodes in the
numerical implement. The nodal line L;, represented by
51 uniformly distributed nodes, passes point C
(131.67 mm, 0 mm) and is perpendicular to L;.

In this example, optimization model 1 proposed in
Eq. (4) is adopted. Considering that the desired nodal
lines L} and L; belong to two separate eigenmodes, three
design requirements, denoted as Cases 1-3, are tested to
demonstrate the ability of the present framework to
control nodal lines.

In Case 1, the optimization problem is defined as
maximizing the first-order eigenfrequency while obtain-
ing a nodal line closest to the first desired nodal line L;.
The objective function of this multi-objective optimiza-
tion can be reformulated as minC = aln(min{f, f,...,
fu}) — (1 —@)w,, where « is a weighting factor (0.5 in this
case). As shown in Fig. 4, with the sequential sampling
and updating of 12 suboptimization problems, the
optimization procedure converges after 2846 finite
element calculations. During sampling, the values of
samples change significantly. The objective function also
exhibits a steady decline in updating the design variables.
Furthermore, the values of the samples are gradually
decreased as the suboptimization problem progresses due
to the decreasing suboptimization space, and they
converge to stability since the 8th suboptimization
problem. The optimization algorithm determines that the
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designed nodal line belongs to the second-order
eigenmode of the plate, and the optimized topology and
corresponding nodal line are illustrated in Fig. 5. In
Fig. 5(a), the red region denotes Material 1, and the blue
region denotes the weaker Material 2. Notably, for the
plate structure composed entirely of Material 1, the first-
order eigenfrequency is w; = 13.26 Hz. The first-order
eigenfrequency of the optimized structure increases from
w; = 13.26 Hz to w; =21.51 Hz. Figures 5(b) and 5(c)
show the contour for the first and second eigenmodes of
the optimized structure, respectively, and the gray region
represents the area where the eigenmode amplitude is
extremely small. A comparison between the optimized

2
[ A 4
2
4
-6
_1(8) *’m M’W WM" m "‘\\‘5"\
-12

i

Objective function

0 500 1000 1500 2000 2500 3000

Number of finite element evaluations

Fig. 4 Topology optimization history of the bi-material
cantilever plate that considers the desired nodal lines in Case 1.
Different colors represent different suboptimization problems,
with 12 suboptimization problems and 2846 finite element
calculations.

Material 2

Material 1
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nodal line L, and the desired one L; is presented in Fig.
5(d), which exhibits good agreement in terms of shape
and position. From the discrete 41 nodes on the nodal
line, the average position deviation between the
optimized nodal line and the corresponding desired one is
0.162 mm, and the maximum position deviation is
max(| "T,_;"'1,_;||2) =0.522 mm, which is extremely small
compared with the size of the whole plate structure.

In Case 2, we only consider the optimization design for
the second desired nodal line L; and simultaneously
satisfy the specified first-order eigenfrequency w; =15 Hz.
The objective function in Eq. (4) can be reformulated as
minC = In(min{f;, fo,.... fu) = p-|o, —@;| (here, the
penalty factor p =10). The optimized topology and
corresponding eigenmode contours are illustrated in
Fig. 6. In this case, the obtained nodal line L, in the third-
order eigenmode of the optimized plate structure is
extremely close to the desired nodal line L;. The average
position error between the optimized and desired nodal
lines is only 0.1214 mm. As shown in Fig. 6, the topology
of the structure is considerably changed from Case 1, and
the first-order eigenfrequency is w; = 15.00 Hz, which is
strictly controlled at the desired frequency value with
nearly no error.

In Case 3, we consider the design requirements of
maximizing the first-order frequency and satisfying the
two desired nodal lines L; and L; simultaneously. On the
basis of the nodal line topology optimization mode in

/(10 mm)

ﬂ iz
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000 L'I‘

oo [,
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Fig. 5 Optimized solution for achieving the first desired nodal line in Case 1: (a) structural topology. The red region denotes Material 1,
while the blue region denotes the weaker Material 2. Contour for (b) the first-order eigenmode with ] = 21.51 Hz and (c) the second-
order eigenmode. The gray region represents the area where amplitude is extremely small. (d) Comparison between the desired nodal line

L} and the optimized nodal line L, of the second-order eigenmode.
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Fig. 6 Optimized solution for achieving the second desired nodal line in Case 2: (a) structural topology, (b) contour for the first-order
eigenmode with ] = 15.00 Hz, (c) contour for the third-order eigenmode, and (d) comparison between the desired nodal line L} and the

optimized nodal line L, of the third-order eigenmode.

Eq. (4), the objective function is extended as minC =

M M
infmind > 3" (£ +£,) |- (1 =)@, Notably, two

mi=1 mj=1
nodal lines of two different eigenmodes are considered
here. The m; and m; order modes correspond to L; and L;,
respectively, and the weighting factor a =0.8. The
optimized structure is shown in Fig. 7(a), and the
eigenmode contours are presented in Figs. 7(b) and 7(c).
The designed nodal lines L, and L, belong to the second-
and third-order eigenmodes, respectively. As shown in
Fig. 7(d), L, and L, are extremely close to the desired
nodal lines L; and L;. The maximum error between the
optimized and desired nodal lines is 1.217 mm. For the
optimized bi-material plate structure, the first-order
eigenfrequency is w; = 14.53 Hz.

Table 1 presents the comparison of the results of the
cantilever plate optimization in three aforementioned
cases. Evidently, compared with the single eigenmode
requirement (in Cases 1 and 2), the optimized structure
with multiple eigenmode requirements in Case 3 obtains
lower first-order eigenfrequency value and the corre-
sponding nodal lines have slightly larger position errors
from the desired ones. Notably, the relative position error
of nodal lines is still small compared with the whole size
of the plate structure. For Case 2, the first-order
eigenfrequency of the optimized structure is strictly
controlled at the desired value, and the optimized nodal
line is also extremely close to the desired one. The above
examples demonstrate that the proposed framework is
capable of generating meaningful topologies and exhibits
a strong ability to control nodal lines and frequencies.

5.2 Nodal line optimization of a piezoelectric vibrator

In this example, we optimize a 3D piezoelectric vibrator
that considers the design requirements of eigenmode
nodal lines and frequencies. The piezoelectric vibrator is
the vibrator structure of a bidirectional linear ultrasonic
motor [52-54]. As shown in Fig. 8(a), the vibrator
consists of a plate-shaped stator, eight driving gears with
the same spacing, and fixed ends for clamping on both
sides. The structure is made of titanium alloy with
Young’s modulus £y = 110 GPa, Poisson’s ratio i = 0.34,
and mass density pp = 4500 kg/m3. With the resonant
action of the stator and the piezoelectric ceramic attached
to its bottom, the forward or backward motion is formed
by the specific positional relationship between the
position of the driving gears and the nodal lines of the
resonance modes, realizing bidirectional driving capa-
bility. The seventh- and eighth-order flexural eigen-
modes, called “B7-mode” and “B8-mode” as shown in
Figs. 8(b) and 8(c), are utilized as the working modes of
this motor. For example, when the B7-mode is excited, all
the gears are on the left of the adjacent nodal lines, and
the particles on the surface of the gears will produce a
right diagonal motion, making the vibrator move forward
to the right. Conversely, the B8-mode is the backward
mode for left movement.

The relationship between the driving gears and the
working modes, particularly the relative position to the
nodal lines, plays a decisive role in bidirectional driving
capability. The eight driving gears are fixed to the stator,
and thus, all the nodal lines for the B7-mode must be on
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Fig. 7 Optimized solution for achieving two desired nodal lines in Case 3: (a) structural topology, (b) contour for the second-order
eigenmode, (c) contour for the third-order eigenmode, and (d) comparison between the optimized and desired nodal lines.

Table 1 Nodal line optimization details of the cantilever plate that considers different design cases

Maximum error

Optimized topology between L] and

Average error
between L] and

Maximum error
between L and

Average error

* First-order
between L and

eigenfrequency/Hz

L /mm L,/mm L,/mm L,/mm

0.522 0.162 - - 21.52
- 7 7 N o o
- 1.082 1.217 1.217 0.323 14.53

the left half of the area between two adjacent driving
gears (the eighth gear is not considered at this time).
Correspondingly, the right half is for the B§8-mode. In
Figs. 8(b) and 8(c), the light green regions in the modal
deformation diagrams are where the current nodal lines
are located, while the red and blue solid line segments are
the desired nodal line ranges for the B7-mode and BS8-
mode, respectively. Setting the left end of the structure as
the coordinate origin, the X-coordinates of the desired
nodal line range with two decimal places are provided in
Table 2. For the initial design of the structure, the B7-
mode is the 16th-order eigenmode, and its corresponding
resonant frequency (i.e., eigenfrequency) is wig =
273.7 kHz. The B8-mode is the 18th-order eigenmode

with a frequency of w;s = 345.89 kHz. The initial design
satisfies the desired requirement for the nodal lines of B7-
and B8-mode. However, the resonant frequencies of these
working modes are too high to be achieved easily.
Therefore, the optimization model 2 in Eq. (5) is adopted
in this optimization problem: for the working modes (B7-
and B8-mode), minimizing their corresponding resonant
frequencies while keeping the positions of all the nodal
lines within the specified range.

The optimization problem must consider the position
constraints for 13 nodal lines (6 nodal lines for B7-mode
and 7 nodal lines for B8-mode). Considering that these
nodal lines for flexural modes can be approximated as
straight lines in the longitudinal direction, we select the
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Fig. 8 Schematic of the piezoelectric vibrator and its working modes. (a) Initial design and its front and vertical views. The thickness of
the two fixed ends is 0.2 mm, and that of the stator is 0.25 mm. (b) B7-mode contour of the initial design and the positions of the current
nodal lines and (c) B8-mode contour of the initial design and the positions of the current nodal lines.

Table 2 Ranges of the desired nodal lines of B7-mode and B8-mode

Range of each desired node lines (X coordinate)/mm

Working mode

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
B7-mode [2.59, 3.23] [3.87,4.51] [5.14, 5.78] [6.42, 7.06] [7.69, 8.33] [8.97,9.61] -
B8-mode [1.96, 2.59] [3.23,3.87] [4.51,5.14] [5.78, 6.42] [7.06, 7.69] [8.33,8.97] [9.61, 10.24]
middle surface (X—Z plane with ¥ = 0.8 mm) as the minC = awg;. + (1 — @)wss.,
reference surface to prevent the optimization problem o MM
from becoming too complicated, and then use each node s.t. G =min Z Z (8 + 8m) ¢ <0,

on it to represent the node line to which the node belongs.
In the two working modes, the midpoints of the ranges of
desired nodal lines are regarded as the desired nodes, and
the maximum allowable deviation in Eq. (4) is half the
horizontal length of those areas (A; = 0.31875 mm, (j =
1,2, ...,13)). The first 20 eigenfrequencies and eigen-
modes are considered in the optimization problem (i.e.,
M = 20). On the basis of optimization model 2 in Eq. (6),
the topology optimization problem of the piezoelectric
vibrator, including the nodal line constraints, is
reformulated as

mp7=1mpg=1

where the weight factors @ =0.5. The eigenfrequencies
wg7 and wgg. correspond to the current mp; and mpg order
modes with the nodal lines closest to the desired ones,
and their orders are determined from the optimization

M M
problem min Z Z (8 + &onus) (-

mp7=1 mpg=1
For this problem, we choose the area between the first
and eighth drive gears on the stator plate as the design
domain, and it is divided into seven sub-domains by the
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fixed driving gears (the light blue regions in Fig.9).
Considering the placement of piezoelectric ceramics, a
thickness of 0.1 mm is reserved, and the size of each
design sub-domain is all 1.025 mm % 1.6 mm x 0.15 mm.
We consider two design options. In periodical Design 1,
the design domain can be periodically arranged from a
single sub-domain. The seven sub-domains can adopt the
same structural design. In aperiodic Design 2, the area
between the first and eighth driving gears is considered a
whole design domain. The areas where the driving gears
are located are the non-design domain. Finite element
analysis during optimization is performed using the
commercial software COMSOL.

5.2.1 Topological design that considers the periodical
design domain

For the optimization design that considers periodical
Design 1, only one-half of the sub-design domain with
size 1.025 mm x 0.8 mm is discretized into 80x 60
observation points and 80x60 rectangular finite
elements, because of the periodicity and symmetry
around the reference surface. The correlation length of the
material field is set as /. = 0.8 x 0.2 = 0.16 mm. After
truncation, 61 design variables are involved in the MFSE-
based optimization problem.

The optimized results are presented in Fig. 10. In

CHE T

In'm'

Fig. 9 Diagram of the seven design sub-domains divided by driving gears.
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Fig. 10 Optimized results for Design 1: (a) design domain and optimized 2D material distribution, (b) 3D diagram of the optimized
structure and its top view, front view of (c) the B7-mode and (d) B8-mode contours for Design 1.
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Fig. 10(a), the left side is regarded as the periodic initial
design sub-domain, while the final design on the right
provides the optimized material distribution of each sub-
domain on the X-Y plane, where the red region represents
the retained solid material and the white region is the
void. The corresponding whole structure is shown in
Fig. 10(b). The optimized B7-mode and B8-mode
correspond to the 13th- and 19th-order eigenmodes, respec-
tively. Compared with the initial design, the resonant
frequencies of the optimized design are reduced from
w16 = 273.7 kHz (B7-mode) and w;g = 345.89 kHz (BS-
mode) to w3 = 186.59 kHz (B7-mode) and w9 =
299.1 kHz (B8-mode). Their modal deformation diagrams
and the positions of the nodal lines are presented in
Figs. 10(c) and 10(d). The exact positions of the nodal
lines are provided in Table 3. Combined with Table 2 and
Fig. 10, all the nodal lines of Design 1 in both working
modes are clearly within the desired range.

(a)

5.2.2 Topological design that considers the aperiodic
design domain

Considering the aperiodic Design 2, the design domain
has dimensions of 8.675 mm x 1.6 mm and contains six
0.25 mm x 1.6 mm rectangular non-design solid regions.
Given the symmetry, only one-half of the design domain,
including the non-design domain, as shown in Fig. 11(a),
is discretized into 347 x32 observation points and
694 x 64 square elements. We focus on the distribution of
materials in the X direction, and thus, the correlation
lengths of the material field are set as /., = 8.675 % 0.05 =

Table 3 Positions of nodal lines for Design 1

Positions of each nodal line (X coordinate)/mm

Working mode

No.1 No.2 No.3 No.4 No.5 No.6 No.7
B7-mode 2.7405 4.0524 5.3583 6.6722 7.9908 9.3004 -
B8-mode 2.4936 3.6453 4.8363 6.0613 7.2775 8.4829 9.6792
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Fig. 11 Optimized results for Design 2: (a) design domain and optimized 2D material distribution, (b) 3D diagram of the optimized
structure and its top view, front view of (c) the B7-mode and (d) B8-mode contours for Design 2.
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0.43375 mm and /, = 0.8 x 1 = 0.8 mm, and then, 84
design variables are involved.

The optimized results for Design 2 are presented in
Fig. 11. As shown in Figs. 11(a) and 11(b), the material
distribution changes are mostly in the X direction as
expected. The optimized B7-mode and B8-mode corre-
spond to the 14th- and 17th-order eigenmodes, and the
resonant frequencies are reduced from w;¢ = 273.7 kHz
and w3 = 345.89 kHz in the initial design to w4 =
191.11 kHz and w;7 = 234.35 kHz in the optimized
design. Compared with the optimized results of Design 1,
although the resonant frequency of the B7-mode slightly
increases, the resonant frequency of the B8-mode exhibits
a more evident decrease due to the wider solution space
after the periodicity limitation is lifted. In addition, we
focus on lateral material distribution, and thus, Design 2
exhibits better performance in terms of manufacturability
than Design 1.

The mode shapes and positions of the nodal lines are
shown in Figs. 11(c) and 11(d), and the exact locations
are provided in Table 4. Combining Table 2 and Figs. 10
and 11, the rightmost nodal line of B8-mode is the most
deviated from the midpoint of the desired range in
Designs 1 and 2; however, it is still within the desired
range. Evidently, the 13 nodal lines of Design 2 also
satisfy the required position constraint.

Table 4 Positions of nodal lines in Design 2

Positions of each nodal line (X coordinate)/mm

Working mode

No.1 No.2 No.3 No.4 No.5 No.6 No.7

B7-mode
B8-mode

2.7388 3.9934 53497 6.6573 8.0221 9.3377 -
2.4702 3.5546 4.8444 6.0514 7.3277 8.5369 9.6247

The comparison of the two designs with the initial
design is presented in Table 5. The resonant frequencies
of the two optimized structures are clearly significantly
reduced, particularly the B8-mode of Design 2, whose
resonant frequency is reduced by 32.25%. During
optimization, although the orders of the working modes
are all switched, all the corresponding multiple nodal
lines satisfy the position constraints, realizing the
function of the bi-directional driving of the piezoelectric
motor. The optimization example of the piezoelectric
vibrator further demonstrates the effectiveness of the
proposed framework.

Table 5 Comparison of different designs for the piezoelectric
vibrator

B7-mode Position B8-mode Position
Case orderand  constraint for  order and  constraint for
frequency/kHz B7-mode/mm frequency/kHz B8-mode/mm
Initial design w16 = 273.7 816 = 0 w18 = 345.89 g18 = 0
Design 1 w13 = 186.59 g13=0 w19 =299.1 g19=0
Design2 w14 = 191.11 g14=0 w17 =234.35 817 =0

6 Conclusions

In this study, a general gradient-free topology optimiza-
tion framework is proposed to solve the optimization
problem of vibrating structures that considers nodal lines
and frequencies. Given that no sensitivity is required, the
proposed framework inherently avoids various numerical
difficulties. For structures in which nodal lines can be
explicitly extracted and expressed, numerical applications
demonstrate that this framework performs well to obtain
the desired nodal lines while satisfying frequency
requirements. Although modal switching occurs during
optimization, the optimized structural designs still satisfy
the requirements.

In the examples of nodal lines and frequency control,
the proposed optimization model and gradient-free
framework for the bi-material cantilever plate performs
well in controlling nodal lines in single-modal and
multimodal models. The optimized nodal lines are
extremely close to the desired ones while reaching the
optimization objective of maximizing the fundamental
frequency or obtaining a specific fundamental frequency.
For the optimization problem of a piezoelectric vibrator,
two design schemes are involved. After optimization, the
multiple nodal lines for the multiple working modes are
completely in the required position range, and the
corresponding eigenfrequencies are considerably reduced,
and thus, using the resonance characteristics is more
convenient. The examples demonstrate that the proposed
framework can accurately control nodal lines and
frequencies, exhibiting high potential in the field of
dynamic engineering design.

Nomenclature

IIll2 2-norm

C Correlation matrix

Cy(r) Vector {C (r,r,), C(r,1p),....,C(r, r,\,\m,)}T

E Young’s modulus

Ey Young’s modulus of the considered solid material

Enin Small values of Young’s modulus for avoiding single-
element matrices

Jon, Nodal line measurement function

8m, Constraint function

K’ Number of current nodal lines

K Structural stiffness matrix

I Given correlation length

L;,L;,.... L, Desired nodal lines

L, Current nodal line

Ly Corresponding nodal lines

M Mass matrix
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Nnmep Number of material points

P Penalty parameter

r Coordinate vector

ri Material points

T Desired node

Ty jm, Current node

u,ii Vectors of the degrees of freedom and accelerations,
respectively

@ Weighting factor

Parameter that controls the smoothness of the mapping

P Mass density

Po Mass density of the considered solid material

Pmin Small values of mass density for avoiding single-element
matrices

n Vector of the undetermined coefficients or design variables

1, 1o Poisson’s ratios

A mth eigenvalue

o mth eigenfrequency

p(r) Continuous material-field function

D Corresponding eigenvectors

0, Corresponding eigenmode

x(r) Structural topology

Qes Design domain

Hw;) User-specified  function for some specific order
eigenfrequencies

A; Allowable deviation of the current nodal lines from the

desired nodal lines

A Diagonal matrix composed of the first NV largest eigenvalues
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