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Abstract Intelligent power systems can improve
operational efficiency by installing a large number of
sensors. Data-based methods of supervised learning have
gained popularity because of available Big Data and
computing resources. However, the common paradigm of
the loss function in supervised learning requires large
amounts of labeled data and cannot process unlabeled data.
The scarcity of fault data and a large amount of normal
data in practical use pose great challenges to fault
detection algorithms. Moreover, sensor data faults in
power systems are dynamically changing and pose another
challenge. Therefore, a fault detection method based on
self-supervised feature learning was proposed to address
the above two challenges. First, self-supervised learning
was employed to extract features under various working
conditions only using large amounts of normal data. The
self-supervised representation learning uses a sequence-
based Triplet Loss. The extracted features of large
amounts of normal data are then fed into a unary classifier.
The proposed method is validated on exhaust gas
temperatures (EGTs) of a real-world 9F gas turbine with
sudden, progressive, and hybrid faults. A comprehensive
comparison study was also conducted with various feature
extractors and unary classifiers. The results show that the
proposed method can achieve a relatively high recall for
all kinds of typical faults. The model can detect
progressive faults very quickly and achieve improved
results for comparison without feature extractors in terms
of F1 score.
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1 Introduction
1.1 Motivation

Nowadays, a large number of commercial power genera-
tion gas turbines and aircraft engines are in service and
need regular maintenance which is called condition
monitoring. Therefore, the automatic detection techno-
logy to reduce manpower is very necessary [1]. Timely
and accurate detection of faults in power systems can not
only avoid blackouts and losses, but also help provide
stable power guarantees for people living in extreme
weather [2]. Condition monitoring is conducive to precise
control and decreases maintenance costs [3]. Fault
detection is the first step in the four steps of condition
monitoring [4], i.e. anomaly detection, fault classifica-
tion, fault isolation, and fault mitigation. Fault detection
also helps to achieve intelligent control [5] and prevent
attacks [6]. Timely and accurate fault detection is condu-
cive to realizing the condition monitoring and safe
operation of the power system.

A large number of state sensing-sensors are installed
for intelligent condition monitoring. Among the faults
statistics of three 9F gas turbines from a power plant
located in a eastern coastal city in China, the number of
sensor faults is the highest during use, as shown in Fig. 1.
For the availability of a large amount of operational data
and advances in computing power, data-based detection
technologies have become popular. Data-based detection
technologies generally require four steps: data acquisi-
tion, data cleaning, feature extraction, and fault classifi-
cation [7]. These installed sensors can provide a large
amount of operating data, but considering the catastro-
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phic losses caused by gas turbine failures, few power
plants will allow gas turbines to operate with fault.
Collecting fault data is therefore time-consuming and
expensive [8]. In addition, a complex system such as a
gas turbine contains various components that interact
with each other, making the possible types of faults
innumerable [9]. Ordinary classification-based fault
detection methods may not work because the number of
classifications needs to be determined in advance.
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Fig. 1 Statistics of sensor fault number from the average of
three 9F gas turbines in power plants.

In this study, multiple exhaust gas temperatures (EGTs)
are taken as an example to describe and discuss the multi-
sensor fault detection problem. Sensor fault has two
primary reasons, the first being the power system itself
malfunction, and the second being the sensing elements
malfunction. As combustion has the most adverse
environment in the power system, EGTs indicate that the
combustion state need detection urgently. Additionally,
installing more sensors in the outlet of the turbine will
also increase the probability of sensor fault.

1.2 Related work

Sensor data fault detection has two main research direc-
tions, physical-based fault detection [10,11] and data-
based fault detection [12]. Physical-based methods obtain
detection results through physical modeling [13]. The
most prominent advantage of physical-based methods is
highly interpretable. But physical modeling cannot take
into account all factors, and the error between the final
modeling results and the real results is unknown. Data-
based methods do not generalize well, but are gaining
popularity due to the recent emergence of Big Data,
convenient models, and computation power [14,15].
Data-based fault detection methods learn model para-
meters by using the collected historical information, and
make judgments for the present, which mainly include
classification-based [16,17], statistics-based [18], cluste-
ring-based [19] and reconstruction-based detection [20].
The latter three are unsupervised methods, which need to
manually set the number of cluster categories or the value
of outlier thresholds, and is not easily scalable to

multivariate sensor processing. For example, the recon-
struction-based methods need to set a threshold to the
difference between the regressed reconstructed value and
the truth value [21].

Classification-based methods may not work well in
practical applications due to the cost and limited amount
of fault data. Treating fault detection as a general binary
classification problem is somewhat inappropriate,
because the class of normal data has defined boundaries
and the class of abnormal data has uncertain boundaries.
These uncertain boundaries during classification pose
challenge to the accuracy of results. Some scenarios even
have no fault samples [7], thus the boundaries between
normal and abnormal samples are unknown. If the
generated fault data serves to build boundaries [22], this
generated fault data may miss some corner cases. Deep
learning methods become popular in recent years [23,24].
Deep network learning for classification uses the cross-
entropy loss [25,26], but sets a too-high confidence level
for each class. Out-of-distribution [27] improves the
cross-entropy loss, but still draws the boundaries between
known and determined classes. Positive unlabeled lear-
ning [28] defines the boundary of positive and negative
samples from the construction of local similarity, avoi-
ding the dilemma of incomplete labels of positive sam-
ples. Therefore, representation learning in combination
with some traditional algorithms like unary classification
can avoid the use of cross-entropy loss.

To perform the task of sensor fault detection, the sensor
output data are taken as a time series data structure. Time
series representation is an important research field in time
series data mining because it is difficult to directly apply
data mining algorithms to raw time series data due to its
natural characteristics. Therefore, a fast and effective
time-series representation is needed [25]. Since a variable
is treated as a dimension, the dimension of a large
amount of raw data are usually huge [29], because the
control system of power engine will have hundreds or
thousands of sensors installed. The costs of high-dimen-
sion data processing and storage are high. Therefore, it is
necessary to extract the original data, but to guarantee
that possible key information is not lost. Usually, the
original collected signals in power systems will be
accompanied by white noise. Signals with white noise
will affect the recognition of features to a certain extent.
Therefore, time series data mining algorithms need to be
robust to noise [30].

There are many methods for extracting features, and
what kind of feature to extract depends on experts’ prior
knowledge, e.g., geometric shape information [31],
statistical feature information, frequency information
[32,33], regression model information, matrix decompo-
sition [34,35]. Fault detection involves a large number of
installed sensors. Therefore, fault detection is a case of
multivariate time series mining. The popularity of motif
discovery techniques that can handle multivariate time
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series continues to grow. Therefore, more complex
representation learning emerges, such as fully connected
networks [36], recurrent neural networks [37], and
convolution networks [29]. After obtaining the trained
model, transfer learning can be conducted for a specific
domain [38,39]. Then, first of all, it is necessary to obtain
a strong expressive model for the multi-sensor fault
detection task.

The existing problems in sensor fault detection of
power systems are as follows: First, the original sampled
data are large amounts of normal data, and the real fault
data are little for fault detection of power systems.
General supervised learning may have trouble dealing
with untrained fault data during practical usage. Then, it
would be more difficult to represent the raw EGT data
from multi-sensors in the control system of power
systems if the fault data and normal data overlap with
each other in the original dimension. Finally, simple
accuracy evaluation criterion cannot reach satisfied
detection task. For example, if there is only 1% of fault
data, the final detection accuracy is at least 99%, which is
obviously not competent for fault detection tasks.

1.3 Contributions

The proposed multi-sensor fault detection method is
contributive because, first, this study intends to solve the
dilemma of unknown abnormal data in the practical usage
of multi-sensor fault detection using zero fault data
during training. The proposed method can extract
features of various high-dimensional fault signals without
manual annotation for convenient and quick online fault
detection. Then, a self-supervised representation learning
based on Triplet Loss is introduced to train on a large
amount of normal data and to quickly obtain represen-
tations of original multi-signal data including various
complex untrained fault signals during the test. Those
extracted features from multi-signals are used as input for
unary classification to realize unknown fault detection.
Finally, several datasets from real-world power systems
are collected for experimental verification. Various faults
are superimposed on the multi-sensor dataset. Fault
detection results are analyzed thoroughly using compre-
hensive evaluation metrics. The comparisons with state-
of-art methods are demonstrated qualitatively and quanti-
tively for evaluating the validity of the proposed method.

the data acquisition module in Fig. 2. They have a certain
physical relationship due to being installed on the same
part. Spatial redundancy refers to the installation of
multiple sensors of the same type in the same space,
typically a ring of EGT installed at the turbine outlet, as
shown in the right part of the data acquisition module in
Fig. 2.

Except for the data acquisition module, Fig.2 also
shows the self-supervised representation learning and
unary classification, the evaluation metrics in the
processing flow. The direction of the blue arrow on the
left side of Fig. 2 is the training process for the proposed
method. The input data are a large number of multivariate
EGT data in a normal state. First, the model RNN for
representation learning is obtained through Triplet Loss,
and then the representation results after training are input
into a unary classifier. The direction of the orange arrow
on the right is the test process for the proposed method.
The test dataset contains unbalanced normal and fault
data. First, an intermediate result is obtained through the
representation learning model, and then the intermediate
result is input into the trained unary classifier. Finally, the
test results are evaluated with comprehensive evaluation
metrics.

The goal of multivariate sensor fault detection is to
detect the abnormal state timely given observed value
from history sensors on the signal network. The recorded
exhaust gas temperature signal sequences are denoted as
multivariate time series. Supposing the number of
exhaust gas temperature signals is N, the sensor data
recorded at time ¢ is represented by x| = [x,x7,...,xY],
te[1,L]. L is the recorded time period of the dataset. A
subsequence of x,.; with a length of 7 is represented as

X rotny = [XyoratsXiyri2s--»X, 1. The  fault signal
detection problem is modeled as
(%) F9)
xtof‘wl:to - Hfo - pOS, (1)

where x,_..,,, is the input subsequence of the EGT data
and model G is the feature extractor RNN learned in
Section 3. Model G could process a large amount of
unlabeled data through self-supervised representation
learning. Model ¥ is the unary classifier learned in Fig. 2.
The normal data distribution is as prior knowledge for a
fully unknown fault. The final output result pos has two
integer symbols representing inliers and outliers.

2 Problem definition

A large number of state-aware sensors in power systems
can be roughly divided into physical redundancy and
spatial redundancy. Physical redundancy refers to sensors
installed on the same part but of different types, such as
the fuel-given signal, inlet temperature, outlet pressure,
and rotational speed of the compressor in the left part of

3 Multi-signal fault detection methods

Recently, data-based detection methods have been widely
used because of their high accuracy and Big Data
availability. However, supervised networks employ
cross-entropy loss, using each known and determined
number of classification labels during training. Then, the
cross-entropy loss is unable to deal with unseen samples
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Fig. 2 Schematic of the processing flow of the proposed method.
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during testing. When a sensor fault occurs, there is no
guarantee that the fault sample must have appeared in the
historical data. Therefore, the task of a classifier is to
detect faults by comparing the difference between normal
data and fault data in the feature domain. This unary
classifier is only trained on normal samples, then tests
different types of fault samples. The whole process
during the online test is shown in Fig. 3.

The recorded samples from real industry contain no
fault data. Therefore, different kinds of fault data are
superimposed on real-world data to make an imbalanced
fault dataset as shown in Section 4.1. The backbone of
self-supervised learning is an RNN as shown in Section
3.1.2. In addition, a comparative analysis is conducted for
one-class classifiers including extracted features and
original data.

3.1 Representation learning

A large amount of normal data are labor-intensive to
label, while self-supervised representation learning can
automatically extract the effective features of the input
multivariate sequence without labeling while exploiting a
large amount of normal data. Extracted features can serve
for subsequent machine learning tasks, like fault
detection. Before sequenced-based Triplet Loss is
investigated, Triplet Loss with labels is first introduced to
get the preliminary idea of embedding learning.

3.1.1 Triplet Loss with labels
In supervised learning networks, the learning of fixed
classes generally uses cross-entropy loss. But in some
cases, the number of categories is unknown. We can
compare two samples to see if they are similar to learn
the representation of the sensor data. The purpose of
Triplet Loss is that in the representation space, samples of
the same class with the same label should be very close;
samples of different classes with different labels should
be far away from each other.

In Triplet Loss [40], in order to define the loss
function, the samples are divided into anchors, positive
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samples, and negative samples. Positive samples and
anchors belong to the same class, while negative samples
and anchors belong to different classes. The selection of
triplets is introduced in Algorithms 1. Supposing the label
of the subsequence x,_ ..., 1S ¥,. ¥, is denoted as y for
simplicity, hence y* denotes the label of anchors, y°
denotes positive the labels of samples, and y" denotes the
labels of negative samples. The loss based on some
distance metric d is expressed as

L =max(d(y",y") —d(y",y") + margin,0). @
In the process of minimizing the loss £, d(y*,y") tends
to be zero, and d(y*,y") is larger than d (3*,)°) + margin.
The purpose of setting the margin is to increase the
distance between positive and negative samples. This
margin is conducive to distinguishing positive and
negative samples during testing. In training, each element
of the triplet needs to be set according to the difficulty
levels of the label. According to the distance between
d(*,y?) and d(y*,y"), the triplets are divided into three
difficulty levels. d(3*,y*) >d(y*,y") is difficult-to-mine
triplet. d(3*,y*) <d (*,y") <d(*,y*) + margin is modera-
tely-difficult-to-mine triplet. d (y*,y?)+margin <d(*,y")
is easy-to-mine triplet. It is further extended to divide the
negative samples into three categories: hard negative
samples, semi-hard negative samples, and easy negative
samples. When all negative samples become easy
negative samples, the loss will tend to be zero.

3.1.2  Sequenced-based Triplet Loss

The Triplet Loss training process in Eq. (2) requires
labels. However, in fault detection, some faults may not
have occurred before and labels are unavailable. When
learning from unlabeled data, self-supervised learning is
required. As in the work of word2vec [41], the label is
not used in the process of selecting triplets, instead the
negative sampling strategy is used. The specific idea is
that, in the embedding space, the representation of a
sentence is closer to the words in the sentence, and is
farther away from other randomly selected words that are
not in the sentence.
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Fig. 3 Proposed fault detection processing steps.
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Applied to the time series in the sensor fault detection
task, any subsequence x, .., iS abbreviated as x. As
shown in Fig. 4, considering an arbitrary subsequence x*,
on the one hand, x* should be very close to the
representation of its subsequence x”*°. On the other hand,
x* should be far away from the randomly selected
subsequence x™¢ of the rest of the sensors, or far away
from the subsequence x™* of the same sensor in different
working conditions. To improve the stability and
convergence speed of the training process, as well as the
experimental results of the learned representation, a set of
independent K negative samples is randomly selected.
The self-supervised Triplet Loss function based on time
series is expressed as

L=-log(c(G(x".$)'G(x"",9)))
- log(o (-6, G(x%. ), ()

where G(-,¢) is a deep network with parameters ¢, o is
the sigmoid function and the purpose of the loss function
is to make the representations of x* and x”* as similar as
possible, and to make the representations of x* and x™¢ as
different as possible. In the training process, the specific
steps of the selection process of the anchor, positive
sample, and negative sample triplet are

Algorithm 1: Strategies of choosing x*, x*** and x,*® on
sensor data of length L

Let’s define [m,n]=[m,m+1,...,n], m,neN. For
i€[1,N], ;= len(x").

1) Determine the length of anchor and positive
samples, uniformly and randomly select /7 in [1,/;], and
P in [P, 1];

2) Determine the subsequence of anchor, uniformly and
randomly select x* in the subsequence of x, I* = len (x*);

3) Determine the positive sample subsequence,
uniformly and randomly select x”** in the subsequence of
x*, 1P = len(x"*); and

4) Determine the negative sample subsequence,
uniformly and randomly select ke[l,N], [[* in
[1,len(x*)], then x;® is in the subsequence of x*,
[ = len(x]®).

The deep network G(-,¢) in Eq. (3) is a recurrent
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neural network (RNN), especially a gated recurrent unit
(GRU), a simple yet powerful type of RNN. GRU can
efficiently model nonlinear multivariate time series and
has achieved good results on many tasks. The structure of
the RNN in Fig. 4 is

r"™ = sigmoid (¢r[x, RV + br), 4
u™ = sigmoid (¢, x,h" "] +b,), (5)
C" = tanh(¢ [ x,(r" © h“"")]+b), (©)
B =u”oh" " +(1-u")oC", ()

where at time #,, as before, any subsequence x,_.., 1S
abbreviated as x, and treated as anchor x*. Positive and
negative sample sequences x”* and x* are selected
according to Algorithm 1. x*, x”**, and x}*® are respec-
tively input into the RNN encoder, and finally the loss is
obtained according to Eq. (3). k™" denotes output at the
previous step. r®@, u®™, and C® denote the reset gate,
update gate, and candidate gate. ¢, @, ¢., b,, b,, and b,
are the parameters for the corresponding network layer in
each gate. © is Hadamard product denoting element-wise
product.

3.2 Local outlier factor

Local outlier factor (LOF) is introduced for the signifi-
cance of prior knowledge from a large amount of normal
data. LOF mainly compares the difference between local
information and neighbor information, and judges the
abnormality according to the proportion of abnormal data
[42]. Therefore, LOF is more suitable for diagnosing
progressive and difficult-to-diagnose faults such as drift.
Unlike the classification and clustering method, they
require a balanced number of data samples of different
classes, otherwise, there will be an imbalanced classifica-
tion problem, or the statistical method needs to assume
that the samples are Gaussian distribution, and the
distribution characteristics of fault samples should be
significantly different from normal samples.

LOF gives a comparison score by comparing the local
density of a sample with the k-nearest neighbor density of
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Fig. 4 Schematic diagram of the self-supervised training process of the Triplet Loss function.
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the sample. The reachable distance of sample x is defined
as

rdi(x,z) = max{k —d(z),d(x,z)}. ®

When x and z are far apart, the reachable distance is

itself; when x and z are very close, the reachable distance

is the farthest point in the k-nearest neighbors to gz,

represented by k—d(z). The set of k-nearest neighbors is

denoted as N,(x). The local reachability density of
sample x is defined by

e, (x)rdk(xs )
Ird (x):l/(“‘— . 9
‘ N o)l ©)
The final LOF is defined as

ZzEM(x) :i::g; (l 0)

INi ()]

LOF, is the ratio of the local reachable distance of
sample x to the local reachable distance of the k-nearest
neighbors of x. LOF is tough to interpret because it is a
ratio. There is no specific threshold value above which a
sample is defined as an outlier. The detection of an
outlier is dependent on the problem. Despite the
disadvantage, LOF can effectively and robustly identify
the local outliers. A sample will be treated as an outlier
even if the sample is at a small distance from the
extremely dense cluster samples, while the global
approach may not consider that sample as an outlier.

LOF,(x) =

4 Implement details
4.1 Fault data sources

The power systems often work for a long time and do not
stop frequently. Therefore, a large amount of normal data
can be collected. In real working conditions, the general
strategy for sensor fault is shutting down immediately. If
the sensor data can be monitored and diagnosed on the
fly, an intelligent response plan can help avoid the
inconvenience and property loss caused by sudden
blackouts. First, the feasibility of the proposed algorithm
should be verified on a public simulated gas turbine
dataset, and then the effectiveness of the proposed algo-
rithm is further verified on the real gas turbine dataset.

The simulation dataset comes from the NASA
Turbofan Jet Engine Dataset [43], which contains 21
measurement sensors, and 4 sets of training and testing
data. The length of each training set and test set is 30000
sampling points. Regularization processing is performed
before data training. The second and fourth sets of data
were used to verify the proposed fault detection method,
and various types of faults were added to the test sets of
these two sets of test data.

The real-world experimental data comes from the 9F
gas turbine control system of an in-service power plant

located in an eastern coastal city in China. The total
sensor variable number is 33 including 20 exhausted gas
temperatures. The collected data from a power plant are 3
sections of 10079 sampling points, sampling at every 1
min. The most complex first section is used as the
training dataset. The training set includes the continuous
working conditions of fueling and stopping. The second
section is regarded as the verification dataset, and the full
load operation process in the third section is regarded as
the test dataset. All data do regularization with the mean
and variance of the training dataset before inputting to the
network.

Five types of faults are superimposed on the real
operation data, including the short, step, drift, noise, and
periodic faults [44] generated by TimeSynth (from
github) as shown in Fig. 5. These five kinds of faults
sensor fault can be due to humidity, pressure,
temperature, sensor fixed bias, drifting bias, precision
degradation, and complete failure [45]. To simulate the
imbalanced classification problem in real situations, the
fault data only occupies less than 5% of the entire test
dataset. To show the distribution law of fault data and
normal data, the histogram specially adjusts the ratio of
fault data and normal data to a balanced 1:1 in Fig. 6.

The fluctuations of generated faults with random white
noise are more in line with the real sampling situation.
Different faults have a certain typical representation
because of different amplitudes, different trends, and
different distributions as shown in Fig. 6. The distribution
characteristics of short and step faults are similar. They
are relatively clustered, the distance from the normal data
are far away, and their respective boundaries are very
clear. Due to the different magnitudes, the distribution of
short and step faults is just opposite to that of the normal
data. However, drift faults, noise faults, and periodic
faults are mixed with the original data, and there is no
clear dividing line. Although the distribution of drift
faults and periodic faults is very similar, due to the
amplitude, the data of periodic faults are evenly
distributed on both sides of the normal data, while the
drift faults are only located on one side of the normal
data. The distribution of noise data is also located on both
sides of the normal data, and it is light at both ends and
heavy in the middle. These characteristics of various
faults require the model in representation learning to have
strong representation ability.

4.2 Evaluation metrics

4.2.1 Classification evaluation metrics

The confusion matrix consists of truth label and predicted
label. Positive is defined as abnormal, while negative as
normal. True positive (TP) means abnormal detected as
abnormal, false negative (FN) means abnormal detected
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Fig. 5 Real original EGT signals imposed with various fault data.

as normal, false positive (FP) means normal detected as
abnormal, and true negative (TN) means normal detected
as normal. Intuitively, the higher the proportion of TP
and TN on the diagonal matrix indicates the better results.
For fault detection, it is vitally important to detect all
positive samples, otherwise the algorithm is inferior. The
proposed fault detection approach is to be evaluated
using the following metrics.

1) Recall represents what percentage of the true
positive samples are detected:

TP/(TP +FN) = TP/P. (11)

2) Precision represents what percentage of the detected
positive samples are really positive:

TP/(TP + FP) = TP/PP. (12)

3) F-measure is the harmonic mean of precision and

recall, called F1-score:

F1-score = (2 x Precision X Recall)/(Precision + Recall).
13)
4) Balanced accuracy is suitable for unbalanced
dataset evaluation:

1 TP TN 1{TP TN
= + ===+ (14)
2\TP+FN TN+FP/ 2\ P N

5) Matthew correlation coefficient:

~ TPx TN — FP x FN
~ \(TP+FP)(TP + EN)(IN + FP)(IN + FN)
(15

MCC

6) False alarm represents what percentage of the real
negative samples are not detected:

FP FP
_— = — (16)

FP+TN N
The false alarm is different from the previous five
evaluation metrics. A higher the first fifth metrics

indicate better results, while a lower the false alarm rate
indicates better results.

4.2.2  Clustering evaluation metrics

Clustered samples can be evaluated using intra-class and
inter-class distance between classes. Later cluster
evaluation metrics are used to measure self-supervised
representation learning models.

1) Silhouette coefficient:

For a single sample x:

s=—21°P (17)
max(p,q)

where p is the average distance between the self-sample
and all other samples in the same class. ¢ is the average
distance between the self-sample and all samples in the
nearest class. For a series of samples, the silhouette
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Fig. 6 Various real data with fault data visualization (left: original scale; right: scatter with histogram).

coefficient is the s average of all samples. The metric is
between —1 and +1, with —1 for incorrect clusters, +1 for
very dense clusters, and 0 for overlapping clusters.

4.3 Hyperparameters

All mentioned methods in this research are implemented
in Python with deep learning under PyTorch. According
to previous prediction research [46,47], 36 is a suitable
equidistant window length for real-world 9F gas turbine
dataset. Because too long a window length brings a
burden for RNN and becomes less accurate while too
small a window length carries not enough information to
extract features. The window lengths do not overlap each

other and the moments of windows are adjacent. The
number of input dimensions is fixed to 20 by the number
of recorded signals. The parameters of the intermediate
hidden layer should be appropriately larger to map to a
high-dimensional space, which is set to 100. The number
of RNN layers is set to 1 and bidirectional parameter is
set to true in order to obtain a lightweight model for
online detection. Besides, the number of output features
should not be too large because representation learning
aims to reduce high dimensional Big Data, which is set to
10. Some important experimental hyperparameters of
corresponding dataset are shown in Table 1. NASA [39]
represents the public dataset, while 9F EGTs represents
the collected real-world data from a power plant.
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Table 1 Experiment parameters

Dataset Window length Input dimensions Hidden dimensions RNN layers Bidirectional parameter Output features
NASA 128 21 128 2 True 10
9F EGTs 36 20 100 1 True 10

5 Results and discussion
5.1 Fault detection results

The unary classification algorithm divides normal and
abnormal according to the paradigm and rules of the
normal state, and can flexibly handle various unknown
types of faults. A total of four unary classification
algorithms based on different principles are compared to
show the robustness of the proposed detection strategy,
the LOF, and three others.

1) Robust covariance [48] determines the multivariate
minimum determinant by assuming the proportion of
abnormal samples. Robust covariance randomly selects a
certain number of samples to calculate distribution
parameters. The covariance with the smallest determinant
is regarded as the mean and covariance of the sample
distribution, so that the mean and covariance will not be
affected by abnormal samples. This unary classifier is
robust against outlier values. The abnormal samples are
determined according to the Mahalanobis distance which
represents the distance from the sample to the normal
distribution. This algorithm fits exactly for multivariate
Gaussian distribution.

2) One-Class SVM [49] uses a kernel function to map
samples to high-dimensional space. One-Class SVM
determines the outliers using the hyperplane boundary of
normal samples, so that samples without labels can be
processed. The proportion of abnormal samples is
achieved by adjusting the relaxation factor.

3) Isolation Forest [50] randomly selects a value
between the maximum and minimum values of a feature
and recursively divides the dataset. An Isolation tree is
used to represent the divided data. The number of
divisions required to separate a sample is called a path.
The sample with the shortest path is considered abnormal
and the sample with a longer path is normal. The method
need not calculate the parameters of a dataset
distribution.

The general supervised multi-class classification
method is not adopted because of the scarcity and
unavailability of abnormal data in real work conditions.
Instead, a wunary classification algorithm that only
requires training normal samples is adopted. A total of
three state-of-art self-supervised representation learning
methods are compared, the Triplet Loss and two others.

1) CPC [51] is short for contrastive predictive coding.
CPC learns representation by predicting the hidden space
and uses a probability contrast loss, so that the hidden
space can capture as much useful information as possible

to predict future samples. Specifically, the noise-contrast
loss maximizes the mutual information between encoded
representations. A nonlinear encoder is used to encode
local information, and a regression model is used to
summarize the encoded hidden space sequence.

2) TNC [52] is short for temporal neighborhood
coding. To solve the problem of negative sample
sampling bias in contrastive learning, TNC adopts the
idea of positive-unlabeled learning. TNC treats unlabeled
data as negative samples with a small weight. The small
weight is reflected in the loss function to deal with the
situation that samples are not neighboring pairs but may
also be positive samples. The idea is reflected in the loss
function that the features of neighboring samples are
similar, and the features of non-neighboring samples are
adjusted according to the weight.

To ensure a fair comparison, the three self-supervised
representation learning methods use the same encoder to
ensure that the results are not influenced by different
encoders.

5.1.1
faults

Test on sudden faults, progressive faults, and hybrid

Fl-score is a common comprehensive evaluation metric
because it balances precision and recall, and thus is
crucial for the evaluation of imbalanced classification
datasets. Fault detection is a typical imbalanced
classification problem. The overall comparison between
the proposed method and the original data detection
results is shown in Fig. 7. The proposed method couples
Triplet Loss with LOF and is able to mine high
dimensional data efficiently. The proposed method
performs well under various fault situations while the
result of original data using unary classification may
collapse for unknown faults. The effect of different
representation learning models for different faults will be
discussed in detail in combination with the real-world 9F
EGTs dataset.

A unary classifier can detect serious sudden faults, such
as short or step faults, when using only original signal
data. As shown in Fig. 6, the distribution of short fault
and normal data are easily distinguished, because they are
two multivariate Gaussian distributions with a large
difference between their means. This case is favorable for
robust covariance. Because statistics-based robust
covariance is particularly suitable when the fault
distribution and the normal data distribution are two very
distinct independent Gaussian distributions. As the
difference between the fault distribution and the normal
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data distribution becomes smaller and overlaps with each
other, the performance of robust covariance begins to
decline. Therefore, as shown in Table 2, the original data
perform significantly well in terms of the Fl-score, and
self-supervised feature extractors also perform well in
terms of other metrics.

Table 2 Short fault, F1-score of various unary classification
algorithms coupling with various feature extractors

Unary classifier CPC TNC Triplet Loss  Original data
Robust covariance 0.615 0.696 0.889 0.963
One-Class SVM 0.421  0.421 0.085 0.548
Isolation Forest 0.410  0.457 0.500 0.537
LOF 0.727  0.696 0.762 0.059

As shown in Fig. 6, the step fault features are not as
obvious as the short fault, and the deviation from the
mean of the normal data are only half of the short fault.
Thus, the performance of original data detection is not as
good as the self-supervised representation learning
features as shown in Table 3, but still acceptable. Since
the step fault is also a multivariate Gaussian distribution,
robust covariance performs the best among the four unary

Table 3 Step fault, F1-score of various unary classification
algorithms coupling with various feature extractors

classification algorithms. The original data performance
is inferior to the Triplet Loss feature extractor when using
robust covariance due to the lower recall.

After the features are extracted by self-supervised
representation learning from the original data, the
features of the fault signal become closer in feature space
and easier to a classifier. Thus, the unary classifier can
deal with more common complex faults, such as drift
faults, noise faults, and periodic faults with the help of a
self-supervised representation learning based feature
extractor. As shown in Fig. 6, the distribution of drift
fault is completely different from step or short fault. Drift
fault is a uniform distribution with gradual changes. This
gradual change overlapping with original data makes the
drift fault completely undetectable. As shown in Table 4,
the F1-scores of the four unary classifiers are all close to
0 when using original data without any feature extraction
process. On the contrary, features extracted by Triplet
Loss obtain the best Fl-score of 0.8 with the help of
LOF. Because LOF is not affected by the overall
probability distribution and relies on the comparison
between the local density and the k-nearest neighbor
density of the sample point.

The distribution characteristics of noise faults and
periodic faults are somewhat similar, and normal data and

Table 4 Dirift fault, F1-score of various unary classification
algorithms coupling with various feature extractors

Unary classifier CPC TNC  Triplet Loss  Original data Unary classifier CPC TNC  Triplet Loss  Original data
Robust covariance 0.593  0.696 0.889 0.877 Robust covariance 0.583  0.667 0.714 0.000
One-Class SVM 0.421 0.421 0.085 0.548 One-Class SVM 0.432 0.432 0.085 0.013
Isolation Forest 0.410  0.457 0.500 0.537 Isolation Forest 0.421 0.471 0.516 0.073
LOF 0.727  0.696 0.762 0.076 LOF 0.727  0.727 0.800 0.244
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abnormal data are overlapping with each other as shown
in the scatter diagram in Fig. 6. The original data cannot
detect those two faults as shown in Tables 5 and 6. Even
combined with the feature extractor, a classification-
based algorithm such as One-Class SVM still fails. At the
same time, robust covariance performs a little better than
the LOF. The feature extractor only strengthens some
statistical features of the original distribution, such as the
variance of the sample distribution, but cannot extract all
the features completely, such as the period. A period and
slope extraction modules are further needed to classify
fault types.

Table 5 Noise fault, F1-score of various unary classification
algorithms coupling with various feature extractors

Unary classifier CPC TNC Triplet Loss ~ Original data
Robust covariance 0.593  0.636 0.824 0.094
One-Class SVM 0.333  0.286 0.085 0.473
Isolation Forest 0.368  0.457 0.452 0.468
LOF 0.727  0.696 0.700 0.319

Table 6 Periodic fault, F1-score of various unary classification
algorithms coupling with various feature extractors

Unary classifier CPC TNC Triplet Loss  Original data
Robust covariance 0.615 0.696 0.889 0.000
One-Class SVM 0.378  0.378 0.085 0.489
Isolation Forest 0.410  0.457 0.500 0.485
LOF 0.545  0.696 0.762 0.308

By comparing different self-supervised feature learning
and unary classification algorithms, it is found that
Triplet Loss combined with LOF is competent for various
types of faults. This combination achieves the highest
overall Fl-score. In addition to the Fl-score, the
Matthews correlation coefficient (MCC) is also consider-
ed as a balanced measure, as it considers all the four

elements in the confusion matrix. Even in the case of an
extremely unbalanced dataset, the MCC can still fully
reflect all the information on binary classification results.
Moreover, the Fl-score is affected by the definition of
whether the fault data are a positive or negative sample,
while the MCC is not affected by this definition. As
shown in Fig. 8, the MCCs of five types of faults using
the unary classifier with various self-supervised represen-
tation learning or original data are compared. First, the
accuracy of most original data is low, except for short
faults under the robust covariance. The reason for this is
that the robust covariance assumes that the sample is
based on a Gaussian distribution, and subsequently
checks whether the mean and variance of the sample
deviate from the mean and variance of the normal
sample. At this time, the short fault is just a Gaussian
distribution that deviates far from the normal sample.
Therefore, it is easy to detect in such a special case. The
LOF performance changes the most after passing through
the feature extractor, especially for the Triplet Loss.
MCC is a more discriminating metric than balanced
accuracy. As a result, balanced accuracy is omitted here.

5.1.2 Performance on recall and false alarm

Although the previous overall F1-score and MCC have
shown that combining LOF with Triplet Loss achieves
the best results, there are other perspectives that reflect
the intermediate process, such as the confusion matrix.
However, the confusion matrix is more complex than
recall or false alarm. As shown in Fig. 9, inputting
various self-supervised representation learning and
original data respectively into four unary classifiers, the
recall comparison results of five faults are obtained. The
recall represents the number of real positive samples
(fault data) that are detected, and the higher recall indi-
cates the improved result. Self-supervised representation
learning Triplet Loss has the highest recall in the five
faults. It shows that the features extracted by Triplet Loss
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Fig. 8 Matthews correlation coefficient (MCC) of four unary classifiers with self-supervised representation learning and original data
(horizontal tick label denotation: 1 — Robust covariance; 2 — One-Class SVM; 3 — Isolation Forest; 4 — LOF).

(a) Original data; (b) TNC; (c) CPC; (d) Triplet.
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are more obvious than other representation learning. The
clustering results slightly reflect the evaluation of
classification results. As the advantages and
disadvantages of these three kinds of self-supervised
representation learning can be seen from the cluster
visualization, the performances of the extracted features
are significantly different for downstream tasks. Feature
extractors TNC and CPC have significantly lower recall
rates for noisy and periodic faults. Isolation Forest and
LOF with TNC and Triplet Loss perform well, and CPC
looks good with isolation forest. It shows that even
though MCC has a great relationship with recall, the
recall rate alone cannot evaluate the fault detection
problem very well.

As shown in Fig. 10, various self-supervised represen-
tation learning and original data are respectively inputted
into four unary classifiers, and the false alarm compa-
rison results of five types of faults are obtained. The false
alarm represents the number of real negative samples that
are not detected, and the lower false alarm rate indicates
the improved result. Recall and false alarm are important
evaluation criteria for fault detection. Similar to the
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recall, the LOF with both TNC and Triplet Loss performs
well. Figure 10 also shows that even though MCC is
strongly related to the false alarm, the false alarm alone is
not a good evaluation for the fault detection problem. In
addition, in Figs. 9(d) and 10(d), the trade-off between
recall and false alarm is well reflected. Although the false
alarm of robust covariance in Fig. 10(d) is smaller than
LOF, the recall in Fig. 9(d) is obviously inferior to LOF.
Fault detection needs to ensure high recall then select a
small false alarm.

To further analyze the performance of TNC and Triplet
Loss, the comparison of the confusion matrix for noise
fault is shown in Figs. 11 and 12, and the comparison of
the confusion matrix for drift fault is shown in Figs. 13
and 14. However, there are two ways to regularize the
confusion matrix along the row or the column, and non-
regularization is more intuitive. For brevity, only parts of
the confusion matrix results are listed. When using
Triplet Loss to detect noise faults, the FN of four unary
classifiers is all 0. When cooperating with the LOF, the
FP of Triplet Loss is smaller than TNC. The same is true
for progressive faults like drift in terms of FN and FP.
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Fig. 9 Recall of four unary classifiers with self-supervised representation learning and original data (horizontal tick label denotation:
1 — Robust covariance; 2 — One-Class SVM; 3 — Isolation Forest; 4 — LOF).

(a) Original data; (b) TNC; (c) CPC; (d) Triplet.

1.0 § 1.0 | A Short 1.0 F A Short 1.0 &
Step Step
08 F 08 Drift 0.8 F Drift 0.8 F
= A Short v Noise ¥ Noise
06T Step 0.6 & Periodic | 0.6 1 & Periodic | 0.6 1
5 Drift P od
Z04} v Noise | 04f 04} 04} “’pgzd
= & Periodic L
02F 02F 0.2+ po 02F
* ® 4 + i [ ! P
0.0 , , B oo ® , , 00 , , Moow , , #
1 2 3 4 | 2 3 | 2 3 4 1 2 3 4
(a) (b) (c) (d)
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(a) Original data; (b) TNC; (c) CPC; (d) Triplet.
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5.2 Clustering of extracted features

The different working conditions are denoted by numbers
as shown in Fig. 15. The proportions of different working
conditions are different in the training set and the test set.
The heat maps of corresponding encoding features under
different working conditions are also shown in Fig. 15.
The extracted features closely correlate and change with
different working conditions.

Clustering results of representation learning are also
visualized using t-SNE [53]. T-SNE is a nonlinear

dimensionality reduction technique suitable for visuali-
zing high-dimensional data in two-dimensional spaces.
The comparison between the clustering visualization of
original data and those of features extracted by Triplet
Loss, CPC, and TNC is shown in Fig. 16. State denota-
tions under various working conditions are shown in
Fig. 15. State 10 denotes all kinds of faults in Fig. 5.
After the original data pass through the feature extractor,
the densities of clusters change from scattered to dense,
and the boundary shapes of clusters change from
irregular to more regular. Triplet Loss tends to represent
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Fig. 15 Denotation of different working states and corresponding encoded features of all sensor data.

(a) Sampled sensor data; (b) corresponding encoded features.

fault data in closer feature space than the other two.

The k-means is for clustering features learned by self-
supervised representation models, and the Silhouette
Score on the test set is shown in Fig. 17. The difference
between CPC and TNC models is not very significant.
But TNC has the longest training time because the
hypothesis test is performed in each batch, and the
remaining two training processes are faster. Triplet Loss
performs better than the other two, as do the fault
detection results.

5.3 Computing resources

The operating environment consists of an NVIDIA
TITAN Xp GPU and an Intel(R) Xeon(R) CPU. The
algorithm is designed using Python and PyTorch
frameworks. The software platform of the algorithm is
Visual Studio Code. When the original data are input, the
computation time and CPU memory required by different
classifiers during testing are shown in Table 7. The test
set contains 20 variables and 9000 sampling points, and
the fault data rate is 3%. When using a feature extractor,

the main computational time is consumed in the feature
extraction process. All after encoded computation time of
unary classifiers are significantly less than inputting
original data time. The encoders in different feature
extractors are set to the same. Therefore, the required
parameters are the same. Due to the differences in the
calculation process, the consumption of GPU memory is
slightly different, and so is the calculation time, as shown
in Table 8. It can be seen that the unsupervised learning
model designed in this work is very lightweight and fast.

6 Conclusions

With the tricky problem of a large amount of normal
sensing data lacking fault information in practical fault
detection tasks, this work proposes to adopt a self-
supervised feature extractor to extract features from the
original data of multi-sensors. It then treats a large
amount of normal data as prior knowledge to train the
feature extractor. It detects anomalies in the extracted
features domain based on a simple fast classifier.
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Fig. 16 Clustering visualization of original signals and extracted features using t-SNE.
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Table 7 Comparison of unary classifier computation time

Uy clater gl ol (P AR el
Robust covariance 2.99 0.31 0.0550
One-Class SVM 0.53 0.32 0.0010
Isolation Forest 0.58 0.32 0.2100
LOF 2.67 0.35 0.0036
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metric with the change of the number of categories under
Silhouette Score?.

Comparing three self-supervised representation learning
feature extraction methods and not using feature
extraction, it presents the results of four unary classifiers.

Under the background of industrial intelligence, it
investigates the proposed method on a real-world gas
turbine dataset including multi-temperature sensors. It
imposes five kinds of typical faults with different
distributions only on the testing data, abrupt faults, such
as short, step, complex faults, such as drift, noise, and
periodic, and compares the computational resources
required by various feature extractors. It is found that
self-supervised representation learning can quickly obtain
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Table 8 Comparison of feature extractor computation time

Feature CPC TNC Triplet Loss
Parameters 75210 75210 75210
GPU memory/MB 222 222 222
Time/s 0.025 0.021 0.025

features from original data, and use the extracted features
to obtain better one-class classification results in the face
of complex faults. The reason is also shown through the
cluster visualization. The Triplet Loss coupling with LOF
can significantly achieve an Fl-score of 0.8 for drift
faults that are generally considered the most difficult to
detect. This coupling method also has a recall rate of
100% and a false alarm rate of less than 1%.

7 Future work

Since this work only involves fault detection, it can be
applied to compound fault detection of various fault
superpositions, including sensors on renewable energy
systems. It can also handle various unknown faults of
multi-sensors. But additional step is needed to locate the
fault sensor space position at the time of fault arisen.
However, the scope of this work is very broad, and it can
even be used in online characterization and detection of
false data injection attacks.
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