Front. Energy 2023, 17(6): 796-810
https://doi.org/10.1007/s11708-023-0877-5

RESEARCH ARTICLE

Mingkuan ZHANG, Xudong ZHANG, Luna GUO, Xuan LI, Wei RAO

Flow and thermal modeling of liquid metal in expanded

microchannel heat sink

© Higher Education Press 2023

Abstract Liquid metal-based microchannel heat sinks
(MCHSs) suffer from the low heat capacity of coolant,
resulting in an excessive temperature rise of coolant and
heat sink when dealing with high-power heat dissipation.
In this paper, it was found that expanded space at the top
of fins could distribute the heat inside microchannels,
reducing the temperature rise of coolant and heat sink. The
orthogonal experiments revealed that expanding the top
space of channels yielded similar temperature reductions
to changing the channel width. The flow and thermal
modeling of expanded microchannel heat sink (E-MCHS)
were analyzed by both using the 3-dimensional (3D)
numerical simulation and the 1-dimensional (1D) thermal
resistance model. The fin efficiency of E-MCHS was
derived to improve the accuracy of the 1D thermal
resistance model. The heat conduction of liquid metal in Z
direction and the heat convection between the top surface
of fins and the liquid metal could reduce the total thermal
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resistance (R;). The above process was effective for
microchannels with low channel aspect ratio, low mean
velocity (Uy) or long heat sink length. The maximum
thermal resistance reduction in the example of this paper
reached 36.0%. The expanded space endowed the heat
sink with lower pressure, which might further reduce the
pumping power (P). This rule was feasible both when fins
were truncated (4 < 0, A3 is the height of expanded chan-
nel for E-EMCHS) and when over plate was raised (4, > 0).

Keywords liquid metal cooling, heat sink, expanded
microchannel, flow and thermal modeling

1 Introduction

The heat generated from heat sources, such as chips,
should be dissipated by the heat exchange between heat
sinks and the coolant to ensure the regular operation of
the equipment [1,2]. The heat dissipation process could
be divided into three parts: the heat conduction in the heat
sink, the heat transfer between the coolant and the heat
sink, and the coolant flowing out the heat sink.
Substantial research efforts have focused on earning a
higher nusselt number (Nu) to improve the heat transfer
between the coolant and the heat sink. Optimizing the
structure of the heat sink and improving the thermal
properties of the coolant are the two main approaches.
Structural optimization mainly focuses on passive techni-
ques, such as adding ribs [3—6], changing configurations
of channel [7-12], using vortex generators [13-16],
segmented microchannel [17], and optimized rib structure
and arrangement [18-20]. These ways are primarily
suitable for the coolant with a low conductivity, i.e.,
water, and are generally accompanied by the complex
structure and larger pressure drop [21]. Improving the
thermal conductivity (k) of coolant can significantly
advance heat transfer. Novel coolants with a higher £,
such as nanofluid [22—24] and liquid metal [25-29], have
received more attention. Nanofluids are wusually
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composed of nanoparticles with a high £ (AlLLOs [30],
TiO;, [31], Cu [32], and Ag [33]) and base fluids with a
low viscosity. The Nu of nanofluids is usually higher than
that of base fluid. However, it is difficult for nanofluids
to avoid sedimentation completely. In addition, their heat
transfer performance is still unable to cope with the
condition with a high heat flux. Liquid metal has been
applied to microchannel heat sink to achieve more
efficient and stable heat dissipation [34,35]. It is proved
that the liquid gallium-based heat sink could obtain a
better cooling performance than the water-based one
when the length of the heat sink is smaller than the
critical length [36]. Sarafraz et al. found that the thermal
performance of gallium is superior to CuO-water nano-
fluid when applied to cool the central processing unit
(CPU) [37]. In recent years, the structure or system sui-
table for liquid metals has been gradually proposed, such
as the centrifugal pump driven by rotating permanent
magnets [38], the electromagnetic induction pump [21],
the integrated liquid metal cooling system [39,40] and the
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two-stage multichannel liquid-metal cooling system [29].
These cases indicate that liquid metal is a candidate for
the new generation of chip heat dissipation.

Notably, Fig. 1 shows the flow and thermal perfor-
mance of liquid metals are different from those of both
waterandnanofluidsbecauseofthedifferencesbetweenther-
mophysical properties (Fig. 1). The high £ makes the Nu
of the liquid metal higher than that of the conventional
fluids. But liquid metal coolant suffers a large tempera-
ture rise due to its weak specific heat capacity (Cp). For
example, Liu et al. compared the total thermal resistance
(Ry) of water-based and gallium-based microchannel heat
sinks (MCHSs) with the same dimension. As the length
of the heat sink increases, the temperature of the water-
based heat sink almost remains constant but that of
gallium-based heat sinks increases significantly [36].
According to Newton’s cooling formula (¢ = A.-AT), the
temperature difference (A7) between the wall and the
coolant is equal to the ratio of the heat flux (g) to the
convective heat transfer coefficient (4.). When the flow
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Fig. 1 Comparison of thermophysical properties of nanofluids (Al,Os/methanol [45], TiO,/water [46], silver nanoparticles/ethylene
glycol-water [33], Cu-fly ash/water [32]) and liquid metals (gallium and GaeslnyoSnjs [47]) and pure substances (water, methanol and

ethanol [48]).

(a) Heat capacity; (b) thermal conductivity; (c) density; (d) viscosity.
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and the heat transfer reach steady-state, the ¢ and the /4, at
some point in the heat sink are constant, resulting in the
constant AT. Therefore, the temperature surge of the
coolant arising from the low heat capacity will lead to the
heat sink temperature rise and the uneven temperature
distribution. Clearly, unlike that of water-based MCHSs,
the optimization of liquid metal-based MCHSs should
focus on decreasing the temperature rise of the liquid
metal, i.e., reducing the resistance of heat capacity rather
than the resistance of convection [28,41,42]. This
requires more coolant to flow through the heat sink,
which could be achieved by increasing the flow rate,
increasing the width and height of the heat sink, or
reducing the thickness of the fins. However, these ways
are often accompanied by problems such as larger pumps,
larger volumes or structural instability.

Interestingly, it is found by the authors of this paper
that the convection at the end of the fins is not significant
for heat transfer enhancement. By cutting the fin ends and
thus reserving expanded space to increase the flow rate of
coolant in the fixed size, the heat transfer will be much
more effective. This expanded microchannel heat sink (E-
MCHS) allows more cooling medium to flow through
without changing the size of the heat sink, increasing the
difficulty of processing, and destroying the stability of
the heat sink. In this paper, the cooling performance of

Solid [ Liquid
(©)
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liquid metal for single-phase laminar heat transfer in the
expanded microchannel is studied by using both the
revised empirical correlations and the numerical analysis
methods. Navier-Stokes and Energy equations with slip
boundary conditions (velocity slip and temperature jump)
are solved to study the hydraulic and heat transfer
performances of the microchannels.

2 Material and methods

Generally, fins in MCHS are directly in contact with a
cover plate. The expanded microchannel structure has
been used in microchannel flow boiling to reduce the
flow reversal and suppressed the flow instability [43,44].
There is an apparent difference between the heat transfer
mechanism of the boiling heat transfer and the single-
phase laminar heat transfer. This structure cannot reduce
the thermal resistance of the water-based single-phase
flow heat sink. However, it is suitable for reducing the
excessive temperature rise of liquid metal in a micro-
channel. Figures 2(a) and 2(b) present the structure of
MCHS and E-MCHS. E-MCHS could be obtained by
raising the cover plate (4, > 0, h, is the height of
expanded channel for E-MCHS) or truncating the fins
(hy < 0) of MCHS (Figs. 2(a)—2(c)). For E-MCHSs, the

E-MCHS

M

Fig. 2 The structure of MCHS and E-MCHS.
(a) Schematic diagram of the conventional MCHS; (b) schematic diagram of E-MCHS; (c) basic unit for numerical calculation of MCHS

and E-MCHS; (d) 1D heat transfer model of the fin in E-MCHS.
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height between the top of the fins and the bottom of the
cover plate is named /4, and the remaining height of the
fins is Ay (A1 is height of fins for E-MCHS). The total
channel height H is the sum of 4; and A;. Of note, H of
E-MCHSs at s, <0 and MCHS is the same.

Compared to MCHSs, E-MCHSs provide expanded
space for coolant. When 4, < 0, E-MCHSs could earn an
nx W, x L of area for heat transfer at the cost of 2nx
h, X L area, in which » is the channel number, W, is the
fin width, L is the heat sink length. Therefore, when £, is
smaller than W,/2, the heat transfer area of the fins
increases. The fin efficiency decreases with height
increasing, thereby the heat transfer capacity arising from
2n X h, X L is inferior to that from n X W,, X L. The narrow
space at the top may increase the intensity of convective
heat transfer. Thus, truncating fins may have a negligibly
bad impact on the heat exchange between the coolant and
the heat sink. Similarly, E-MCHSs could earn an
nx W, x L of area for heat transfer when %, > 0. More
coolant means a smaller thermal resistance and a lower
outlet temperature. Although more fluid requires a higher
pumping power (P), the expansion of the channel also
reduces the pressure drop. E-MCHSs could achieve a
better cooling performance at a low P.

3 Theory and calculation of flow and
thermal characteristics of MCHS/E-MCHS

The revised empirical correlations 1-dimensional (1D)
thermal resistance model and numerical simulation were
used to calculate the heat transfer and flow performance
of MCHSs and E-MCHSs. The fin efficiency of E-MCHS
was calculated to make the 1D thermal resistance model
more accurate.

3.1 Theory of thermal resistance calculation

3.1.1 1D thermal resistance model
To clearly illustrate this process, the total thermal
resistance R, is introduced, and the lower R; refers to a
better cooling performance. R; could be deemed as the
sum of the R, (thermal resistance of heat conduction),
R, (thermal resistance of convection) and R, (thermal
resistance of heat capacity). 1D resistance analysis has
been proved to represent the physics of the heat transfer
problem, and is suitable for use in the design and
optimization of practical MCHS [7,49].

1) Reona of MCHSs and E-MCHSs could be calculated
as follows, in which ¢ is the heat sink base thickness, 4 is
the area of heat sink.

t
Rcon = Rcon - =T 1
d_MCHS 4 EMCHS = 774 (D

2) R., of MCHSs and E-MCHSs could be calculated as

follows, in which p is the mass density, W, is the channel

width, Uy, is the mean velocity, gn, is the mass flow.
I 1

qnC,  pConU,HW,’

2

RcaliMCHS =

1 1
GnCy  pConUy, (hy +hy) W, + W, hy)

In this paper, U, was set as 1 m/s to simplify the
calculation.

3) R,y of MCHS and E-MCHS could be calculated as
follows, in which 7, is the MCHS of fin efficiency, A
is the height of fins for the MCHS or initial high of fins
for E-MCHS.

3)

RcaLEMCHs =

1
RCOHV = b 4
M kL nycushe + W) @
1
RconviEMCHS = (5)

nhL(2n,hy + 9, W, + W,)’
where 7, and #, refer to the heat exchange efficiency of
the fins in E-MCHS, which will be introduced in Section
3.1.2.

The A, can be calculated as follows, in which Dy, is the
hydrodynamic diameter QW H/(W, + H)).

(6)

The thermal entry effect must be considered, and the
dimensionless thermal entrance length is defined as
follows, in which Re is the Reynolds number, Pr is the
Prandtl number.

X

* T D.RePr )

The Nu can be obtained by using Egs. (8) and (9) [50],
and « is the width ratio of the fin to channel (W,,/W.).

Nu=3.35(x')"(1/a) 2o, 0.013 <x* <0.1, (8)

Nu=187(x") "(1/a) " Pro", 0.005 < x" <0.013.
©)
If x* = 0.1, the coolant could be deemed as the
thermally fully developed flow while the local Nu can be
calculated as [51]

2.0421 3.0853 2.4765
* @ @

Nu =8.235(1 -

+

(10)

The Pr of the liquid metal is low and the short thermal
entrance region is short, thus the thermal entry effect of
liquid metal could be ignored. The Nu of the liquid metal
could be calculated by using Eq. (10). In combination
with Eq. (6), the convective A, can be obtained.
Therefore, R.,,, can be calculated after obtaining #.

1.0578 0.1861)

at a’
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3.1.2 Revised fin efficiency of MCHSs and E-MCHSs

The thermal differential equation of fins in MCHS could
be simplified as follows, in which 6 represents 7' — T..

%0
ﬁ = ng. (11)

For MCHSs, the heat flow at the top of fins is 0. Thus,
the boundary conditions are (Fig. 2(d)):

x=0;, T=T,, (12)
x:H—k@:hﬂH. (13)
0x

The efficiency of the traditional fin is as follows, in
which m is the intermediate variable (— VAP/k,W,,).
tanh (mH)

mH
However, heat transfer between fins and coolant occurs

on the top surface of fins in E-MCHS. Thus, the
boundary conditions should be

(14)

Mvcus =

x=0; 6 =Ty-T., (15)
00

x=h1—k—=h0h|. (16)
ox

The temperature of the truncated fin is as follows, in
which B is the intermediate variable (— VhA./k,P),

0= 6ycosh (mh, —mx) + B, sinh (mx)
B cosh (mh,)

(17)
Thus,

i 2A 16,
= kAumBotanh (mh,) + :
buco = KA () + e ik )
(18

)

The fin efficiency is defined as the ratio of the actual
heat loss of fins to the hypothetical heat loss of fins
surface at fin-base temperature. Here, to compare with
traditional fins, it is assumed that the hypothetical heat
loss of fins in E-MCHSs and the conventions fins is
equal, and the efficiency of truncated fins is divided into
two parts: 77, indicates the heat transfer efficiency of the

@ Fluid
@ Solid

side of the fin and 75 is the heat transfer efficiency of the

top surface of fins.

tank (mh,)

Nemcns =2 T3 = m—hl
2A.

* Ph, (1 +cosh(2mh,) — Bsinh(2mh,))’

(19)

3.1.3 3-dimensional (3D) numerical model of the heat sink

A 3D flow and heat transfer conjugate numerical model
was established. The simulation domain consists of the
solid heat sink and the fluid domain, as is shown in
Fig. 3(a). In most of the following simulations, Re is
lower than 2300, hence the laminar flow is considered for
all of the cases. To simplify the analysis, it is assumed
that the flow is steady and laminar [9]. The fluid is
Newtonian and incompressible. The thermophysical
properties are constant. There is no slip condition at
walls. The heat sink is negligible radiative and natural
convective heat transfer. There is no viscous dissipation.
Body forces are neglected.

Based on the above assumption, Egs. (20)—(23) could
be solved to compute velocity and the temperature
distribution, in which T represents the temperature in the
equations and u is the dynamic viscosity.

In the fluid zone:

ou,T k 0°T
R e 20
ox;  pC, 0x*’ (20)
ou;
e 0, (21)
0 (ouu;) dp  u,
=—— . 22
ox; ox; TH ox? 22)
In the solid zone:
T

i

The inlet was set as consistent U, and the outlet was a

1 0.6 # R-numerical [This work]
0.9 05k = R-numerical [53]

108 = — R-correlation

07 =04}

106 L

0 go3
0.4 0.2+

103
o2 g o T
0.1 100 200 300 400 500 600 700 800
0 H/pm

(b) (c)

Fig. 3 3D conjugated numerical simulation model.

(a) Computational domain; (b) structured mesh of computational domain; (c) comparison of the numerical model with correlation data and

simulation data in Ref. [53].
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free pressure outlet. The ¢ was set to be 100 W/cm? at the
bottom of the heat sink. The thermal insulation boundary
condition was applied on the other channel walls. The
numerical simulations were completed by using
COMSOL-Multiphysics 5.4a, which solved the gover-
ning equations using the finite element method.

Based on the simulation results, the R; of the heat sink
was calculated through the calculated temperature. The R;
could be divided into R g, Reony, and R, [52] as

R = M’ (24)

Q
Rcond = L’ (25)

kA
Rcunv Tb — Tm Rconds (26)
0

Ry= 1o To, @7

Q

The R...q calculated by numerical simulation is similar
to that by revised empirical correlations.

The flow and thermal modeling of MCHS and
E-MCHS were analyzed. The GagslnyoSn;, was selected
as the coolant whose thermophysical properties can be
referred to in Table 1. First, to verify the numerical
model, comparisons were made with a numerical study of
the same system in Ref. [53], and correlations (8) and (9).
The working conditions are that ¢ = 100 W/m?, W, =
We =50 um, L=1cm, t =100 pum, and Uy, = 1 m/s. The
numerical results were in good agreement with the data
of correlations (8) and (9) and the theoretical data in Ref.
[53] at all given H. The maximum difference of nume-
rical simulation was 2.9%. When H is less than 500 pum,
the difference between the calculated results and the
empirical formula is less than 1.25%, which verifies of
the numerical model (Figs. 3(b) and 3(c)).

Table 1 Thermo-physical properties of the working fluids and
structural materials

Material plkgm3) C/(Ikg™ K™Y p/(mPas) K(W-m K1) Ppr
Water 998.2 4182 1.003 0.6 6.99
GagglnygSnp 6363 366 2.22 39 0.02
Silicon 2328 700 - 148 -
Copper 8978 381 - 387.6 -

4 Result and discussion
4.1 Main effects plot
There are many factors affecting the performance of

MCHS, such as L, W,, h of fins, U and the thermal
conductivity of heat sink. The influence of the velocity

and the thermal conductivity can be determined
empirically, i.e., the heat transfer performance is posi-
tively related to the velocity and thermal conductivity,
but others are not. For E-MCHS, the effect of the 4, of
E-MCHS:s is also uncertain. Orthogonal experiments are
an effective way to determine the degree of influence of
factors on the results with a minimum number of experi-
ments [54]. Four main factors, including 4, ¢ (6 equals to
hy/H), L, and W, were selected for orthogonal experi-
mental analysis. The values of the design variables were
obtained in COMSOL simulations with 5 different values
of the 4 variables. The orthogonal design table Ls5(5%) is
listed in Table 2.

Table 2 Orthogonal array for simulations

Design No. h/pm [ hxé L/cm W/um
1 200 -0.5 1 0.5 50
2 200 -0.1 3 4 1200
3 200 0 5 1 800
4 200 0.1 2 5 400
5 200 0.5 4 2 200
6 400 -0.5 5 4 400
7 400 —0.1 2 1 200
8 400 0 4 5 50
9 400 0.1 1 2 1200
10 400 0.5 3 0.5 800
11 1000 -0.5 4 1 1200
12 1000 —0.1 1 5 800
13 1000 0 3 2 400
14 1000 0.1 5 0.5 200
15 1000 0.5 2 4 50
16 2000 -0.5 3 5 200
17 2000 —0.1 5 2 50
18 2000 0 2 0.5 1200
19 2000 0.1 4 4 800
20 2000 0.5 1 1 400
21 4000 -0.5 2 2 800
22 4000 —0.1 4 0.5 400
23 4000 0 1 4 200
24 4000 0.1 3 1 50
25 4000 0.5 5 5 1200

Note: The /%6 column is the interaction between 4 and ¢ where the values 1-5
represent the number of levels rather than specific parameter indicators.

Figure 4 displays the main effect of four factors on the
five level cases at a maximum temperature. In Fig. 4, the
horizontal axis is the four factors (X1 to X4) and the
interaction between % and &, and the vertical axis is the
mean response for each setting of each factor. The value
of range could be used to infer the strength of the
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influence of factor on the thermal performance. 4 and L
are the two most important influencing factors in
regulating the thermal performance of E-MCHSs. ¢ (6
equals to hy/H) and W, have a close value of range,
indicating that the regulation of both for maximum
temperature is close. The interaction of ¢ and 4 does not
have a stronger effect on the maximum temperature. The
variation of the maximum temperature with 4 and L is
monotonic while the variation with § is more complex,
which will be explained later. The orthogonal analysis
shows that the effect of ¢ is close to that of width on
thermal resistance, indicating that the expanded channel
could be an important means of regulating the
performance of the heat sink.
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4.2 Influence of different factors on liquid metal based
E-MCHSs

The orthogonal analysis has demonstrated the main
factors affecting the maximum temperature of E-MCHS,
but the effect of single factors on the thermal resistance,
pressure drop, and P of the heat sink is still unclear,
which will be analyzed in this section. The heat sink was
made of silicon or copper. g of 100 W/cm? was imposed
on a4 cm (W) x 4 cm (L) footprint portion of a 0.5 mm
thick (7).

4.2.1 Effect of

Compared to MCHSs, E-MCHSs introduce a new struc-
tural parameter (/#;) which changes the heat transfer
performance and the thermal resistance ratio. Figure 5
presents the influence of 4, ranging from —0.7 to 0.7 mm
on the thermal resistance, pressure drop, and P. The weak
ability of the liquid metal to take away the heat (low Cp)
is the main reason to induce the larger thermal resistance.
Thus, creating a gap to allow more liquid metal through
the heat sink at a lower pressure drop and a lower P is
beneficial for reducing the thermal resistance. Obviously,
the R; of E-MCHS decreases with the increase in the
absolute value of 4, (i.e., |h2]). The R; is reduced by
22.1% and 15.3% respectively at 4, = 0.6 mm and 4, =
—0.6 mm when n = 50. The wider channels (smaller »)
could also provide a larger space for the coolant. Thus,
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Fig. 5 Variation of Ry, the pressure drop, and P at different /4, values in the geometrical parameters and flow condition of 8 =3, @ =1,

Un=1m/s.

(a) n = 80; (b) 1 = 50; (c) n = 40; (d) n = 30.
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the gain of E-MCHSs gradually decreases as n decreases.
When n = 30, the thermal resistance decreases by 7.7%
and 5.5% when £, is equal to 0.2 and —0.2 mm, respec-
tively. However, there is a limit to increasing the total
height (H) and width of the heat sink to obtain a better
performance. For example, the A of fins will reach 6 mm
for the 4 cm (W) x 4 cm (L) heat sinks with n = 10 and 8
(channel aspect ratio, H/W.)= 3. The heat sink is not
suitable for heat dissipation in a small space. Therefore,
although the thermal resistance still seems to decrease as
n increases, the performance of E-MCHSs with a smaller
n has not been simulated. For the case where the size of
the heat dissipation space is determined (H and W are
fixed), the /4, becomes the new structural parameter for
heat dissipation optimization. The revised empirical
correlations are also used to calculate the heat transfer of
E-MCHS and MCHSs. The result calculated by the
revised empirical correlations shows the same trend as
that of the simulation. But there exists a distinct deviation
as n increases. The authors of this paper conjecture that it
is the limitation of the empirical correlations (8)—(10)
instead of the correction of fin efficiency that causes this
deviation. The flow of liquid metal is thermally develo-
ped. Thus, hydrodynamic development and the thermally
fully developed heat transfer correlation are inaccurate
under this condition [53]. When the coolant is changed to
water, the revised empirical correlations are consistent
with the simulation results. Therefore, the correction of
fin efficiency is retained.

Interesting changes in pressure and P also occur. When
the gap between the top surface of fins and the cover
plate is small, i.e., when the expanded space is small,
microchannels have a greater friction resistance. Thus,
the pressure drop and the P both increase and subsequ-
ently decrease as |h;| increases. The low-pressure drop
makes the structure more stable and reduces the difficulty
of packaging. A low P means more efficiency and
energy-saving. The R, and P of E-MCHS and MCHS
were compared with the same size, and an interesting
conclusion appears: E-MCHS may exhibit a better ther-
mal performance and a lower P when H is the same.
Although there is more coolant in the E-MCHS at the
same Up, the total P is still reduced due to the obvious
attenuation of pressure drops. In the range of 8 from 2 to
6, this rule always applies (Fig. 6). However, as the total
number of runners increases, this advantage of the
expanded channel will become smaller, even disappear.
In Fig. 6, the geometrical parameters and flow condition
are: @ = 1, n =50, Uy, = 1 m/s, and B ranges from 2 to 7.
The H of E-MCHS with 8 =X+ 1 and 4; = 0.4 mm is
equal to that of MCHS with = X.

4.2.2  Impact of channel aspect ratio

More coolant passing through E-MCHSs to reduce the
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Fig. 6 R, versus the P to measure the thermal performance of
MCHSs and E-MCHSs.

temperature rise of the coolant is the key to improving the
heat transfer performance. If the temperature rise of the
heat sink is low, the enhancement effect of the expanded
channel will be less. Thus, increasing S (i.e., H) will reap
less revenue of E-MCHSs. Figure 7 shows the corres-
ponding plot of the R; and the P against 8. The red and
black solid lines indicate the R; and the P of the MCHS
(h, = 0), respectively. The geometrical parameters and
flow condition are: @ = 1, Uy, = 1 m/s. As 8 increases, the
R; of E-MCHSs is closer to that of MCHS, and the
enhancement generated from the truncated fins structure
gradually decreases. The R of E-MCHSs is 36.0% lower
than that of MCHSs at 8 = 2, but is only 4.0% lower
when 8 = 6.
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Fig.7 Variation of R and the pump power with S.

4.2.3 Effect of Uy

Similar to enlarging S, increasing U, will reduce the
profitability of the expanded channel. Figure 8 shows the
effect of Uy on P and R;, where the red and black solid
lines indicate the R; and the P of the MCHS (4, = 0),
respectively, and the geometrical parameters and flow
condition are: 8 = 3, @ = 1. The increase in Uy, increases
the coolant passing through the heat sink per unit time,
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indicating that R, is lower. When Uy, is only 0.5 m/s, the
E-MCHSs can obtain a 29.2% lower R;, and this data are
reduced to 15% when Uy, increase to 1.5 m/s.

0.020

0.015 +

0.010 L L L
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Fig. 8 Variation of R; and the pump power with Uy,

4.2.4 Effect of structural composite on R;

In this part, the influence of the structural material for the
expanded channel is discussed (Fig.9). The structural
materials are silicon and copper, and the geometrical
parameters and flow condition are: 8 =3, @ = 1, Uy =
1 m/s. The R; decreases about 20% after changing the
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structural material from silicon to copper, which is
consistent with Liu’s conclusion [53]. The Cu-E-MCHSs
have similar enhancements to the Si-E-MCHSs. The R; of
Cu-E-MCHS also decreases with the increase in the |/;].
Similar to Si-E-MCHSs, the R; seems to decrease as n
increases. Therefore, the expanded channel structure have
no advantages for Cu based heat sinks because the Cu-
MCHSs with high S can be fabricated by using laser
welding to reduce the R.,. However, the co-designing
electronics with MCHS have been an important structural
type of electronic equipment [55]. Generally, silicon
rather than copper functions as a microchannel cooling or
fluid-distribution network in codesigning electronics.
Thus, the cooling system of liquid metal and silicon has
an important research significance.

4.2.5 TImpact of length on R;

The temperature rise of the coolant along the Z-direction
is more pronounced. Liu et al. have proved that the
temperature of water-based heat sink almost remains
constant but that of the gallium-based heat sinks increases
significantly as the length of the heat sink increases [36].
As a result, the gain of the expanded channel is superior
when the length of the flow channel is increased (Fig. 10).
Figure 10 shows the relationship between R; and length,
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Fig. 9 Variation of Ry, the pressure drop and the P at different 4, values.
(a) n=280; (b) n=50; (c) n=40; (d) n =30.
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where the geometrical parameters and flow condition are
Wo=W.=400 um, 8 =3, a =1, U, = 1 m/s. Clearly,
when the length reaches 6 cm, the R; of E-MCHSs with
hy = 0.4 mm can be reduced by about 26%.
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Fig. 10 Variation of R, at different L values.

4.3 Change of Rca1, Reonv, and Ry

E-MCHSs could provide more space for the coolant and
earn an additional area (nxW,xL) for heat transfer. For
the liquid metal based E-MCHS with 4, < 0, the heat
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dissipation capacity of the fin will not be significantly
reduced because a new convective heat transfer surface
appears in the expansion space. To show the impact of /;
on the heat transfer performance, the relationship be-
tween Ry, Rea and Reony at different £, values was plotted
in Fig. 11 where the geometrical parameters and flow
condition are: 8 =3, @ =1, Uy = 1 m/s. As |hy| increases,
R and R, decrease while R,y decreases first and then
increases. Although the R,y of E-MCHS is still higher
than R, in the absence of the enhancement of convection
heat transfer, the change of /4, can significantly reduce
the heat capacity and thermal resistance. At the same
time, the convective heat transfer resistance also has
interesting changes. Although the height of the fin (4, <
0) is reduced, the R.ony is increased to a certain extent. A
better cooling performance of E-MCHS is not at the
expense of convection capacity, but converts the excess
convection capacity into the ability to take away the heat.
Thus, as 4, increases from 0.3 to 0.7 mm, Rcony INCreases.
An increase in &, provides more space for the coolant,
and R, gradually decreases. As /i, increases, the increase
of Reony Will be greater than the decrease of Ry

For E-MCHSs without passive techniques to destroy
the boundary layer, the velocity boundary layer is thicker
due to the higher viscosity of the liquid metal and the
longer L of the heat sink (Fig. 12(a)). This may account
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Fig. 11 Variation of Ry, Reond, Reonv and Ry with n.
(a) n=80; (b) n=150; (c) n=40; (d) n = 30.
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Fig. 12 Velocity and temperature contours of the outlet of E-MCHS.

(a) Velocity distribution in the outlet of E-MCHSs at Uy, = 1 m/s;

values with the flow at 1 m/s.

for the fact that even in the liquid metal-based E-MCHS,
Reony 1s still high. Therefore, for the heat sink with pas-
sive techniques, the expanded flow channel structure may
be an important route to further improve the total heat
transfer performance because the expanded flow channel
does not sacrifice the convective heat transfer capability
of the heat sink.

Increasing |hy| can continuously reduce the Ry, and
decrease the Ry in a certain interval. The reduction of
Reony 18 arising from the increase in area for convective
heat transfer and the enhancement of convective heat
transfer in the expanded space. When /4, > 0, the area for
convection heat transfer is increased by nx W, X L.
However, a large expanded space (large /) may weaken
the convective heat transfer efficiency of the microcha-
nnel. When /%, < 0, E-MCHSs earn the additional area
(nx W, x L) for heat transfer at the cost of the area of
truncated sidewall (2nXxh,x L). Therefore, when 4, is
smaller than W,/2, the heat transfer area of E-MCHSs
increases. Moreover, the convective heat transfer in the

(b) temperature contours (in K) along microchannel at different /4,

expanded space is intense. Increasing 4, further than
Wy/2 does not provide more benefit to reducing Reony-
The truncated fins lose more area for heat transfer once
hy is larger than W,,/2, making the overall convective heat
transfer capacity weaker. The reduced R, mainly results
from the expanded channel allowing more liquid metal to
pass through. This expansion space has little effect on
water with a high heat capacity and a low thermal
conductivity [49]. The liquid metal in the expanded
channel can absorb heat through the Z-direction heat
conduction and the convective heat transfer at the upper
and top of fins.

Figure 13 shows the 3D isotherms and the 2D isoth-
erms on different sections. Compared with conventional
MCHSs, more coolant could be involved in the heat
dissipation process. Obviously, the coolant in the expan-
ded channel absorbs and takes away more heat from the
heat sink. Therefore, the expanded channel obviously
changes the gradient of temperature in the heat sink (Fig.
13(c)). The outlet temperature and the average tempe-
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Fig. 13 Temperature contour of E-MCHSs and MCHSs.

cross section 1 and the cross section 2; (d) isotherm diagrams of the cross section 3.

rature of the coolant are reduced at the same heat flux
density, and thereby the maximum temperature of the
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5 Conclusions

base of heat sink is finally lowered (Figs. 13(b) and

13(d)).

The flow and thermal performance of liquid metal in the
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expanded MCHS have been investigated by using
numerical simulation and the 1D thermal resistance
model. The conclusions can be drawn as follows:

1) Orthogonal experiments show that the expanded
channel could be an important way of regulating the
performance of E-MCHS with liquid metal.

2) The h; in the proper range (about Wy/2 < hy <0, hy
> 0) endows the E-MCHS with a better cooling capacity
under the condition of constant inlet flow rate. A new
convective heat transfer surface appears on top of the
fins, while more coolant can absorb the heat in the
expansion space. Therefore, the thermal resistance of E-
MCHS must be smaller than that of MCHS. In actual
working conditions, E-MCHS still has a better cooling
performance under certain working conditions, even with
pressure or pump power as the evaluation index.

3) For the heat sink with a high R¢,, such as that with
low fins, a narrow-space, or under low flow rate
conditions, the expanded flow channel has a significant
improvement. For the microchannels using liquid metal
as coolant, high fins are not necessary because the main
contradiction is that liquid metal has a poor heat storage
capacity rather than heat absorption capacity. The
expanded channel can efficiently reduce the temperature
rise of the coolant along the flow direction and the
decrease of R; of the heat sink at both lower pressure drop
and lower P. There is an optimum value of 4, which
changes with different fin parameters and coolant thermal
properties.

Acknowledgements Thanks to Jing LIU, Zhongshan DENG and Yixin
ZHOU for their guidance and suggestions on this work.

Notations

A Area of heat sink
B Intermediate variable/(— W)
Gy Specific heat capacity/(J-kg™!-K™1)
Dy Hydrodynamic diameter/(2Q W .H/(W, + H))
H Distance from the bottom of the fins to the cover plate
h Height of fins for the MCHS or initial high of fins for E-MCHS
hy Height of fins for E-MCHS
hy Height of expanded channel for E-MCHS
he Heat transfer coefficient
Thermal conductivity
Heat sink length
m Intermediate variable/(— VAP/kW,,)

Nu Nusselt number

n Channel number
P Pumping power
Pr Prandtl number

q Heat flux

qm Mass flow

Ry Total thermal resistance

Rcy Thermal resistance of heat capacity
R.ov  Thermal resistance of convection
Reonda  Thermal resistance of heat conduction

Re Reynolds number

T Temperature

t Heat sink base thickness
Un Mean velocity

w Heat sink width

Wy Fin width

/8 Channel width

X, ¥,z Rectangular coordinates

Greek letters

a W/ W, width ratio of the fin to channel
B H/W,, channel aspect ratio
S ho/H

n Fin efficiency

0 =T,

u Dynamic viscosity

o Mass density

Subscripts

b Heat sink base

c Channel

cal Capacity
conv Convection
cond Conduction

f Fluid
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