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  HIGHLIGHTS
● A provincial stage-specific greenhouse gas (GHG)
accounting model for the Chinese food system
was developed.

● From 1992 to 2017, the net GHG emission from
the Chinese food system increased by 38% from
785 to 1080 Tg CO2-eq.

● In 2017, top GHG emission regions were located
in the central and southern China, the North
China Plain and Northeast China, while GHG sink
regions were Tibet, Qinghai and Xinjiang.

● Total GHG emission from the Chinese food
system could be reduced to 355 Tg CO2-eq in a
low-carbon scenario, with enhancing mitigation
technologies, transforming diet and its related
conditions and increasing agricultural activities
contributing 60%, 25% and 15% of the GHG
reductions, respectively.
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  GRAPHICAL ABSTRACT
 

  ABSTRACT
In  China,  there has  been insufficient  study of  whole food system greenhouse
gas  (GHG)  accounting,  which  limits  the  development  of  mitigation  strategies
and  may  preclude  the  achievement  of  carbon  peak  and  carbon  neutrality
goals.  The  paper  presents  the  development  of  a  carbon  extension  of  NUFER
(NUtrient flows in Food chain, Environment and Resources use model), a food
system  GHG  emission  accounting  model  that  covers  land  use  and  land-use
change,  agricultural  production,  and  post-production  subsectors.  The
spatiotemporal  characteristics  of  GHG  emissions  were  investigated  for  the
Chinese food system (CFS) from 1992 to 2017, with a focus on GHG emissions
from the entire system. The potential to achieve a low-carbon food system in
China was explored. The net GHG emissions from the CFS increased from 785
Tg  CO2  equivalent  (CO2-eq)  in  1992  to  1080  Tg  CO2-eq  in  2017.  Agricultural
activities accounted for more than half of the total emissions during the study
period,  while  agricultural  energy  was  the  largest  contributor  to  the  GHG
increase.  In  2017,  highest  emitting  regions  were  located  in  central  and
southern  China  (Guangdong  and  Hunan),  the  North  China  Plain  (Shandong,
Henan  and  Jiangsu)  and  Northeast  China  (Heilongjiang  and  Inner  Mongolia)
and contributed to over half of the total GHG emissions. Meanwhile, Xinjiang,
Qinghai  and  Tibet  are  shown  as  carbon  sink  areas.  It  was  found  that  food-
system GHG emissions  could be reduced to  355 Tg CO2-eq,  where enhancing
endpoint  mitigation  technologies,  transforming  social-economic  and  diet
conditions,  and  increasing  agricultural  productivities  can  contribute  to  60%,
25% and 15%, respectively. Synergistic mitigation effects were found to exist in
agricultural activities.

© The Author(s) 2023. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
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1    INTRODUCTION
 
Reducing greenhouse gas (GHG) emissions and achieving net-
zero  pledges  are  becoming  more  urgent[1].  The  latest  IPCC
report indicated that the average surface temperature has been
1.09 °C higher  than the  preindustrial  period and that  extreme
meteorological  events  would  be  more  frequent  and  severe  in
the  future[2].  China,  a  country  emitting  27%  of  global  GHG
emissions[3,4], recently declared its ambitious carbon reduction
plan,  striving  to  peak  CO2 emissions  by  2030  and  achieve
carbon neutrality  by  2060[5].  This  means  that  China  will  have
to  work  harder  than  Western  countries  to  reduce  its  high
emission period. The task and cost of transformation would be
enormous[6].

Food  system,  involving  land  use,  agriculture  production  and
post-production  activities,  could  contribute  substantively
toward net-zero pledges[7]. In 2015, the global food system has
caused  18  Gt  CO2 equivalent  (CO2-eq).  GHG  emissions,
accounting  for  one  third  of  the  total  anthropogenic
emissions[8]. If the GHG emissions from the global food system
continue growing,  it  alone will  result  in temperature increases
that surpass the 1.5 °C target by 2050[8,9]. Meanwhile, there are
8 to 10.6 Gt CO2-eq. GHG cost-benefit mitigation potential by
land-based  measures,  especially  about  one  quarter  and  one
third of which are lie in reducing deforestation and enhancing
agricultural  carbon  sequestration,  respectively[10].  Therefore,
either  the  whole  food  system  becomes  a  steppingstone  or
stumbling block on the road to net-zero emissions depends on
how we understand and manage it.

There  are  still  insufficient  comprehensive  GHG  emission
accounting  studies  on  the  whole  Chinese  food  system  (CFS).
Most  studies  have  reported  the  emission  induced  by
agricultural  activities[11],  followed  by  LULUC  (land  use  and
land-use  change)  emissions  and  sequestrations,  and  finally
post-production emissions[12]. Recently, some studies also tried
to link agricultural  production to post-production or land-use
sector.  However,  the  former  efforts  were  always  in  national
scale[13],  and  the  latter  efforts  did  not  adequately  distinguish
the  part  belonged  to  food  systems[14].  Also,  these  did  not
integrate to a consistent framework involving from land use to
food  consumption,  which  may  hinder  policy  development  in
the context of pursuing the goals of reaching peak carbon and
carbon neutrality.

In  line  with  the  importance  and  complexity  of  reducing  food
system  GHG  emissions,  this  study  aimed  to  depict  the  spatial
distribution  of  GHG  emissions  from  the  CFS  and  explore  the
emission  reduction  potential  of  low-carbon  strategies.  In  our

method,  we  creatively  built  a  stage-explicit  food  system  GHG
emission  accounting  model  and  conducted  a  consistent
scenario  analysis  by  coupling  the  accounting  model  with  the
FABLE-China calculator[15]. The study presented here provides
policymakers  with  additional  insights  into  achieving  net-zero
emission food system in China.
 

2    MATERIALS AND METHODS
  

2.1    System boundary
We defined 21 GHG emission sources and removals related to
food production and consumption,  which  were  further  sorted
into the LULUC, agricultural  production and post-production
subsectors  (Fig. 1).  The  net  GHG  emissions  from  LULUC
contain  the  emissions  induced  by  land  use  (LU)  of  cropland
and  grassland  and  from  the  land-use  change  (LUC)  between
cropland,  forest  and  grassland.  It  needs  to  be  noted  that
untouched  forest  is  not  regarded  as  a  carbon  sink  in  LU
because it  is  not  related to  food production.  Also,  due to  data
availability, only carbon changes in biomass and soil pools are
accounted  in  LULUC  subsector.  The  agricultural  production
subsector  includes  not  only  the  emissions  of  agricultural
activities  but  also  the  emissions  of  energy  consumption  in
agriculture  production  itself  (direct  energy  use)  and  in
production  of  agricultural  inputs  (indirect  energy  use).  The
post-production  subsystem  includes  the  GHG  emitted  by
energy  combustion  in  the  food  processing,  packaging,
transport  and  storage,  wholesale  and  retail,  and  consumption
stages. All GHG emissions are accounted at the provincial scale
from  1992  to  2017,  except  the  emissions  from  the  post-
production  subsystem  in  Tibet  (due  to  the  limited  availability
of  data  for  Tibet).  In  addition,  the  term  GHG  only  refers  to
CO2, CH4, and N2O in this study, and the values of their global
warming potential (GWP) originate from the GWP-100 in the
IPCC AR5[16].
 

2.2    Data sources and processing
We  developed  an  extension  of  NUFER[17] (NUtrient  flows  in
Food chain, Environment and Resources use model) for carbon
to  achieve  the  GHG  emission  accounting  for  the  whole  food
system. Specifically, we used a process-based life cycle analysis
to  calculate  GHG  emissions  in  land-use  and  agricultural
subsystems  from  a  bottom-up  perspective  and  used  an
environmental  input-output  life  cycle  analysis  (EIO-LCA)  to
account for the GHG emissions in post-production subsystem
from a top-down perspective (Fig. S1).
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Data  were  further  collected  based  on  the  requirements  of  the
IPCC  guidelines  and  EIO-LCA  (Fig.  S1).  For  GHG  emission
accounting  in  land-use  subsector,  we  collected  land-use  maps
(1990–2020),  vegetation  map  and  carbon  density  data  from
RESDC[18],  NTPDC[19] and  the  most  recent  literature[20–22],
respectively. For GHG emissions from agricultural production,
we  collected  activity  data  (e.g.,  crop  production,  sown  area,
livestock  number,  irrigated  area,  fertilizer  use,  pesticides  use
and film use)  from statistic  yearbooks  and the  official  website
of the China National Bureau of Statistics, as well as parameters
(e.g.,  emission  factors,  nitrogen  and  carbon  contents,  root
shoot  ratios,  and  straw  and  manure  return  rates)  from  the
IPCC  Guideline  and  its  derived  accounting  studies  in
China[23–26]. For GHG emission accounting in post-production
subsystem,  multiregional  input-output  (MRIO)  tables  and
sectoral  emission  inventories  are  mandatory,  both  of  which
were sources from Shan et al.[27].

Data  processing,  mainly  constructing  LUC  matrices  and
adjusting  sectors  in  MRIO  tables,  supports  GHG  emission
accounting  in  land-use  and  post-production  subsystems
(Fig.  S1).  For  land-use  subsector,  we  loaded  LUCC  imagines

and used the “raster calculator” tool in ArcGIS 10.8 to identify
each  type  of  land-use  change  in  5-year  periods  from  1990  to
2020 (Table S1). Then we used the ArcGIS tool “zonal statistics
as  table” to  count  the  LULUC  in  provincial  scale.  In  post-
production  subsector,  we  adapted  economic  sectors  in  MRIO
tables and emission inventories to each other according to the
definitions  in  industrial  classification  for  national  economic
activities  and  calculated  GHG  emission  intensities  for  each
economic sector[28] (Table S2).

 

2.3    Calculating the GHG emissions from the CFS
 

2.3.1    Calculations for the GHG emissions and removals in the
land-use subsector
We  distinguished  unconverted  land  and  converted  land  into
5-year  periods  from  1990  to  2020,  since  there  are  large
differences  in  natural  processes  and  the  availability  of  data
between  unconverted  land  and  converted  land.  For
unconverted land, the formulae were:
 

Elu = Elu,biomass +Elu,soil (1)
 

 

 
Fig. 1    Scope of the GHG emission accounting for the food system. These icons in the figure were from Vecteezy, and were used within the
scope of its license agreement.
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Elu,biomass =
∑2

i=1
BioSinki ×S i ×

44
12
× 1

1000
×GWPCO2 (2)

 

Elu,soil =
∑2

i=1

SDi,t −SDi,t−1

∆t
×S i ×

44
12
× 1

1000
×GWPCO2 (3)

GWPCO2

where, Elu denotes the net emission from unconverted land (in
Tg CO2-eq), which consists of net emissions from the biomass
carbon  pool Elu,biomass (in  Tg  CO2-eq)  and  soil  carbon  pool
Elu,soil (in Tg CO2-eq), respectively; subscript i is land-use type,
including cropland and grassland; BioSink denotes the capacity
of vegetation to remove carbon[29] (in kg·m–2 C); S denotes the
area  of  a  specific  land-use  type[21] (in  km2);  SD  denotes  soil
density[21,22] (in  kg·m–2 C);  subscript t and t–1  denote  the
former and latter years of two adjacent study time points,  and
Δt denotes  the  interval  between  these  two  time  points;  44/12
represents  the  transfer  between  carbon  and  carbon  dioxide;
and  is the global warming potential of CO2.

The  changes  of  carbon  pool  caused  by  land-use  change  are
more  substantial,  but  the  related  directly  measured  data  are
limited for China. Therefore, the GHG for converted land used
more impact factors compared to that of unconverted land was
calculated as:
 

Eluc = Eluc,biomass +Eluc,soil (4)
 

Eluc,biomass =
∑6

j=1

BDh −BDg

5
×Area j ×

44
12
× 1

1000
×GWPCO2

(5)
 

Eluc,soil =
∑6

j=1

SDh,ref × IFh −SDg,ref × IFg

5
×Area j

× 44
12
× 1

1000
×GWPCO2 (6)

where, Eluc denotes the net emission from land-use change (in
Tg CO2-eq), including net emissions from the biomass carbon
pool Eluc,biomass (in Tg CO2-eq) and soil carbon pool Eluc,soil (in
Tg  CO2-eq);  subscript j presents  the  type  of  land-use  change,
which contains all  six types of change among forest, cropland,
and grassland (in km2, Table S1); BD is biomass density[20] (in
kg·m–2 C); and subscripts g and h are the land-use types at the
beginning and end of a 5-year period. Subscript ref denotes the
reference status, for example, SDh,ref is the reference soil carbon
density  of  land-use  type h at  the  end  time  point  of  a  specific
5-year period (in kg·m–2 C); and IF means impact factor, which
represents  the  combined  impact  of  climate,  agricultural
management,  and  residue  inputs  on  soil  carbon[30].  Other
symbols were described above.
 

2.3.2    Calculations for the GHG emissions in the agricultural
production subsector
GHG  emission  accounting  for  agricultural  activities  could  be

simplified  by  multiplying  emission  factors  by  activity  data,
according to the IPCC guidelines. The formula was:
 

Ea =
∑6

m=1

∑2

n=1
efmn ×ADm ×GWPn (7)

where, Ea denotes  the  emission from agricultural  activities  (in
Tg  CO2-eq, Table 1);  subscript m represents  the  source  of
emission, for items consistent with the items in second column
in Table 1; subscript n is the type of GHG, referring to methane
and nitrous oxide; ef and AD represent the emission factor and
activity  data,  respectively  (see Table 1 for  exact  items  and
references);  and  GWPn is  the  global  warming  potential
corresponding to the GHG type n.

Previous  studies  have  summarized  the  emission  factors  for
agricultural  energy  use,  which  simplified  the  accounting
complexity[12,38].  Their  formulae  have  a  similar  structure  to
that of agricultural activities:
 

Ede =
∑2

p=1
ef p ×ADp ×GWPCO2 (8)

 

Eie =
∑3

q=1
efq ×ADq ×GWPCO2 (9)

where, Ede and Eie are  emissions  from  agricultural  direct  and
indirect  energy  use  (in  Tg  CO2-eq),  subscript p is  the  energy
type consumed during on-farm production, consisting of diesel
(cost  by  agricultural  machines)  and  electricity  (cost  by
irrigation);  subscript q refers  to  the  type  of  agricultural
materials  inputs,  including  mineral  fertilizer,  pesticide,  and
film; and other symbols as describe above.
 

2.3.3    Calculations for the GHG emissions in the post-
production subsector
When  accounting  for  GHG  emissions  from  post-production
stages, an essential issue is determining the proportion of food
system in each economic sector. For food processing, there are
several  economic  sectors  (e.g.,  food  processing,  food
production,  beverage  production  and  tobacco  processing)  are
100% related to food processing and, in turn, relate to the food
system.  That  means  we  could  directly  add  their  emissions  as
the emissions from food processing:
 

Epro =
∑4

u=1

∑17

v=1
efv ×ADuv ×GWPCO2 (10)

where, Epro is the emission from food processing (in Tg CO2-eq);
subscript u refers  to  the  subsector  of  food  processing,
containing  food  processing,  food  production,  beverage
production  and  tobacco  processing;  subscript v is  the  type  of
energy,  which  is  consistent  with  Shan  et  al.[27];  and  other
symbols as described above.

For other stages in food supply chain, such as food packaging,
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transport  and  storage,  wholesale  and  retail,  GHG  emission
accounting  is  difficult.  This  is  due  the  fact  that  MRIO  tables
and  emission  inventories  only  include  the  entire  transport,
storage,  wholesale  and  retail  sectors,  of  which  the  proportion
attributable  to  food  supply  is  unknown.  On  the  basis  of
economic  relationships  reflected  in  MRIO  tables,  we  adopted
EIO-LCA  method  to  identify  the  GHG  emissions  induced  by
food transport and storage, as well as food wholesale and retail.
 

E = R(I− A)−1Y (11)
 

Et_s =
∑

r
et_s,pro,k (12)

 

Ew_r =
∑

r
ew_r,pro,k (13)

 

Ep =
∑

r

∑4

w=1
ew,pro,k (14)

where, E is  the  total  carbon  emission  matrix  (in  Tg  CO2-eq),

whose  columns  and  row  vectors  represent  the  CO2 emissions
caused  by  the  requirements  of  corresponding  column  sectors
and the inputs of corresponding row sectors, respectively; R is
the direct carbon emission intensity matrix (in Tg CO2-eq per
thousand  yuan)  which  was  derived  by  dividing  sectoral  CO2

emissions  in  Shan  et  al.[27] by  the  respective  total  economic
values  in  MRIO tables; I is  the  identity  matrix; A is  the  direct
input  coefficient  matrix;  and Y is  the  diagonal  matrix  of  final
consumption  derived  from  MRIO  tables. Ep denotes  the
emission from food packaging (in Tg CO2-eq), Et_s denotes the
emission  caused  by  food  transport  and  storage  sector  (in  Tg
CO2-eq),  and Ew_r denotes  the  emission  caused  by  food
wholesale and retail sector (in Tg CO2-eq); et_s,pro is the element
located in the intersection of  the row of transport  and storage
sector  and  the  column  of  food  processing  sector  in  matrix E,
representing  the  emission  in  the  transport  and  storage  sector
caused by the needs of food processing sector (in Tg CO2-eq);

  

Table 1    Data used in the GHG emission accounting and scenario analyses in this study

Subsystem GHG source/sink Activity data Parameter

Land use

Unchanged cropland LUCC maps[18]

Chinese vegetation map[19]

Chinese ecological zones[31]

Soil and biomass carbon densities by
land-use types[21,22,29]

Forest carbon sinks by species[29]Unchanged grassland

Converted cropland,
grassland and forest

Agricultural production

　Agricultural activities Rice cultivation Crop production[32]

Crop sown area[32]

Livestock number[32]

Mineral fertilizer use[32]

Emission factors[23–25,33,34]

Grain-straw ratios[24]

Crop root-shoot ratios[24]

Crop water contents[24]

Crop N contents[24]

Straw burning ratios[34]

Straw return rates[25]

Livestock manure return rates[25]

Livestock excretion rates[17,35,36]

Livestock slaughter periods[17,35]

Mineral fertilizer application

Livestock manure application

Crop straw return

Enteric fermentation

Manure management

　Agricultural direct energy use Diesel (consumed by machines) Diesel use[32]

Irrigation area[32]
Emission factors[37–39]

Electricity (consumed by irrigation)

　Agricultural indirect energy use Mineral fertilizer production Mineral fertilizer use[32]

Pesticides use[32]

Film use[32]

(Indirect) emission factors[38,39]

Pesticides production

Film production

Post production

Food processing MRIO tables*[27,40]

CO2 emission inventory by
economic sectors[27,40]

Energy balance sheets[32]

Household energy survey[41]

Emission factors[23,24,27]

Packaging

Transport and storage

Wholesale and retail

Consumption

Note: * In this study, we used 1997 MRIO table for accounting GHG emissions of 1992 because of lacking data. The times of GHG accountings and MRIO tables in other years are
consistent.
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ew_r,pro denotes  the  emission  in  wholesale  and  retail  sectors
caused  by  the  needs  of  the  food  processing  sector  (in  Tg
CO2-eq); ew,pro are  emissions  in  package-related  industrial
sectors  caused  by  food  processing  requirements  (in  Tg
CO2-eq); subscribe r denotes regions in MRIO tables; subscribe
w are  the  industrials  related  to  packaging,  including  paper
production,  chemical  material  production,  metal  production
and non-metal mineral production.

Cooking-related GHG emissions were calculated for both rural
and urban residents. For the rural part,  we extracted national-
level  long-term  cook  used  energy  data  from  rural  residential
energy-mix  surveys[42,43],  and  then  distributed  them  to
different provinces according to the annual reports on building
energy  efficiency  in  China[44,45].  For  the  urban  part,  the
national-level  cook energy use  data  were from BERC-THU[46]

and Ning et al.[47], and we further distributed the energy use to
a  province  level  according  to  the  numbers  of  households  in
different  provinces[48].  The  formula  for  GHG  emissions  from
food consumption was:
 

Econ =
∑2

k=1

∑3

t=1
eft ×ADk ×GWPCO2 (15)

where, Econ denotes the GHG emission from food consumption
(in  Tg  CO2-eq),  subscript k denotes  the  type  of  residents,
namely rural and urban residents; subscript t indicates the type
of  fuel  used in  cooking,  which includes  coal,  gas,  LPG;  and ef
and  AD  are  emission  factors  and  activity  data  used  in  the
calculations  of  cooking-related  GHG  emissions,  with  exact
values and references shown in Table 1.

 

2.4    Scenarios setting
We designed two scenarios, namely business as usual and low-
carbon  scenarios,  to  explore  the  impacts  of  low-carbon
strategies on GHG emission in the CFS in 2050 (Table 2).

 

2.4.1    2050 business as usual scenario

This  scenario  depicts  a  future  that  follows  the  present
development  pattern  with  high  resource  and  environmental

  

Table 2    The descriptions of scenarios and the changes to corresponding activity data and parameters

Type 2050 business as usual 2050 low-carbon Data sources

GDP and population Both GDP and population follow
the SSP2s

Both GDP and population follow the SSP1s [49]

　GDP Increase by 308% compared to 2015 Increase by 323% compared to 2015

　Population Decrease to 1286 million Decrease to 1250 million

Diet Keep the current trend toward a
fatter eating pattern

Turn to the recommendation of Chinese Nutrition Society [50,51]

　Cereals 5179 kJ (+8% compared to 2010) 3998 kJ (–16%)

　Red meat 1918 kJ (+15%) 1114 kJ (–33%)

　Poultry 268 kJ (+21%) 465 kJ (+109%)

　Milk 511 kJ (+114%) 473 kJ (+98%)

　Fruit and vegetable 779 kJ (–19%) 1214 kJ (+26%)

Agricultural
productivities

Keep unchanged Crop productivity forecasts originate from the SSP1 results in GLOBIOM
Taking the USA as a reference, pig and poultry productivities are
predicted to increase by 20% over 2010. For beef cattle, dairy cattle,
sheep, goats and layer, the increase rates are assumed to be 40%

[52–54]

　Rice – 6.6 t·ha–1

　Wheat – 7.6 t·ha–1

　Corn – 9.1 t·ha–1

　Pork – 110 kg per head

　Beef – 191 kg per head

　Milk – 10.8 t per head

Mitigation
technologies

No further measures are adopted
All emission factors keep
unchanged, related activity data
changes in current trend

All effective activities are adopted to reduce GHG emission –
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cost  (Table 2).  Social-economic  factors,  mainly  GDP  and
population, follow SSP2 (shared socioeconomic pathways 2) as
defined  by  IIASA[49].  Considering  the  huge  impact  of  food
consumption  on  its  production,  we  assume  the  Chinese  diet
would be characterized by a higher level of consumption. This
translates  to  a  1.02-fold  increase  in  monogastric  livestock

product  consumption  and  a  more  than  50%  increase  in  for
ruminant products[50]. Crop and animal productivities, as well
as  their  emission  factors,  stay  at  their  current  levels,  which
serve  as  benchmarks  and  enable  us  to  identify  the  impacts  of
technology  improvements  by  comparing  these  to  the  low
carbon scenario.
 

(Continued)

Type 2050 business as usual 2050 low-carbon Data sources

Agricultural inputs changed

　Nitrogen fertilizer 13% higher than 2017 (BAU
scenario in cited paper)

22% lower than 2017 (4R nutrient management adopted, with enhanced
organic fertilizer returning)

[55]

Phosphorus
fertilizer

5% higher than 2017 (BAU and
SSP2 scenarios in cited papers)

69% lower than 2017 (manure is well managed and returned to the field) [56,57]

　Potash fertilizer 19% higher than 2017 (SSP2 in
cited paper)

15% higher than 2017 (SSP1 in cited paper) [58]

　Diesel 74% higher than 2017 (BAU
scenario in cited paper)

44% higher than 2017 (low-carbon scenario in cited paper) [59]

　Pesticides 15% (just assumption, an average
change of nitrogen and phosphorus
fertilizer)

13% lower than 2017 (just assumption, an average change of nitrogen
and phosphorus fertilizer)

–

　Irrigation 53% higher than 2017 (BAU
scenario in cited paper)

31% higher than 2017 (low-carbon scenario in cited paper) [59]

　Film 77% higher than 2017 (SSP2
scenario in cited paper)

40% higher than 2017 (SSP1 scenario in cited paper) [55,60]

Technology & management changed

Cropland carbon
sink ability

– 120% high than current practice (mineral fertilizer + straw returning +
no tillage)

[61]

Grassland carbon
sink ability

– Increase by 0.017 ha−1·yr−1 CO2-eq compared to present condition
(optimizing grazing intensity)

[62]

　Rice cultivation – –32% (off-season application of straw + mid-season draining) [63]

　Straw return ratio – Reach 80% (catch up with developed countries) [55]

Manure return
ratio

– Reach 80% (catch up with developed countries) [55]

　Soil N2O emission – –25% (integrated nitrogen management) [64,65]

　Enteric CH4 – –13% (reducing the forage-to-concentrate ratio + feed addictive) [66]

Manure
management CH4

– –60% (covering + manure addictives + acidification) [67,68]

Manure
management N2O

– –15% (manure addictives + optimizing house condition) [66,67]

Fertilizer
production

– –44% (catch up with the emission intensity in Europe) [69]

　Diesel – –32% (increase mechanical efficiency + equipment alteration) [59]

　Film production – –38% (equipment alteration + change film production structure +
new material)

[70]

　Irrigation – –39% (increase mechanical efficiency + equipment alteration) [59]

　Straw burning ratio – None –

CO2 emission
intensity in each
economic sector

– –35% (same as the decrease between 2005 and 2030) [71]

Note: BAU, business as usual; 4R nutrient management, using right fertilizer source at the right rate, at the right time and in the right place; GLOBIOM, Global Biosphere
Management Model; SSP, shared socioeconomic pathways.
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2.4.2    2050 low carbon scenario
The  low  carbon  scenario  is  designed  to  depict  a  sustainable
future  in  which  the  nexus  of  socioeconomic  conditions,
mitigation  technologies,  and  food  system  are  in  a  virtuous
circle  of  promotion  (Table 2).  National  GDP  and  population
would  change  in  the  manner  predicted  by  SSP1,  and  Chinese
diets  would  follow  the  recommendation  of  Chinese  Nutrition
Society[51].  We  assumed  that  integrated  technologies  would
increase  crop  and  livestock  productivity[52].  Large-scale
mitigation measures are applied, especially advances in 4R crop
management,  manure  management  and  industrial  energy
conservation.  Specific  measures  and  the  corresponding
mitigation  factors  are  described  by  literature[64–68] and  the
National Climate Change Program[72]. In addition, the areas of
forest,  cropland  and  grassland  would  increase  slightly
according  to  relevant  land-use  plans[73,74].  The  SOCs  of
cropland  and  grassland  are  likely  to  increase  through  organic
fertilizer  application,  no  tillage  and  restoration  of
grassland[61,62].  For  more  details,  please  refer  to  the  FABLE
Report 2020[75].
 

3    RESULTS AND DISCUSSION
  

3.1    Historical greenhouse gas emitted by the
Chinese food system
The  net  emission  of  the  CFS  increased  from  785  to  1094  Tg
CO2-eq in 1992 to 2012 and then decreased to 1080 Tg CO2-eq
in  2017.  In  the  first  two  decades,  agricultural  activities  and
indirect  agricultural  energy  use  increased  by  about  286  Tg
CO2-eq contributing to more than 80% of the increase in GHG
emissions  (excluding  GHG  sequestrations  by  LULUC)  in  this
period  (Fig. 2(a)).  When  these  two  subsectors  stabilized  (or
decreased  slightly)  between  2012  and  2017,  the  net  GHG
emission  from  the  CFS  also  declined  by  1.4%.  The  emission
from agricultural  direct  energy use more than doubled during
the  study  period,  but  its  contribution  to  the  GHG  increase  in
the whole food system was less than 10%, due to its small initial
emission. GHG emissions and sinks from post-production and
LULUC  remained  stable,  with  changes  of  less  than  40  Tg
CO2-eq (Fig. 2(a)).

The  Sankey  diagrams  (Fig. 2(b))  clarify  the  comparison  of
GHG  emissions  in  the  CFS  between  1992  and  2017.  Mineral
fertilizer  application,  livestock  manure  and  crop  straw
application,  and  manure  management  were  not  only  large
GHG emission sources (65 to 148 Tg CO2-eq in 2017), but they
also  increased  at  rapid  rates  (48%  to  108%).  As  a  result,  N2O
emission  increased  by  about  60%  (Fig. 2(b)).  The  growth  of

CO2 emissions was even stronger, with indirect CO2 emissions
from  agricultural  inputs  soaring  by  95%  to  258%  and  the
growth  rate  of  direct  CO2 emission  from diesel  and  irrigation
also  reached  142%  and  38%,  respectively.  The  CO2 emission
(sink)  from  post-production  and  LULUC  subsectors  were
much  less  because  the  decrease  in  LUC  emission  was  small
compared  to  the  unconverted  LU  sink,  and  the  increased
emission  from  food  consumption  was  partly  offset  by  the
decrease in the emission from food packaging. In addition, rice
cultivation  and  enteric  fermentation  had  decreased  CH4

emission as a result of the decline of rice-sown area, beef cattle
and draft livestock (Fig. 2(b)).

Historical changes in GHG emissions reflected the transition of
development philosophies of the CFS. Between 1992 and 2012,
the  main  focus  of  the  CFS  was  increasing  agricultural
productivities,  whose  agricultural  inputs  and  production
increases  could  explain  90%  of  the  total  increased  GHG.
Meanwhile,  GHG  increased  in  the  post-production  subsector
by 12%, with more frequent food transportation and dining out
widely  regarded  as  main  contributors[76,77].  Environmental
pollution  gradually  increased  after  the  2010s,  attracting  the
attentions  of  both  public  and  the  government.  Serial  policies
related to  agriculture  were  launched,  including an action plan
for  zero growth of  fertilizer  and pesticide  use,  and an another
for organic substitution of mineral fertilizer, which marked the
turning  point  toward  green  agriculture  development  in
China[78–80].  For  example,  a  small  reduction  in  mineral
fertilizer  emissions  halted  GHG  emission  at  both  the
production and application stages from 2012 to 2017 resulting
in  a  5-Tg  CO2-eq  reduction  (Fig. 2(b)).  Benefiting  from  the
strict  land-use  policy,  the  area  of  each  type  of  land  did  not
change  significantly,  so  their  abilities  to  sequester  CO2 were
kept  at  a  stable  level  of  about  140  and  91  Tg  CO2-eq  for
grassland and cropland, respectively (Fig. 2(a)).
 

3.2    Spatial patterns of the greenhouse gas
emission from the Chinese food system
As  expected,  regions  in  central  and  southern  China,  Sichuan,
and  Heilongjiang  had  the  highest  GHG  emissions  from
agricultural  activities  (Fig. 3(a)).  Their  intensive  crop  and
livestock  production,  especially  the  rice  cultivation,  makes
them  emit  more  GHG  than  other  areas.  Provinces  located  in
East  China  fell  into  the  second  highest  emission  category,
generally  with  less  rice  cultivation  or  fertilizer  application  to
the  highest  emission  areas.  In  grazing  areas,  agricultural
activity  emissions  were  relatively  low,  with  enteric
fermentation  becomes  the  most  important  emission  stage.
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Also,  due  to  the  small  agricultural  production,  Zhejiang  and
Fujian  had  low  emissions  from  agricultural  activities
(Fig. 3(a)).

The  spatial  distribution  of  areas  with  high  emissions  from
agricultural  energy  use  was  similar  to  that  of  agricultural
activities.  However,  the  highest  emission  areas  shifted  to  the
North  China  Plain,  owing  to  their  high  consumption  of
fertilizer and diesel (Fig. 3(b)). Topography and economic level
are  likely  to  have  been  limiting  factors  for  agricultural  energy
use,  since  mountainous  regions  like  Guizhou,  Jiangxi,
Chongqing  and  Fujian  had  relatively  low  emissions,  while
Xinjiang,  with  flat  terrain  and  large-scale  cotton  production,
ranks second in terms of agricultural energy emissions. Overall,
fertilizer  production was  the  overwhelming contributor  to  the

emissions from agricultural energy use in China (Fig. 3(b)).

Most areas with high carbon sinks are located in the west and
south  of  China  and  the  North  China  Plain.  Large-scale
grassland  restoration  actions  prompted  the  increase  of  soil
carbon storage  in  western  and  southern  grasslands  (Fig. 3(c)).
However,  grassland  in  Inner  Mongolia  still  gave  a  sharp  drop
in  soil  carbon  storage  because  of  the  lagged  effect  of
degradation[21].  Soil carbon also increases steadily in the long-
established  agricultural  areas  such  as  the  North  China  Plain
and  the  Yangtze  River  Basin,  but  not  in  the  Northeast  China.
This  phenomenon  lies  in  crop  production  and  crop  straw
return[61] in  the  first  two  regions,  as  well  as  overgrazing  and
excessive  cultivation  in  Northeast  China.  Additionally,
cropland to  grassland  is  the  main  conversion  type,  but  with  a
small  area  compared  to  unconverted  land,  thus  land-use

 

 
Fig. 2    GHG  emissions  from  the  CFS  by  sector  from  1992  to  2017  (a)  and  the  Sankey  diagram  illustrating  the  link  between  GHG  emission
sectors, gas types and stages in the CFS (b), where the percentages in parentheses are the emission change between 1992 and 2017 (b).
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change just acted as a weak carbon source in 2017 (Fig. 3(c)).

The  spatial  pattern  of  post-production  GHG  emissions  was

similar  to  that  of  agricultural  production,  despite  the  fact  that
high  emission  areas  are  more  concentrated  in  developed
regions  (Fig. 3(d)).  For  example,  Jilin,  Heilongjiang,  and

 

 
Fig. 3    Spatial distribution of greenhouse gas (GHG) emissions from agricultural activities (a), agricultural energy use (b), LULUC (land use and
land-use change) as net carbon sink, with negative values representing GHG emissions and positive values representing carbon sinks (c), post-
production (d),  and whole  food system and the emissions  from the whole  food production system (e)  in  2017.  NCP,  North China Plain:  BJ,
Beijing; TJ, Tianjin; HE, Hebei; SX, Shanxi; SD, Shandong; HA, Henan. NE, Northeast China: LN, Liaoning; JL, Jilin; HL, Heilongjiang. MLY, middle
and lower reaches of Yangtze River: SH, Shanghai; JS, Jiangsu; ZJ, Zhejiang; AH, Anhui; JX, Jiangxi; HB, Hubei; HN, Hunan. SE, Southeast China:
FJ, Fujian; GD, Guangdong; GX, Guangxi; HI, Hainan. SW, Southwest China: CQ, Chongqing; SC, Sichuan; GZ, Guizhou; YN, Yunnan; XZ, Tibet.
NW, Northwest China: IM, Inner Mongolia; SN, Shaanxi; GS, Gansu; QH, Qinghai; NX, Ningxia; XJ, Xinjiang.
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Guangxi, which have primary food processing industries, have
relatively high CO2 emissions. Then food consumption, as the
most crucial emission source in the post-production subsector,
determined  whether  an  area  was  an  emission  hotspot.  Thus,
Jiangsu  and  Guangdong  were  the  highest  emitting  provinces,
whereas  Yunnan  and  Henan  were  not  in  the  list  of  emission
hotspots.  High  emissions  were  also  observed  in  Shaanxi  and
Inner  Mongolia  because  of  their  rich  coal  sources  and  high
proportions of energy export (Fig. 3(d)).

Finally,  total  GHG  emissions  from  the  CFS  were  found  to  be
concentrated  in  central  and  southern  China,  the  North  China
Plain  and  Northeast  China.  The  above  regions,  accounted  for
60%  of  total  GHG  emission  from  the  CFS,  were  home  to  the
five highest emitting regions. At the same time, food systems in
Xinjiang,  Tibet  and Qinghai  were shown as  carbon sinks.  The
GHG  emission  structure  varies  throughout  China  (Fig. 3(e)).
The  main  agricultural  provinces  in  South  China,  for  example,
were  primarily  affected  by  agricultural  activities  (non-CO2),
whereas  their  counterparts  in  North  China  were  affected  by
both  agricultural  activities  and  related  industrial  emission,
resulting in higher CO2 emissions.  Also, more attention needs
to be given to Inner Mongolia and Northeast China to stem the
land  degradation  caused  by  the  food  system.  From  the
perspective  of  emission  intensity,  Central  China,  East  China,
Jing-Jin  region  (Beijing  and  Tianjin)  become  the  top  areas,
followed by the North China Plain (Fig. 3(e)). That reflects the
fact  that  agricultural  activities  are  highly  intensive  in  Central
and  East  China  compared  with  their  small  and  fragmental
agricultural areas. 

3.3    Strategies to achieve a low-carbon food system
in China
Under the 2050 business as usual scenario, total emissions were
predicted to reach 1285 Tg CO2-eq, up 20% from 2017 (Fig. 4;
Table 3). A higher consumption diet is thought to be a primary
cause  of  these  increased  emissions.  For  example,  the  animal-
related  emissions,  including  emissions  from  manure
application,  enteric  fermentation  and  manure  management,
was predicted to increase by 113 Tg CO2-eq compared to 2017.
The emissions from agricultural energy was predicted to rise to
422 Tg CO2-eq, where diesel and agricultural film would be the

 

 
Fig. 4    Mitigation  potential  of  different  measures  in  the
Chinese  food  system.  2050  BAU,  2050  business  as  usual
scenario; 2050 LC, 2050 low-carbon scenario.

 

  

Table 3    The subsector disaggregated GHG emissions from the Chinese food system in 2017 and 2050 scenarios

Subsector
Year or scenario

2017 (Tg CO2-eq) 2050 BAU (Tg CO2-eq) 2050 LC (Tg CO2-eq)

LULUC –228 –227 –343

(+51%)

Agricultural activities 712 814 334

(–59%)

Agricultural energy 321 422 193

(–54%)

Post-production 274 276 171

(–38%)

Total 1079 1285 355

(–72%)

Note: 2050 BAU, 2050 business as usual scenario; 2050 LC, 2050 low-carbon scenario; LULUC, land use and land-use change. Numbers in brackets in the column of “2050 LC” denote
the emission change rates between 2050 BAU and 2050 LC scenarios.
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two  main  emission  growth  sources  (Fig. 4; Table 3).  This
increase would be in line with the development of agricultural
modernization in China. The increase in emissions from post-
production is  likely to slow because the Chinese population is
predicted to decline slightly (Table 2). With the cropland lower
limit  and  livestock  production  intensification,  we  estimated
that  cropland  and  grassland  areas  would  remain  unchanged.
That, in turn would lead to stable carbon sink capabilities.

Total  emissions  from  the  CFS  could  be  reduced  to  355  Tg
CO2-eq in the 2050 low carbon scenario,  which is  close to the
status  of  net  zero  (Fig. 4; Table 3).  Agricultural  activities  had
the  highest  mitigation  potential  at  480  Tg  CO2-eq,  where  the
contributions of  socioeconomic and dietary change,  improved
agricultural  productivity  and mitigation technologies  could be
39%,  28%  and  33%,  respectively  (Fig. 4; Table 3).  In  terms  of
emission sources, the potential would mainly be located in rice
cultivation,  mineral  fertilizer  application,  enteric  fermentation
and  manure  management,  exceeding  55  Tg  CO2-eq  for  each.
Emissions  from  agricultural  energy  use  were  predicted  to
decrease  by  54%  compared  to  the  2050  business  as  usual
scenario.  As  a  result  of  improving  nutrient  management,
fertilizer  production  was  predicted  to  decrease  by  135  Tg
CO2-eq and hence contribute about 60% of the emission decline
in the agricultural energy use subsector. Post-production had a
stable mitigation potential under the assumption of eliminating
half  of  the  food packaging and improving emissions  per  GDP
by 35% in 2050 low carbon scenario.  Considering the practice
of  land management  (e.g.,  enhancing  organic  fertilizer  return,
no tillage and grassland restoration), there will be an extra 115
Tg CO2-eq carbon sink from the LULUC subsector (Table 3).

There  remains  considerable  uncertainty  in  the  estimation  of
mitigation potential. Firstly, in our accounting model, we used
some  predictive  values  from  other  studies  as  exogenous
variables.  However,  the  assumptions  underlying  these
predictive values are possibly different from the socioeconomic
assumptions in our model, despite the fact that we screened the
preconditions  before  using  the  values.  Secondly,  uncertainties
may  come  from  model  parameters  we  used.  For  example,  the
carbon sequestration saturations of cropland and grassland are
largely affected by the data sampling, spatial interpolation and
statistical  methods,  thus  may  introduce  uncertainties  on  the
quantifications  of  carbon  sequestration  potential.  Thirdly,  we
rescaled  land-use  data  in  agricultural  ecological  zone  level  to
provincial  level  based  on  the  land-use  patterns  shown  in

LULUC  maps,  which  might  not  be  the  real  situation,  which
adds uncertainties to our results.

Nevertheless, we still believe the CFS is capable of achieving net
zero by 2050 or 2060. Given that the agricultural land is saved
under  the  high  productivity  assumption,  this  could  be
converted to natural land to increase carbon sinks. Also, other
measure,  such  as  the  shift  from  fossil  fuel  to  electricity  in
energy use, could also reduce GHG emissions from the CFS.
 

4    CONCLUSIONS
 
This  study  developed  a  life  cycle  GHG  emission  accounting
model for the CFS, encompassing 21 carbon sources and sinks
from  LULUC  to  agricultural  production  and  further  post-
production stages. This appears to be the first study in China to
build  a  food  system  GHG  emission  accounting  model  with
both high sectorial  and spatial  resolution, providing a broader
perspective  on  the  amount  and  variability  of  GHG  emissions
caused  by  food  production  and  consumption.  The
characterization  of  a  food  systems  GHG  model  is  crucial  for
our increased understanding of  mitigation potential.  Not  only
does  it  consider  the  mitigation  potential  of  direct  mitigation
technology,  but  also  the  mitigation  potential  reflected  in
dietary  changes  and  agricultural  advances.  These  findings
indicate several priorities for making climate policies.

Between 1992 and 2017, the net GHG emissions from the CFS
increased  from 785  to  1080  Tg  CO2-eq.  Agricultural  activities
were  predicted  to  account  for  more  than  half  of  the  total
emissions  over  the  study  period,  while  the  agricultural  energy
subsector  was  the  largest  contributor  to  the  GHG increase.  In
2017, the North China Plain, Northeast China, and central and
southern  China  had  the  highest  levels  of  GHG  emissions.
When it comes to emission intensity, the highest emitting areas
shifted  to  eastern  China,  central  and  southern  China,  and  the
Jing-Jin  region,  while  carbon  sinks  were  found  in  western
China,  such as  Xinjiang,  Qinghai  and Tibet.  Scenario analyses
found that GHG emissions could be reduced to 355 Tg CO2-eq.
CO2-eq  through  adjusting  diet,  increasing  agricultural
productivities  and  enhancing  endpoint  mitigation
technologies.  The  potential  for  synergistic  mitigation  is
significant for agricultural activities, where dietary changes and
improving agricultural productivity could contribute over 60%
of the GHG reduction from the CFS.
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