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Abstract The effect of oxygen vacancies on the adsorp-
tion and activation of CO, on the surface of different
phases of ZrO; is investigated by density functional theory
(DFT) calculations. The calculations show that the oxygen
vacancies contribute greatly to both the adsorption and
activation of CO,. The adsorption energy of CO; on the
c-Zr0,, t-ZrO, and, m-ZrO, surfaces is enhanced to 5, 4,
and 3 folds with the help of oxygen vacancies, respec-
tively. Moreover, the energy barrier of CO; dissociation on
the defective surfaces of c¢-ZrO,, t-ZrO,, and m-ZrO, is
reduced to 1/2, 1/4, and 1/5 of the perfect surface with the
assistance of oxygen vacancies. Furthermore, the activa-
tion of CO; on the ZrO, surface where oxygen vacancies
are present, and changes from an endothermic reaction to
an exothermic reaction. This finding demonstrates that the
presence of oxygen vacancies promotes the activation of
CO; both kinetically and thermodynamically. These results
could provide guidance for the high-efficient utilization of
CO; at an atomic scale.

Keywords CO; activation, oxygen vacancies, ZrO;,
different phases

1 Introduction

The use of fossil energy has contributed to the develop-
ment of modern industry. However, the greenhouse gas
emission has caused a series of environmental and
survival problems, such as global warming, sea level rise,
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land desertification, and reduction of grain [1-3]. The
Paris Agreement, adopted at the 2015 UN Climate Sum-
mit, demonstrates the determination of the UN to curb the
global warming trend. It is worth noting that CO, is a
major greenhouse gas. The search for effective ways to
collect and utilize CO, has become a hot research topic in
recent years [4-6]. Currently, the main pathways to
achieve chemical conversion of CO; include catalytic
conversion of CO, to carbonate with alcoholic organics
such as methanol or ethanol [7], reaction of CO, with
hydrogen at a high temperature to produce methanol
[8—14], and catalytic reforming of CO, with alkanes to
prepare carbon monoxide and hydrogen [15]. CHy is also
a type of greenhouse gas, whose greenhouse effect is
21 times more efficient than CO, [16].

The CO,-CHy4 reforming process uses these two major
greenhouse gases as feedstock. The syngas produced
from reforming process is composed mainly of CO and
Hj, which can be further synthesized by Fischer—Tropsch
to produce high value-added chemicals or fuels [17-21].
Therefore, CO,-CH4 reforming into syngas has good pros-
pects for application. The current technical means of CO,-
CH,4 reforming include steam reforming and dry refor-
ming. Steam reforming was industrialized earlier [22,23],
but the involvement of water in the reaction process had
high requirements for the selection of the plant location.
In contrast, the CO,-CH4 dry reforming (DRM) process
is much more promising as it does not require the
involvement of water. Actually, due to the high energy of
C-H bond in CH4 molecule ((107 + 4) kcal/mol) [24],
CH,4 molecule is uneasy to undergo activation reaction.
Therefore, the choice of catalyst is extremely important
for DRM reaction.

The catalyst for the DRM reaction mainly consists of
two parts: the active metal and the support. When the
active metal is a precious metal, the catalyst can obtain an
excellent anti-carbon accumulation and thermal stability.
However, the high cost makes it difficult to achieve a
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large-scale industrial application. Nickel has the highest
activity among non-precious metals, but it is easily
deactivated by sintering and carbon accumulation. The
current research hotspot is to find a technical means to
improve the comprehensive performance of nickel-based
catalysts [25-29]. Many studies have pointed out that
doping Ni with other transition metals, such as Cu, Fe,
and Co, can improve its overall performance [30,31].
Meanwhile, finding a suitable support can also enhance
the comprehensive performance of the catalyst. In fact,
the support sometimes interacts synergistically with the
active metal or even participates directly in the reaction
itself [32—-35]. This synergistic effect can greatly improve
the comprehensive performance of the catalyst.

The supports of catalysts are generally prepared from
metal oxides, and the commonly used supports are MgO,
Al,O3, Si0,, and ZrO,. Among them, ZrO, has received
a lot of attentions due to the presence of both acid-base
centers and oxygen vacancies [36,37]. In 1993, Murota
et al. [38] first reported that ZrO, could promote the
ability of CeO; to store oxygen and lower the temperature
at which the reduction reaction occurs from 1100 to
900 K. In 2014, Chen et al. [39] discovered that the
higher the concentration of oxygen vacancies on the
surface of ZrO, in the water—gas shift (WGS) reaction,
the higher the catalytic efficiency of the catalyst. In 2017,
Han et al. [40] found that the presence of oxygen
vacancies on the ZrO; surface improved the selectivity of
CHy4 during the hydrogenation of CO to CHy. In 2021,
Petchmark et al. [41] demonstrated that the ability of
Z1r0O; to store hydrogen was increased in the presence of
oxygen vacancies on its surface. These reports demons-
trate that oxygen vacancies on the surface of ZrO, can
improve its catalytic ability in various reactions. In fact,
when ZrO; acts as a support, the oxygen vacancies can
increase the contact area between the Ni particle and the
support surface to keep the Ni particles well dispersed
[42]. The high dispersion, on the other hand, allows the
Ni particles to remain in a small size, and the particle size
can directly affect the performance of the catalyst
[43,44]. Overall, ZrO; reduces the carbon build-up of the
catalysts at high temperatures and increases the activity
when it is used as a support.

Currently, studies on the activation of the CH4-CO,
reforming process on the Ni/ZrO, catalyst surface using
DFT and experimental methods have been reported
[45-48]. However, studies on the effect of oxygen
vacancies on the ZrO, surface on CO, adsorption and
activation processes are still lacking. Elucidating the role
of oxygen vacancies in CO; adsorption and activation is
important for the preparation of high-performance DRM
reaction catalysts using ZrO,. Meanwhile, the metal
oxides used as support generally exist in different
crystalline phases, which can affect the performance of
the catalyst [49,50]. Therefore, clarifying the differences
in the adsorption and activation capacity of CO, on

different phases of ZrO, surface is equally important.

In this paper, first, the energy barrier and adsorption
energy of CO; on the perfect surfaces of different phases
of ZrO, are obtained by DFT calculation. Next, oxygen
vacancy (VO) is constructed on the surface of the
different phases of ZrO,. Afterwards, the adsorption
energy and dissociation barrier of CO; on the defective
ZrO, surface are calculated. Finally, the effect of the
presence of oxygen vacancies on the ZrO, surface on
CO, adsorption and activation is pointed out by
comparison, and the results obtained throughout the study
are summarized and their significance is discussed for the
study of high-performance catalysts for CO, conversion.

2 Computational details
2.1 DFT method and parameter setting

In this paper, the Dmol3 module in Materials Studio 2019
(BIOVIA Ltd.) is used to complete the required density
function theory (DFT) calculations [51,52]. The
generalized gradient approximation (GGA) and the
Perdue—Burke-Enzerhof (PBE) exchange-correlation
general functions are used for exchange-correlation
electron energies [53]. The wvalence electron wave
function uses double numerical orbital basis set + d-orbit
polarization (DND). The spin polarization of the
electrons is considered in the calculation since ZrO; is a
semiconductor. The vacuum layer is set to 20 A to ensure
that the intermolecular interaction forces between the
plates are negligible. The calculated energy, force, and
displacement convergence criteria are 2 x 107> Ha, 4 x
1073 Ha/A, and 5 x 1073 Ha/A, respectively. A smearing
value of 0.05 Ha is used to ensure the accuracy of the
calculation. Based on the Monkhorst—Pack method, the
Brillouin zone integrals are selected with the sum appro-
ximation on the special k& points. For the c-ZrO,(111),
t-ZrO»(101), and m-ZrO,(—111) surface models, the &
values are taken as 2 x 2 x 1,3 x 6 x 2, and 4 x 3 x 2,
respectively. The complete linear synchronous transfer
and quadratic synchronous transfer (LST/QST) method
was chosen to search for transition states and thus obtain
the energy barrier of the reaction.

2.2 Model details

Thermodynamically stable surfaces of different phases of
710y, i.e., ¢-ZrOy(111) [54], t-ZrOy(101) [55], and m-
Z1rOy(—111) [56] are used in the study. The optimized
perfect surface models of different phases of ZrO, are
shown in Fig. S1 in Electronic Supplementary Material
(ESM). For t-ZrO»(101) and m-ZrOy(—111), which have
a good periodicity, both take two layers of O—Zr—O. For
m-ZrO,(—111), three O—Zr—O layers are taken. All the
bottom O—Zr—O layer is fixed, while the rest is relaxed in
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optimizing the surface model. The cell parameters used in
the calculations fit well with those experimentally
determined in previous reports, and the specific
numerical comparisons are listed in Table 1.

2.3 Formula
In this paper, the adsorption energy F,qs, energy barrier

Ey, and heat of reaction H of the reaction process are
calculated by using Egs. (1)-(3)

Eads = Eadsorbale/surf - Eadsorbale - Esurf’ (1)
Ey, = Ers — Es, (2)
H = Exs — Eis, (3)

where E,gsorbate/surf 1S the total energy of the metal surface
with adsorbate on the surface, Eagsorbate 1S the energy of
the adsorbate alone, Fqyr is the energy of the clear metal
surface, Etgs is the energy of the transition state, Fg is the
energy of the reactants, and Erg is the energy of the
products.

3 Results and discussion
3.1 Construction of oxygen vacancies

The surface model with oxygen vacancy (Vo) is construc-
ted as demonstrated in Fig. S2, with the oxygen vacancy
sites being labeled. There are only 3-coordinated oxygen
atoms on the surfaces of c-ZrO,(111) and t-ZrO,(101).
Therefore, only one type of oxygen vacancy site is
constructed, respectively. The defective c-ZrO»(111) and
t-ZrO,(101) surfaces are denoted as c-ZrO,d(111) and
t-ZrO»4(101), respectively. Three types of coordinated
oxygen atoms are observed on the m-ZrO,(—111) surface:

2-ligand, 3-ligand, and 4-ligand. Only the three oxygen
atoms in the outermost layer are selected to construct the
oxygen vacancy. The three oxygen vacancy sites are
noted as Vo1, Voa, and Vo3 according to the horizontal
depth of the oxygen vacancy on the model surface.
Similarly, the latter is noted as m-ZrOdl(-111),
m-ZrO,92(—111), and m-ZrO,$3(=111) in order for the
m-ZrO,(—111) surface with defects, where the coordina-
tion number of oxygen vacancies on the surfaces of
m-ZrO,d1(—111) and m-ZrO,92(-111) is 2, and the
coordination number of oxygen vacancies on the surface
of m-ZrO,$3(=111) is 3.

In addition, to clarify the ability of oxygen vacancies to
accommodate the C and O atoms in CO,, the adsorption
energies of oxygen vacancies on the C and O atoms are
calculated separately. The calculation results obtained are
tabulated in Table 2.

The calculations show that the difference between the
adsorption energy of the O atom and that of the C atom
on the c-ZrO,4 surface is the smallest, but still as high as
0.4 eV. On other defective surfaces, the adsorption
energy of the O atom is about 1 eV higher than that of the
C atom. It can, therefore, be assumed that in the presence
of both C and O atoms, the oxygen vacancies on the ZrO,
surface tend to adsorb O atoms. This is in line with
previous reports [59]. However, it is worth noting that the
adsorption energy of the C atom at the oxygen vacancy is
above —2 eV, which is at a high level. Therefore, in the
absence of free O atoms on the surface, the oxygen
vacancies on the ZrO, surface may adsorb a certain
amount of C atoms.

3.2 Adsorption of CO,

The calculated most stable adsorption configurations of
CO; on perfect and defective surfaces are exhibited in

Table 1 Lattice parameters of c-ZrO,, t-ZrO,, and m-ZrO; from X-ray crystallographic and their DFT optimized structures
DFT? (In this study) X-ray® (Experimental measurement)
Crystals and surface Space group
a b c B a b c B
c-ZrO, (111) Fm3m 5.14 5.14 5.14 5.09 5.09 5.09
t-ZrO, (101) P42/nmce 3.64 3.64 5.31 3.64 3.64 5.27
m-ZrO, (—111) P21/c 5.23 5.27 542 100.05 5.17 5.23 5.34 99.2

Notes: 2 The a, b, and c parameters are in A, and 3 is in degree; b

The parameters of ¢c-ZrO,, t-ZrO,, and m-ZrO, were taken from Refs. [54,57,58], respectively.

Table 2 Comparison of adsorption energy of C atoms and O atoms on defective surfaces

Adsorption energy /eV

Phase Defective sites
C (0)
c - —3.38 —-3.81
t - -2.29 -3.82
m Voi -2.33 -3.31
Vo2 —2.68 -3.61
Vo3 —2.45 -3.43




548 Front. Energy 2023, 17(4): 545-554

]

¥
1.239

w
1.240

Fig. 1 Adsorption configurations of CO, on perfect and defective surfaces.

Fig. 1, and the adsorption energies are recorded in
Table 3.

As the shown in Fig. 2(a), the adsorption energy of
CO; on the defective surface is always greater than its
adsorption energy on the perfect surface. The adsorption
energy can be reduced by a maximum of 5-fold, as shown
in Fig. 2(b). This indicates that the presence of oxygen
vacancies can greatly facilitate the adsorption of CO, on
the ZrO, surface. The largest increase in adsorption
energy is found on the c-ZrO»(111) surface, where the
adsorption energy of CO; on the perfect surface is —0.198
eV, while on the defective surface the adsorption energy
increases to —0.996 eV. For the m-ZrO,(—111) surface,
where Vo3 is present, the increase in adsorption energy is
minimal, but the adsorption energy of the defective
surface can still be about 2.4 times higher than that of the
perfect surface. Moreover, for t-ZrO,(101), the involve-
ment of oxygen vacancies increases the adsorption
energy of CO; from —0.198 to —0.996 eV. In fact, for the
m-ZrO,(—111) surface, it is observed that the contribution
of oxygen vacancies to the adsorption diminishes as they
penetrate deeper into the surface.

Table 3 Adsorption energy of CO, adsorbed on perfect and defective
surfaces of ZrO,, respectively

Adsorption energy/eV
Phase Defective sites
Defective surface Perfect surface

c - —-0.996 —-0.198
t - -1.028 -0.226
m Vor ~0.999 —-0.306

Vo2 —-1.003

Vo3 —-0.728

3.3 Activation of CO,

The transition state models for the activation process of
CO; on perfect and defective surfaces are obtained, as
manifested in Fig. 3. The calculated energy barrier,
reaction heat, and Mulliken atomic charge are presented
in Table 4. The electron density of CO, binding on the
surface of different phases of ZrO, are displayed in
Fig. 4.

As shown in Fig. 5(a), the presence of oxygen
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vacancies significantly reduces the energy barrier of CO,
dissociation. The energy barrier of CO; dissociation can
be reduced to a maximum of 1/5 of a perfect surface, as
shown in Fig. 5(b). For m-ZrO,92(—111), oxygen vacan-
cies can reduce the energy barrier of CO, dissociation
from 1.593 to 0.312 eV. For c-ZrO,4(111), the oxygen
vacancy reduces the energy barrier from 1.671 to
0.463 eV, a reduction of roughly 3.6-fold. For t-
Zr0,4(101), the energy barrier is reduced from 1.713 to
0.352 eV with the help of oxygen vacancies, a reduction
of 4.9 times.

In addition, it can be observed from Fig. 6 that of the
perfect surfaces, the m-ZrOy(—111) and t-ZrO,(101)
surfaces are the most suitable for CO, activation,
whereas, of the defective surfaces, the t-ZrO,d9(101)
surface is the most favorable for CO, activation, followed
by m-ZrO,92(—111). At the same time, the activation of
CO, is transformed from an endothermic to an
exothermic reaction on all defective surfaces. This
suggests that oxygen vacancies can contribute kinetically
and thermodynamically to the activation process of CO,.

The nature of the oxygen vacancies that promotes CO,
activation can be revealed clearly from the electron
perspective. The Mulliken atomic charge listed in Table 4
indicates that oxygen vacancies could reduce the energy
barrier of CO, dissociation by increasing the charge
transfer from the ZrO, surface to the CO, molecule. For
the c-ZrO,4(111) and t-ZrO,4(101) surface, the charge
transfer can be increased about 2.8 times. For the
m-Zr0,92(—111) surface, the enhancement is up to 3.7
times. The electron density of the CO, molecule depicted
in Fig. 4 then visually illustrates the intensity of the
electron transfer between the CO, molecule and the ZrO,
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Fig. 3 Transition state model for activation process of CO; on perfect and defective surfaces (Oxygen atoms adsorbed on the surface are

labeled O2 and O atoms retained in CO are labeled O1.).

Table 4 Energy barrier, reaction heat, and Mulliken atomic charge of CO, activation on perfect and defective surfaces

Energy barrier/eV Reaction heat/eV Mulliken charge/e
Phase Defective sites
Perfect surface Defective Perfect surface Defective surface Perfect surface Defective surface
c - 1.671 0.463 1.511 —0.592 —0.230 —0.653
t - 1.713 0.352 1.347 —0.663 —-0.247 —-0.667
m Voi 1593 0.758 117 -0.306 ~0.188 —~0.464
Vo2 0.312 —0.499 —-0.701
Vos 0.436 —-0.619 —0.585
0550 ¢ t m m!
0275 M M - © M
-0
CJ Iu md_‘ I'Il"”
s M M V M
—0.550
Fig. 4 Electron density of CO; binding on surface of different phases of ZrO,.
surface. It can be noticed that oxygen vacancies greatly —m-ZrOy(—111) and t-ZrO,(101) surfaces in perfect

facilitate the charge exchange between the CO, molecule
and the ZrO, surface.

4 Conclusions

The processes of CO, adsorption and activation on
perfect and defective ZrO, surfaces are calculated
separately in this paper. By comparing the results of the
calculations, the following main conclusions can be
drawn.

1) The oxygen vacancies on the ZrO, surface are more
inclined to accommodate O atoms. Meanwhile, when CO
is adsorbed on the ZrO, surface, the Zr atoms prefer to
adsorb the C atom in CO.

2) The adsorption energy of CO, is greatest on

surfaces, and it is greatest on t-ZrO,9101) and
m-ZrO,92(—111) surfaces among the defective surfaces.
In fact, the presence of oxygen vacancies greatly
enhances the adsorption efficiency of CO; on the ZrO,
surface. For the m-ZrO,¥$3(—111) surface, the oxygen
vacancies increase the adsorption energy of CO, by a
factor of more than two, and for c-ZrO,9(111) surfaces,
the adsorption energy increases by a factor of fully five.
3) The energy barrier for CO, dissociation are lowest
on t-ZrO,(101) and m-ZrOx(—111) surfaces in perfect
surfaces while they are lowest on t-ZrO,4(101) and
m-ZrO,92(—111) surfaces in defective surfaces. The
activation process of CO; is greatly facilitated by oxygen
vacancies, both thermodynamically and kinetically. From
a kinetic point of view, the energy barrier of CO,
dissociation can be reduced to at most 1/5 of its initial
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(a) Comparison of absolute values of CO, dissociation energy
barrier; (b) changes in energy barrier of CO, dissociation. (In
Fig. (b), the horizontal and vertical coordinates represent the
dissociation energy barrier of CO, on perfect and defective
surfaces, respectively, and the & value is the ratio of the vertical
to the horizontal coordinate.).
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Fig. 6 Energy change curve (a value of Max means that the
presence of oxygen vacancies can reduce the energy barrier to a
maximum of 1/5 of the initial, and a value of Min means that
the reduction is a factor of 1/2 similarly.).

value on the t-ZrO,4(101) and m-ZrO,92(—=111) surface.
From the thermodynamic point of view, the activation

process of CO;, on the ZrO, surface of different phases
changes from an absorbing to an exothermic reaction.

These results could indicate the outstanding
contribution of oxygen vacancies to the adsorption and
activation of CO,, and provide guidance for the design of
efficient DRM catalysts at an atomic scale.
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