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ABSTRACT

An algorithm based on deep semantic segmentation called LC-DeepLab is proposed for detecting the

trends and geometries of cracks on tunnel linings at the pixel level. The proposed method addresses the low accuracy of
tunnel crack segmentation and the slow detection speed of conventional models in complex backgrounds. The novel
algorithm is based on the DeepLabv3+ network framework. A lighter backbone network was used for feature extraction.
Next, an efficient shallow feature fusion module that extracts crack features across pixels is designed to improve the
edges of crack segmentation. Finally, an efficient attention module that significantly improves the anti-interference
ability of the model in complex backgrounds is validated. Four classic semantic segmentation algorithms (fully
convolutional network, pyramid scene parsing network, U-Net, and DeepLabv3+) are selected for comparative analysis
to verify the effectiveness of the proposed algorithm. The experimental results show that LC-DeepLab can accurately
segment and highlight cracks from tunnel linings in complex backgrounds, and the accuracy (mean intersection over
union) is 78.26%. The LC-DeepLab can achieve a real-time segmentation of 416 x 416 x 3 defect images with 46.98 f/s

and 21.85 Mb parameters.
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1 Introduction

With the increase in infrastructure stock, structural
defects and the associated maintenance needs are
becoming increasingly common in China [1-3]. In tunnel
construction, lining cracks have adverse effects on the
performance and service life of the lining structure [4—6],
which may further lead to other defects, such as leakage
and concrete spalling. Therefore, the timely detection of
defects on surfaces is critical for maintaining tunnel
safety.

Traditional detection methods for structural defects
typically rely on onsite manual inspection, which
significantly wastes time and requires extensive effort [7].
Many nondestructive methods, such as acoustic emission
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[8], visual imaging [9], and ultrasonic tomography [10],
are used in tunnel inspection to improve detection
efficiency. However, these methods require manual
adjustment of the parameters, and the detection effect is
unsatisfactory [11]. With the development of computer
technology, image processing techniques (IPTs) and deep
learning algorithms have been gradually applied for
detecting structural surface defects [12,13]. Although
IPTs can rapidly detect structural defects, they require
manually designed features, and the detection effect is
severely limited by the complexity of the background
[14].

Deep learning algorithms use convolutional neural
networks (CNNs) to extract defect features with
improved generalization and anti-interference abilities
[15,16]. Regarding the difference in effects, defect
detection methods based on deep learning are mainly
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divided into object detection and semantic segmentation.
Object detection algorithms highlight defects using
rectangular frames and belong to the object-level
detection category. To overcome the shortcomings of
IPTs, Zhang et al. [17] applied deep learning to the
automatic detection of pavement cracks and found that
the recognition effect of this method was better than those
of the support vector machine and boosting methods. Cha
et al. [18] proposed a deep architecture of CNNs without
calculating the defect features and accurately detected
cracks using multiple rectangular frames. With improve-
ments in inspection equipment, digital single-lens reflex
cameras, unmanned aerial vehicles, and depth cameras
have also been used for defect detection [19,20]. Zhou
et al. [21] improved the YOLO series algorithm [22,23],
which uses a lightweight backbone network to extract
target features and achieves the real-time detection of
various tunnel lining defects. Compared with IPTs,
widely used object detection algorithms such as faster
regions with CNN (R-CNN) [24], the single-shot detector
[25], and YOLO can precisely locate and classify target
positions. However, these algorithms cannot quantita-
tively describe geometric parameters, such as area,
length, and orientation, which are not beneficial for
accurately evaluating defects.

The semantic segmentation algorithm directly separates
the defect pixels from the background, and the defects are
visually displayed in the predicted images. To achieve
pixel-level detection, Long et al. [26] designed a fully
convolutional network (FCN) that converts all fully
connected layers into convolutions in CNNs and achieves
semantic segmentation through pixel-by-pixel classifica-
tion. Since then, many scholars have investigated
semantic segmentation algorithms [27,28]. Liu et al. [29]
used the U-Net model to detect concrete defects under
various lighting and cluttered backgrounds. The results
showed that U-Net [30] was more efficient than FCN.
However, U-Net produces redundant recognition in
complex backgrounds. Ji et al. [31] used the DeepLabv3+
model [32] to evaluate five important indicators: fracture
length, average width, maximum width, area, and propor-
tion. The method effectively achieved accurate fracture
segmentation and quantification. Zhou et al. [33]
improved the DeepLabv3+ model and proposed a water
leakage segmentation algorithm that could detect the
morphological features and spatial distribution of defects
in real time. Ali and Cha [34] designed a generative
model for defective images based on the attention
mechanism and used these images to train the proposed
segmentation model.

Previous studies have shown that deep-learning-based
semantic segmentation algorithms can detect tunnel
cracks intelligently. However, when these algorithms
detect tunnel lining cracks in complex environments, the
following problems remain.
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(1) The model parameters are very large. Traditional
deep learning algorithms use many parameters to improve
accuracy, which decreases the model detection speed, that
is, the frames per second (FPS). Achieving rapid and
intelligent detection of tunnel cracks can be difficult
when the algorithm is embedded in mobile detection
equipment.

(2) The edge of the crack is discontinuous. The propor-
tion of tunnel cracks in actual lining images is low.
Moreover, the edge information of the cracks is lost after
multiple downsamplings, causing existing semantic
segmentation algorithms to be unable to achieve high
recognition accuracy.

(3) The model has a weak anti-interference ability.
Various defects coexist on the surface of the tunnel
lining, and the complex background and diverse illumina-
tions interfere with crack identification. The detection
accuracy of currently used models does not support
practical applications.

A high-precision and lightweight crack segmentation
model called LC-DeepLab, based on the DeepLabv3+
structure, was proposed in this study to solve these
problems. The main objectives of this study are as
follows.

(1) Use a lightweight backbone network. A lightweight
neural network, MobileNetV3 [35], was adopted as the
backbone network of the model. Depthwise separable
convolution was applied to reduce the size of the
parameters and the H-swish activation function and the
improved squeeze-and-excitation networks (SENet) [36]
were adopted to maintain accuracy.

(2) Design a shallow feature fusion module. We
extracted half of the shallow design feature fusion module
and used dilated convolution to extract crack position
information across pixels, resulting in improved accurate
crack edges.

(3) Apply the attention module. The method was
combined with ECANet [37] after feature fusion to
improve the anti-interference ability of the model.
ECANet receives information through adaptive one-
dimensional convolution cross-channel interaction and
detects tunnel cracks in complex backgrounds and
illumination.

2 Methodology
2.1 Overview of LC-DeepLab

Many CNN-based segmentation models apply an
encoder—decoder structure from an FCN. Based on this
approach, some methods have been applied to improve
the detection accuracy or speed of models, such as an
attention [38] and a spatial pyramid pooling (SPP)
modules [39]. Based on the DeepLabv3+ framework, a
fast detection algorithm called LC-DeepLab, which is
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suitable for complex tunnel lining crack detection, was
proposed in this study. The overall structure of the
proposed LC-DeepLab is depicted in Fig. 1. The model
consisted of three main parts: the modified MobileNetV3
for extracting backbone features, the shallow feature
fusion and attention modules, and an encoder—decoder
structure from DeepLabv3+. Specific strategies of the
proposed model are described in the following section.

2.2 MobileNetV3 and improvement methods

The MobileNetV3 structure uses an inverse residual
structure and depth-wise separable convolution. The
attention module (SENet) and the activation function (H-
swish) were used to improve accuracy. The MobileNetV3
structure consisted of a standard convolutional layer, 15
bottleneck layers, and three pointwise convolutional
layers. In some bottlenecks, 5 x 5 convolutions were used
instead of 3 x 3, and two layers of pointwise convolutions
were used at the end of the network instead of batch
normalization. The structure of this bottleneck is illustra-
ted in Fig. 2. These changes ensure a high accuracy while
minimizing the number of calculations and parameters.
The proposed LC-DeepLab uses the lightweight
network, MobileNetV3, to replace Xception [40] in
DeepLabv3+ for feature extraction. However, the
MobileNetV3 structure contains five downsamplings,

input
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whereas the original Xception uses only four downsamp-
lings. Excessive downsampling may result in information
loss owing to the characteristics of tiny cracks, and thus,
MobileNetV3 is improved. Dilated convolution was
applied to the MobileNetV3 structure to reduce informa-
tion loss caused by downsampling. The last two
downsampling layers are contained in the 7th and 13th
bottleneck layers in MobileNetV3. From the seventh
bottleneck, the stride of convolutions is changed in all
bottlenecks to 1, and dilated convolutions with different
dilation rates are applied to maintain the receptive field
(Table 1).

Atrous convolution gains an increased receptive field
by adding holes to the improved MobileNetV3. For the
same amount of computation, atrous convolution can
effectively prevent the reduction in image resolution
caused by downsampling [41]. The atrous convolution
structure is shown in Fig. 3. If the receptive field of a
standard convolution is 3 X 3, the receptive field of an
atrous convolution with a dilation rate of 2 is 5 x 5.

2.3 Shallow feature fusion module

In the training of many CNN-based segmentation models,
deep features are extracted via numerous deep convolu-
tion operations, which gradually reduce the image
resolution. The detection accuracy decreases significantly
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Fig. 1 Overall structure of proposed LC-DeepLab.
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Fig. 2 Bottlenecks of MobileNet v3. Note: NL is a nonlinear activation function; Dwise is a depth-wise separable convolution; Pool is a

pooling layer; FC is a fully connected layer.
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for defects with a low percentage of pixels in the original
image, such as cracks. Pixel classification depends on
both high- and low-dimensional features [42]. Thus, the
prediction effect is improved by fusing the features of
different dimensions [43]. Hence, a shallow feature
fusion module is proposed to utilize the location
information of the shallow features (Fig. 4).

Table 1 Improvement method for MobileNet v3 network structure
bottleneck kernel size stride dilation rate
original improved

7 3x3 2 1 2

8 3x3 1 1 2

9 3x3 1 1 2

10 3x3 1 1 2

11 3x3 1 1 2

12 3x3 1 1 2

13 5%5 2 1 4

14 5x5 1 1 4

15 5x5 1 1 4

Fig.3 Standard convolution and atrous convolution.
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—
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The lower part is the feature fusion module used to
extract shallow features. Here, the feature layers
generated by Block 2 and Block 3 in the backbone
network MobileNetV3 of DeeplLabv3+ are combined.
The feature map sizes of Block 2 and Block 3 were half
and one-quarter of those of the original image,
respectively. First, the feature map in Block 2 was
extracted across pixel points using a 3 x 3 dilated
convolution at a dilation rate of two. The size was then
reduced by a 3 x 3 standard convolution with a stride of
two. Finally, this feature map was combined with the
feature map in Block 3 to obtain the final shallow
features. This final feature layer has richer semantic and
spatial information of Block 2 and Block 3, which helps
to enhance the segmentation details of the cracks.

2.4 Attention module of ECANet

In a deep CNN, the attention module can effectively
improve the adaptability of the CNN. SENet is a
representative method that filters the channel weights
through feature squeezing and excitation. SENet obtains
all channel information through dimensionality reduction
and balances model performance with complexity.

However, Wang et al. [37] posit that it is inefficient for
SENet to determine all channel relationships and propose
a local cross-channel interaction attention mechanism
called the ECANet. ECANet designs a method for
adaptively selecting the size of one-dimensional convolu-
tion kernels to prevent degradation of the model perfor-
mance caused by dimensionality reduction. Equation (1)
is used to calculate the convolution kernel size k (cross-
channel interaction coverage), which is related to the
number of input channels.

3 x 3 Conv
rate 2 stride 1
3 x 3 Conv
rate 2 stride 1

deep features

3 x 3 Conv
| stride2 | ™™

_’._’

shallow features

Fig. 4 Shallow feature fusion module.
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where C is the current number of input channels, ¥ and b
are constants with values of 2 and 1, respectively, and
‘odd’ is the nearest integer. The ECANet structure is
depicted in Fig. 5.

The ECANet is applied to the proposed feature fusion
module in LC-DeepLab, which reduces the discontinuity
in spatial information caused by dilated convolution. In
theory, the attention mechanism focuses on the noticed
target pixel and enhances its weight, which can be
imposed after all feature fusion parts. The corresponding
ablation experiments are discussed in Subsubsection 4.3.2
to demonstrate the effectiveness of the proposed structure.

2.5 Encoder—decoder structure

The proposed LC-DeeplLab framework adopts the
k=9(C)
c
- GAP
H
w
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encoder—decoder structure in DeepLabv3+ (Fig. 6). The
encoder network consists of an improved MobileNetV3
and an atrous space pyramid pool (ASPP). Its main
function is to compress the feature layer and extract target
semantic information. The decoder network consists of
multiple convolutional and upsampling layers that restore
image size and perform pixel classification. The LC-
DeepLab algorithm process for semantic segmentation is
as follows.

In the encoder network, the image is input to the
improved MobileNetV3 for feature extraction, and two
preliminary effective feature layers are obtained. The
shallow feature layer results from two downsamplings
passed into the shallow feature fusion module. When the
image is compressed four times, a deep feature layer is
obtained and passed to the ASPP. The ASPP module
includes a 1 x 1 convolutional layer, three parallel dilated
convolutional layers with different dilation rates, and a
pooling layer. After these steps, semantic information of

P
C
: X
H
w
u
Ix1xC

Fig. 5 Network structure of ECANet. Note: H, W, and C are the length, width, and number of channels of the input feature layer,
respectively; GAP is the channel-level global average pooling without dimensionality reduction; & is the convolution kernel size; o is the

sigmoid activation function.
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Fig. 6 Encoder—decoder structure of LC-DeepLab and improvement methods.
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different scales in the deep feature layer is extracted. The
processed deep feature layer is passed to the decoding
part after a 1 x 1 convolutional dimension reduction.

In the decoder network, the original shallow feature
layer is reduced by a 1 x 1 convolution, and the feature
layer after the ASPP is upsampled. The two feature layers
are stacked to form the final effective feature layer that
condenses the semantic information of the entire image.
The final feature layer restores the original size via
upsampling and obtains semantic segmentation results
after two depth-wise separable convolutions.

3 Model test

3.1 Tunnel lining crack data set

During almost 10 years of tunnel monitoring, the authors
captured many photographs of tunnel lining defects. For
the data set, 1336 crack images were selected, which
contained various colors of light (such as blue, yellow,
and black) and complex backgrounds (such as marks,
potholes, and noise). The data set of the tunnel lining
cracks is shown in Fig. 7.

When the number of photographs is insufficient, the
model may undergo overfitting, affecting its generaliza-
tion ability. Thus, the data set was augmented by rotating,
cropping, adding noise, and adjusting brightness (Fig. 8).
Finally, the data set containing 2093 complex and diverse
crack images was divided into training, validation, and
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test sets in the ratio of 8:1:1. These sets comprised 1673
training images, 210 validation images, and 210 test
images (Table 2). The image size was standardized to
416 x 416 x 3. This division ensured that the original and
expanded images were in the same training set.

The tunnel lining crack detection adopted supervised
learning. The model learned the mapping relationship
between the original and label images in the training set,
adjusted the parameters through backpropagation in the
validation set, used the mapping relationship to segment
the images in the test set, and obtained the model
accuracy index. The original images were labeled at the
pixel level using the labeling software, LabelMe, to
obtain the label images. The label images were
maintained to correspond to the original images (Fig. 9).

3.2 Training environment settings

The experimental algorithm was constructed using
Python3.8, and Pytorch1.10.0 was used as the deep
learning framework. The operating system used for the
experiment was Windows 10, the processor (central
processing unit) was AMD Ryzen 7 5800H, and the
graphics processing unit was NVIDIA GeForce RTX
3060.

Because of the large number of network parameters, the
frozen training method was used to improve training
efficiency. The model was trained for 200 epochs, and the
backbone network, MobileNetV3, was frozen in the first
50 epochs. The network was then fine-tuned. During the

Fig. 7 Data set of tunnel lining cracks.



738

¥
®

Front. Struct. Civ. Eng. 2023, 17(5): 732-744

(d)

Fig. 8 Expanded data set: (a) rotation; (b) cropping; (c) noise; (d) brightness.

Table 2 LC-DeepLab data set

image size

416 x 416 x 3

model validation test

LC-DeepLab

training

1673 210 210

subsequent 150 epochs, the backbone network was
unfrozen, and the entire model was trained. Hyperpara-
meters such as the batch size and learning rate were
optimized to improve the training efficiency [44]. The
optimization results are presented in Table 3. The model
used Adam as the optimizer and StepLR as the learning-
rate adjustment technique. Before model training, the

Fig. 9

images were uniformly resized to 416 % 416 pixels via
size normalization.

3.3 Evaluation metrics

3.3.1 Training evaluation metrics

The loss function was the basis for determining the
convergence trend of the model during training. The Dice
loss [45] was used as the loss function in this study, and
the model continued to converge when the Dice loss
showed a downward trend. The model used the training

Image annotation method.
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Table 3 Network hyperparameters

hyperparameter value

freeze training unfrozen training
epoch 50 150
batch size 16 4

learning rate 5x 10" 5% 10°

set to train the parameters and determine whether the
model converged using the validation set. In addition, the
validation set adjusted the network parameters through
backpropagation to ensure that the Dice loss continued
decreasing until the model converged fully. Equation (2)
was used to compute the Dice loss.

ZZinfqﬁs
XX aree

where p;, is the predicted binary probability, ¢, is the true
binary probability, £ is a minimum, and i is the input
value.

Dice loss =1-

2

3.3.2 Predictive evaluation metrics

The accuracy evaluation indicators used in this study
were the mean pixel accuracy (mPA) and the mean
intersection over union (mloU). mPA is a simple
evaluation metric, and mloU is a standard metric for
evaluating semantic segmentation [46]. Therefore, mloU
was used as the main metric to evaluate the accuracy of
the model. Equations (3) and (4) were used to calculate
mPA and mloU, respectively.

1 - Xn""
u+1 T,

m=0

mPA =

3)

where u is the total number of categories of the predicted
target, m is the predicted target category, X, is the total
number of pixels successfully predicted in category m,
and T, is the total number of pixels in category m.

u

1 Z P
1L v ’
N Z pmn + anm - pmm
n=0 n=0

where m and n are different target categories, and p,,, is
the probability of predicting category m as category n.

FPS was used as the speed evaluation index to analyze
the effects of the lightweight improvement of the model
on the prediction speed. Equation (5) was used to
calculate the FPS.

mloU =

“)

Num

. b (5)

FPS =
Time
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where Num is the number of predicted pictures, and Time
is the time corresponding to the prediction.

4 Test results and discussion

4.1 Loss curves of LC-DeepLab

The training and validation losses were calculated after
each training epoch of the LC-DeepLab model. The loss
curves are shown in Fig. 10.

The loss value sharply decreased at the beginning of the
frozen training, indicating an appropriate learning rate
and rapid model convergence. The loss curve gradually
flattened as the number of training generations increased.
The backbone network remained unfrozen after the 50th
epoch. The model loss first increased slightly, decreased
gradually, and stabilized, indicating that the network
converged. Finally, the training loss of the LC-DeepLab
model was stable at approximately 0.13, and the
validation loss was stable at approximately 0.16,
indicating that the model did not undergo overfitting
during the training process.

4.2 Comparison and analysis of different models

Four models (FCN, PSPNet [47], U-Net, and
DeepLabv3+) were compared with LC-DeepLab to assess
the model performance. The four semantic segmentation
models are briefly introduced as follows.

(1) FCN: The FCN supports image inputs of any size
and restores feature maps to their original size by
upsampling and deconvolution. The segmentation prob-
lem is transformed into a pixel classification problem,
and end-to-end segmentation can be achieved.

(2) PSPNet: This model designs a unique pyramid
pooling module that divides the feature layer into grids of
different sizes. In addition, it performs average pooling to
aggregate the context information of different regions and

0.30

\ — val

— train
0.25 4 \

0.20 A

loss

KV N An NN~ Y

0.15 A

0 50 100 150
epochs

200

Fig. 10 Loss curve of LC-DeepLab model.
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improves the ability to obtain full-text information.

(3) U-Net: The U-Net designs the encoder—decoder
structure and splices the feature map of the encoder to the
decoding feature map of the corresponding stage. This
enables the decoder to learn the relevant information lost
during the pooling of the encoder.

(4) DeepLabv3+: ASPP is designed for feature extrac-
tion and fusion at different magnifications, and the
encoding—decoding structure reduces the loss of semantic
information.

The other four classical semantic segmentation models
were trained on the same data set, and the same test set
was used to evaluate the various performance metrics.
The results are presented in Table 4.

The evaluation experiment showed that the mloU
obtained using LC-DeepLab on this data set was 78.26%,
which were 6.56%, 12.77%, 4.82%, and 7.05% higher
than those of the FCN, PSPNet, U-Net, and DeepLabv3+,
respectively. The mPA of LC-DeepLab was 85.80%,
second only to U-Net (86.27%), indicating that LC-
DeepLab effectively improved the segmentation accuracy
of tunnel-lining cracks. After replacing the network
backbone, the LC-DeeplLab parameters were only
21.85 Mb, which is significantly lower than those of the
other four segmentation algorithms. The FPS reached
46.98 f/s, and each tunnel defect image took only 21.3 ms
on average. Therefore, the detection speed of LC-
DeepLab is faster than those of other models, and tunnel-
lining cracks can be detected in real time.

Figure 11 shows the predicted images of the cracks
using different models. Manually detected handwriting
was added to the detection images as interference, and the
complexity of the images increased from Figs. 11(a) to
11(e). The experimental results showed that LC-DeepLab
had the best segmentation effect. The predicted cracks
were continuous and less disturbed by the environment,
which was more evident when the images were enlarged
(Figs. 11(e) and 11(f)). Although DeepLabv3+ and U-Net
could predict continuous crack images, they were affected
by severe background interference, and a significant part
of the handwriting in the background was segmented into
cracks (Figs. 11(e) and 11(f)). The FCN and PSPNet lost
some crack pixels, which led to a discontinuity in the
recognition results (Figs. 11(a) and 11(d)). However,
FCN and PSPNet exhibited a stronger anti-interference
ability than DeepLabv3+ and U-Net (Figs. 11(c) and
11(e)) and could still accurately distinguish cracks and
artificial handwriting for interference.

4.3 Ablation experiments

4.3.1 Effect of different improvement strategies

Based on DeeplLabv3+, LC-DeepLab replaces the
backbone network with MobileNetV3 and applies the
shallow feature fusion module and ECANet. Ablation

Front. Struct. Civ. Eng. 2023, 17(5): 732-744

experiments were conducted using the same data set and
hyperparameters to verify the effects of these
improvement strategies on the model prediction speed
accuracy (Table 5).

The accuracy and speed evaluation results showed that
after replacing the backbone network, the mloU increased
to 74.80%, the mPA increased to 85.99%, and the para-
meters decreased to 21.70 Mb. After applying the feature
fusion and ECA modules, mloU increased to 78.26%.
The mPA remained at a high level, and the model
parameters remained unchanged, indicating that the three
improvement strategies of the LC-DeepLab model effec-
tively improved model segmentation accuracy and speed.

Prediction images of DeepLabv3+ and LC-DeepLab
under different background interferences (such as marks,
depressions, and shadows) were selected to visually
demonstrate the model improvement effect (Fig. 12). The
first row shows the original image of the tunnel lining.
Figures 12(a) and 12(b) show simple manual markings,
Figs. 12(c) and 12(d) show varying lighting, and Figs.
12(e) and 12(f) show segments and depressions.

Partially manual annotations were identified as cracks
(Figs. 12(a)-12(c)) when using DeepLabv3+. As the
cracks narrowed or the lighting worsened, the cracks
predicted by DeepLabv3+ became discontinuous (Fig.
12(d)), and some images were completely undetectable
(Fig. 12(c)). In addition, low-light parts such as shadows
of segments and dents in concrete were misjudged as
cracks (Figs. 12(e) and 12(f)). After replacing the
backbone network, the model could distinguish cracks
from other disturbances more accurately (Figs. 12(c)—
12(e)). The accuracy of the predicted crack orientation
and edges improved after applying the feature fusion and
ECA modules (Figs. 12(c), 12(e), and 12(f)).

4.3.2 Comparison of locations of ECA module application

Different control groups were established to identify the
optimal position of the ECA module application.
Considering that the attention module improves the
adaptive ability of convolutional networks by suppressing
irrelevant channel weights, we propose the application of
ECANet after three feature fusion modules. These three
positions are after the shallow feature fusion, ASPP
structure, and deep and shallow feature fusion. The effect

Table 4 Evaluation metrics of model performance

method amount of FPS mPA mloU ascension of mloU

parameters (Mb)  (f/s) (%) (%) (%)
LC-DeepLab 21.85 46.98 85.80 78.26 -
FCN 269.74 17.48 79.45 171.70 6.56
PSPNet 178.51 23.18 76.38 65.49 12.77
U-Net 94.97 20.04 86.27 73.44 4.82
DeepLabv3+ 209.70 12.00 79.06 71.21 7.05
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original image

label image

DeepLabv3+

FCN

PSPNet

U-Net

LC-DeepLab

Fig. 11

of applying ECANet at different positions on the model
accuracy by selecting the model (Group 1) after replacing
the backbone network structure and performing feature
fusion as the benchmark is presented in Table 6.

Table 5 Results of ablation experiments

MobileNet  feature ECANet parameter mPA mloU ascension of

v3 fusion Mb) (%) (%)  mloU (%)
209.70  79.06 7121 -

y 2170 8599 74.80 3.59

v v 21.85 8425 7671 5.50

y J y 21.85 8580 78.26 7.05

Note: V represents “used.”

Test images of different models. (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4; (e) Test 5; (f) Test 6.

Applying ECANet to different locations is not entirely
beneficial for crack detection. For example, applying the
attention module to the corresponding positions of the
5th—7th groups reduced the accuracy of the model,
possibly because the attention mechanism at this location
damaged the channel weights of the original network. In
addition, after applying the ECA module three times in
the 8th group, its detection effect was not as good as
applying a single ECA module in the 2nd—4th groups.
Hence, ECANet was applied only after shallow feature
fusion to simplify the network structure. The mloU of the
model increased to 78.26%, and the mPA increased to
85.80%.
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Fig. 12 Comparison of predicted images between DeepLabv3+ and LC-DeepLab. (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4; (e) Test 5;

(f) Test 6.

Table 6 Effect of applying ECANet at different positions on model
accuracy

group A B C mPA(%) mloU (%) ascension of mloU (%)
1 84.25 76.71 -

2 \ 85.80 78.26 1.55

3 d 84.55 77.89 1.18

4 N 8539 77.93 1.22

5 J 82.70 76.08 -0.63

6 N 77.06 71.33 -5.38

7 J Vo223 74.27 —2.44

8 NN N 8484 77.25 0.54

Note: A is the efficient channel attention (ECA) after the shallow feature
fusion, B is the ECA after the ASPP, C is the ECA after deep and shallow
feature fusion, and  represents “used”.

5 Discussion

Compared with the traditional semantic segmentation
algorithm, the optimization strategy adopted by LC-
DeepLab effectively improves the accuracy and speed of

tunnel-lining crack identification. The novel algorithm
exhibits an excellent anti-interference ability and can
accurately segment lining cracks in complex backgrounds
under poor lighting conditions. Its detection speed (FPS)
reaches 46.98 f/s, which supports the dynamic detection
of tunnel defects.

A crack detection management platform based on the
proposed algorithm can be developed. The model can be
built on crack-detection mobile devices, such as robot
cars and drones. The artificial intelligence camera
automatically captures and detects various defects in the
tunnel lining when the equipment moves. The recorded
data can be uploaded to the software management
platform through the network to realize intelligent
detection and maintenance of tunnel projects.

6 Conclusions

This study proposes a fast detection model called LC-
DeepLab for cracks on tunnel linings based on the
DeepLabv3+ architecture. The model uses a lightweight
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network, MobileNetV3, instead of Xception for feature
extraction. Moreover, a shallow feature fusion module
and ECANet are designed to enhance the extraction of
shallow features and improve the anti-interference ability
of the proposed model. A complex tunnel surface-lining
data set was constructed for the experiments to validate
the performance of the proposed model. The results
showed that the mloU of the LC-DeepLab was 78.26%,
and the speed (FPS) reached 46.98 f/s when the input was
416 x 416 x 3. Compared with the four classical semantic
segmentation models, the proposed LC-DeepLab exhibits
an excellent anti-interference ability because it can detect
the edges of cracks more accurately than other models in
the complex backgrounds of tunnels.
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