RESEARCH ARTICLE # Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study Xin Chen (⋈)^{1,2,3}, Liang Luo¹, Shihong Huang¹, Xingbo Ge¹, Xiuyun Zhao⁴ 1 Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 3 Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 4 Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland © Higher Education Press 2023 Abstract Recently, metal-organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe₂Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe₂Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO₂(110) catalysts. The analysis of the potential gap of Fe₂M clusters indicates that Fe₂Mn, Fe₂Co, and Fe₂Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe₂Mn and Fe₂Co connected through 3,3',5,5'-azobenzenetetracarboxylate linker to form Fe₂M–PCN–Fe₂M is explored. Compared with Fe₂Mn–PCN–Fe₂Mn, Fe₂Co–PCN– Fe₂Co, and isolated Fe₂M clusters, the mixed-metal Fe₂Co–PCN–Fe₂Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe₂Co-PCN-Fe₂Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts. Keywords bimetallic metal-organic frameworks, bifunc- tional electrocatalyst, density functional theory, oxygen reduction reaction, oxygen evolution reaction # 1 Introduction The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play essential roles in several energy conversion technologies [1–3]. Because of the slow multistep proton-coupled electron transfer process, ORR and OER need efficient electrocatalysts to overcome these kinetic barriers and accelerate the reaction rate [4,5]. Although Pt- and Ru-based catalysts are efficient electrocatalysts for ORR and OER, respectively, their uses are limited due to high costs, natural scarcity, and poor resistance to poisoning [6,7]. Therefore, it becomes very urgent for researchers to develop non-noble metal catalysts for low cost as well as high activity and stability to replace the typical Pt- and Ru-based catalysts. Recently, more and more non-precious metal materials have been studied, including metal-free carbon-based materials [8,9], metal-nitrogen-carbon materials [10,11], and metal-organic frameworks (MOFs) [12,13]. Among them, MOFs stand out as a type of porous and crystalline materials with structural tunability, high specific surface area, and other beneficial intrinsic physicochemical features [14–17]. Various modification strategies have been investigated, including changing the morphology of MOFs (different organic linkers) [18] or forming heterostructures (bimetallic or multi-metallic MOFs) to develop high-performance MOFs [19–21]. Compared with monometallic materials, bimetallic MOFs materials show more excellent ORR/OER catalytic activity, which can be attributed to the synergistic effect between different metals [22–24]. For instance, Wang et al. [25] have synthesized a series of stable MOFs based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands (BPTC). The results reveal that the OER catalytic activities of bimetallic Fe₂Co-BPTC, Fe₂Zn-BPTC, and Fe₂Ni-BPTC are improved compared with monometallic Fe₃-BPTC. Additionally, 3,3',5,5'azobenzenetetracarboxylate (ABTC), as a type of bridging aromatic tetracarboxylate organic ligand, possesses many advantages to be designed as catalytically-active MOFs [26,27]. For example, the exposed azo bond is from a well-known Lewis base group, which is expected to modulate the catalytic performance. Furthermore, the rigid ABTC ligand has four carboxyl groups, then it is easily deprotonated to form different geometries. In these geometries, several strong metal-oxygen coordination bonds can greatly enhance the thermal stability and rigidity of the framework [28,29]. Recently, Dong et al. [30] have synthesized a series of nanocomposite MOFs materials porous coordination network (Fe₂M-PCN-Fe₂M) composed of the ABTC linker and trinuclear metal cluster, which can construct a mixedmetal-cluster structure with multiple active centers. These findings indicate that Fe₂Ni–PCN–Fe₂Co possesses better OER catalytic activity than Fe₂Ni-PCN-Fe₂Ni and Fe₂Co-PCN-Fe₂Co. Based on these previous studies, it is worthwhile to investigate the potential bifunctional catalytic performance of heterometallic Fe₂M clusters formed using 3d transition metals other than Ni and Co, as well as the effect of mixed heterometallic clusters connected by an ABTC linker on catalytic activity. This study systematically investigates heterometallic cluster-based organic frameworks' ORR and OER catalytic activities using density functional theory (DFT) methods. First, the structures of heterometallic clusters (Fe₂M, M = Ti, V, Cr, Mn, Co, Ni, Cu, Zn) are constructed. Next, the bifunctional catalytic activity of Fe₂M clusters is investigated, and the Fe₂Mn and Fe₂Co clusters with the most superior catalytic activity are screened. Finally, the Fe₂Mn and Fe₂Co are connected through an ABTC linker to form Fe₂M–PCN–Fe₂M, and the catalytic activity of Fe₂M–PCN–Fe₂M is determined by calculating the binding energy of the reaction intermediate and the Gibbs free energy change of each elementary step. # 2 Computational detail All calculations in this work were employed with a spinpolarized DFT framework and implemented by the DMol³ module in Materials Studio software [31]. The generalized gradient approximation with the PerdewBurke–Ernzerhof functional was adopted to describe the electron exchange and correlation effect [32]. The effective core potentials were used to deal with the related relativistic effect, and the basis set of atomic orbitals was described by double numerical polarization. The convergences of energy, maximum force, and maximum displacement were set as 2×10^{-5} Ha, 0.004 Ha·Å⁻¹, and 0.005 Å, respectively. The stability of the catalyst is evaluated by calculating the substitution energy, which is the energy of M atom replace Ni atom in Fe₂Ni, due to the good stability of synthesized Fe₂Ni cluster according to the experiment [30,33]. The substitution energy ($E_{\rm sub}$) is calculated as follows: $$E_{\text{sub}} = E_{\text{Fe},M} + E_{\text{Ni}} - E_{\text{Fe},\text{Ni}} - E_{\text{M}}, \tag{1}$$ where $E_{\text{Fe}_2\text{M}}$, E_{Ni} , $E_{\text{Fe}_2\text{Ni}}$, and E_{M} are the energies of Fe₂M clusters, isolated Ni atom in bulk phase, Fe₂Ni cluster, and isolated M atom of Fe₂M clusters in bulk phase, respectively. When the calculated value of E_{sub} is negative, it means that the replacement of Ni by other M atoms is energetically favorable, that is, the structure of Fe₂M is more stable than that of Fe₂Ni. It is well known that ORR has two different reaction pathways, namely two-electron and four-electron pathways. In this paper, only the four-electron pathway with higher power output has been investigated [34,35]. The specific reaction steps of the four-electron pathway are as follows (The asterisk represents the active site of catalysts): * + $$O_2$$ + H^+ + $e^- \to *OOH$ (2) $$*OOH + H^+ + e^- \rightarrow *O + H_2O$$ (3) $$*O + H^+ + e^- \rightarrow *OH$$ (4) $$*OH + H^{+} + e^{-} \rightarrow * + H_{2}O$$ (5) The binding energies of reaction intermediates $(\Delta E_{\rm species})$ are calculated by the following equations: $$\Delta E_{*\text{OOH}} = E_{*\text{OOH}} - E_* - (2E_{\text{H},0} - 3/2E_{\text{H}_2}), \tag{6}$$ $$\Delta E_{*O} = E_{*O} - E_* - (E_{H,O} - E_{H_2}), \tag{7}$$ $$\Delta E_{*OH} = E_{*OH} - E_* - (E_{H_2O} - 1/2E_{H_2}),$$ (8) where the $E_{*{\rm OOH}}$, $E_{*{\rm O}}$, and $E_{*{\rm OH}}$ are the total energies of the catalyst combined with *OOH, *O, and *OH, respectively. The E_* is the energy of the isolated catalyst. The $E_{{\rm H}_2{\rm O}}$ and $E_{{\rm H}_2}$ are the total energies of ${\rm H}_2{\rm O}$ and ${\rm H}_2$ molecules, respectively. The Gibbs free energy change is one of the important parameters used to evaluate the catalytic activity of a catalyst, and the specific calculation equations are as follows: $$\Delta G_1 = \Delta G_{*\text{OOH}} - 4.92,\tag{9}$$ $$\Delta G_2 = \Delta G_{*O} - \Delta G_{*OOH},\tag{10}$$ $$\Delta G_3 = \Delta G_{*OH} - \Delta G_{*O}, \tag{11}$$ $$\Delta G_4 = -\Delta G_{*OH},\tag{12}$$ where the ΔG_1 , ΔG_2 , ΔG_3 , and ΔG_4 represent the Gibbs free energy change of each step of ORR. The $\Delta G_{*{\rm OOH}}$, $\Delta G_{*{\rm O}}$, and $\Delta G_{*{\rm OH}}$ are the adsorption free energies of *OOH, *O, and *OH, respectively. The adsorption free energies of reaction intermediates ($\Delta G_{*{\rm species}}$) are calculated by the equation of $\Delta G_{*{\rm species}} = \Delta E_{{\rm species}} + \Delta ZPE - T\Delta S$. Based on the previous work, the zero-point energies and entropies of intermediates adsorbed on different catalysts are similar [36]. Therefore, the $\Delta G_{*{\rm species}}$ can be described by $\Delta G_{*{\rm OOH}} = \Delta E_{*{\rm OOH}} + 0.40$, $\Delta G_{*{\rm O}} = \Delta E_{*{\rm O}} + 0.05$, and $\Delta G_{*{\rm OH}} = \Delta E_{*{\rm OH}} + 0.35$. The overpotential of ORR can be calculated by the following equation: $$\eta^{\text{ORR}} = \max(\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4)/e + 1.23. \tag{13}$$ For OER, as is well known that it is the reverse reaction of ORR [37,38]. The Gibbs free energy of each elementary reaction step of OER is the opposite value of the Gibbs free energy of the corresponding ORR step, $\Delta G_{\rm OER} = -\Delta G_{\rm ORR}$. The overpotential of OER is calculated by the following equation: $$\eta^{\text{OER}} = \max(-\Delta G_4, -\Delta G_3, -\Delta G_2, -\Delta G_1)/e - 1.23.$$ (14) Based on the previous works [39,40], the potential gap (ΔE) is defined to reflect the bifunctional catalytic activity, and the specific equation is as follows: $$\Delta E = \eta^{\text{ORR}} + \eta^{\text{OER}}.$$ (15) # 3 Results and discussion # 3.1 Structure and catalytic activity of Fe₂M clusters In this work, the constructed Fe₃ cluster structure, the considered transition metals, and the established Fe₂Ti cluster (which is one of the heterometallic Fe₂M clusters, M = Ti, V, Cr, Mn, Co, Ni, Cu, Zn) are shown in Fig. 1. Firstly, the MIL-88 (Materials of Institute Lavoisier) [41], namely, the Fe₃ cluster, is constructed, as shown in Fig. 1(a). It can be observed that the three Fe sites are joined by a central μ_3 -O atom and connected by the carboxylate linkers. Subsequently, a Fe atom in the Fe₃ cluster is replaced with a 3d transition metal atom to examine the catalytic performance of bimetallic MOF catalysts, and the considered transition metals are shown in Fig. 1(b). The optimized configurations of Fe₂M clusters are expressed in Fig. S1 (cf. Electronic Supplementary Material, ESM). It can be clearly observed that all Fe₂M clusters have not undergone deformation compared to Fe₃ cluster. In order to accurately appraise the stability of Fe_2M , the E_{sub} values are calculated and plotted in Table S1 (cf. ESM). It can be found that all E_{sub} values are negative, demonstrating that the substitution of M atom to Ni atom is energetically favorable. Compared with Fe₂Ni, all the Fe₂M being studied possess satisfactory thermodynamical stability. Moreover, the first-principles molecular dynamics calculations are also performed during a period of 1 ps at 300 and 500 K temperatures, respectively. After dynamics calculations, the final structures and the M-O bond lengths of Fe₂M clusters are shown in Fig. S2 (cf. ESM). It is clearly observed that all Fe₂M clusters have no obvious deformation, and the change in bond length is insignificant (no more than 0.15 A), indicating that they are stable. In each Fe₂M clusters, both the Fe and doped M are considered as active sites. Taking the Fe₂Ti cluster as an example (Fig. 1(c)), Fe₂Ti-Ti and Fe₂Ti-Fe represent the Ti and Fe sites of the Fe₂Ti cluster, respectively. Likewise, naming the active sites of other Fe₂M clusters also follows this rule. The $\Delta E_{\rm species}$ on all possible active sites of Fe₂M clusters are calculated to examine the catalytic activity of Fe₂M clusters, as listed in Table 1. For comparison, the values of $\Delta E_{\rm species}$ on the Pt(111) [42] and RuO₂(110) [43] surfaces are used as a benchmark for ORR and OER, respectively. The smaller the value of $\Delta E_{\rm species}$, the stronger the binding strength. As is known to us, compared with the ideal ORR catalyst, the Pt(111) surface binds *OOH relatively weak and binds *O and *OH relatively strong. Meanwhile, compared with the ideal OER catalyst, the RuO₂(110) surface binds *O slightly weak. The $\Delta E_{\rm species}$ values on Fe₂Ti, Fe₂V, and Fe₂Cr clusters are significantly smaller than Pt(111) or RuO₂(110), implying that the binding strength of reaction intermediates on Fig. 1 (a) Optimized configuration of Fe₃ cluster. The orange circle represents the location of the metal to be replaced. (b) Transition metals considered in this work. (c) Active sites of Fe₂Ti cluster. The blue dotted circle represents the active site. them is excessively strong. In contrast, the values of $\Delta E_{\rm species}$ on Fe₂Cu and Fe₂Zn clusters are significantly larger than that on Pt(111) or RuO₂(110), showing their weak binding strength of reaction intermediates. Therefore, the OER and ORR catalytic activities of the above catalysts may be unsatisfactory. Surprisingly, for Fe₂Mn and Fe₂Co clusters, the $\Delta E_{\rm species}$ values of reaction intermediates are all relatively close to that on the Pt(111) and RuO₂(110) surfaces, proving that they may have excellent ORR and OER activities. It is worth noting that the binding strength of reaction intermediates on the M site of Fe₂M clusters (M = Ti, V, Cr, Mn) is almost stronger than that on the Fe site. The $\Delta G_{*_{species}}$ values of the reaction intermediates on Fe₂M clusters are calculated and depicted in Fig. 2. It can be detected that there are significant linear relationships **Table 1** $\Delta E_{\text{species}}$ values of reaction intermediates on all possible active sites of Fe₂M clusters | Active site | $\Delta E_{*OOH}/eV$ | $\Delta E_{*O}/\text{eV}$ | $\Delta E_{*\mathrm{OH}}/\mathrm{eV}$ | | |------------------------|----------------------|---------------------------|---------------------------------------|--| | Fe ₂ Ti–Ti | 1.66 | -0.44 | -1.72 | | | Fe ₂ Ti–Fe | 3.20 | 0.86 | -1.01 | | | Fe_2V-V | 2.07 | -0.48 | -1.14 | | | Fe ₂ V–Fe | 3.00 | 1.60 | 0.02 | | | Fe ₂ Cr–Cr | 2.22 | 0.56 | -0.85 | | | Fe ₂ Cr–Fe | 2.52 | 1.33 | -0.31 | | | Fe ₂ Mn–Mn | 3.71 | 2.69 | 0.70 | | | Fe ₂ Mn–Fe | 4.06 | 2.67 | 1.04 | | | Fe ₂ Co–Co | 4.04 | 2.84 | 1.02 | | | Fe ₂ Co–Fe | 3.97 | 3.00 | 1.00 | | | Fe ₂ Ni–Ni | 3.76 | 2.80 | 0.57 | | | Fe ₂ Ni–Fe | 3.20 | 2.32 | 0.26 | | | Fe ₂ Cu–Cu | 4.27 | 4.49 | 1.93 | | | Fe ₂ Cu–Fe | 4.29 | 3.28 | 1.19 | | | Fe ₂ Zn–Zn | 4.38 | 4.60 | 1.85 | | | Fe ₂ Zn–Fe | 4.28 | 3.28 | 1.19 | | | Pt(111) | 3.66 | 1.65 | 0.88 | | | RuO ₂ (110) | 3.91 | 2.66 | 0.97 | | of ΔG_{*OOH} and ΔG_{*O} with ΔG_{*OH} on Fe₂M clusters. Generally, *O forms a double bond with the catalyst surface, and *OH forms a single bond with the catalyst surface. The O atom of *OOH forms a single bond with the metal atom. Consequently, the slope between ΔG_{*0} and ΔG_{*OH} is greater than 1, and the slope of ΔG_{*OOH} vs. ΔG_{*OH} is close to 1 [44]. The correlation between ΔG_{*OOH} and ΔG_{*OH} can be explained by $\Delta G_{*OOH} = 0.76 \Delta G_{*OH} +$ 3.27 with the coefficients of determination (R^2) of 0.88. The slope and intercept are similar to those reported in previous studies [45,46]. Furthermore, the ΔG_{*0} and ΔG_{*OH} display a linear correlation of $\Delta G_{*O} = 1.36 \Delta G_{*OH} +$ 1.29, and they have a stronger linear relationship due to a higher R^2 value of 0.96. Based on the above analysis, it can be predicted that when Fe₂M clusters have a strong binding ability of *OH, they also interact strongly with *O and *OOH. According to the linear relationships of $\Delta G_{*{\rm OOH}}$ and $\Delta G_{*{\rm O}}$ with $\Delta G_{*{\rm OH}}$, $\Delta G_{*{\rm OH}}$ can be determined as the descriptor to explore the catalytic activity of Fe₂M clusters. In addition, by introducing the linear relationships into the Eqs. (8)–(11), the equations can be expressed as $\Delta G_1 = 0.76\Delta G_{*{\rm OH}} - 1.65$, $\Delta G_2 = 0.60\Delta G_{*{\rm OH}} - 1.98$, $\Delta G_3 = -0.36\Delta G_{*{\rm OH}} - 1.29$, and $\Delta G_4 = -\Delta G_{*{\rm OH}}$. Therefore, the volcano plot between overpotential and $\Delta G_{*{\rm OH}}$ is established, as shown in Fig. 3. In addition, the potential-determining step (PDS) is determined by the step with the maximum ΔG value. For ORR, the top of the volcano appears (inverted) when $\Delta G_{^*\mathrm{OH}}$ value reaches 0.94 eV, and the minimum theoretical η^{ORR} value of this kind of catalyst is 0.29 V. For Fe₂M clusters with the strong binding strength of *OH ($\Delta G_{^*\mathrm{OH}} < 0.94$ eV), the *OH reduction step is determined as the PDS. As the $\Delta G_{^*\mathrm{OH}}$ values on Fe₂M clusters increase, the data points fall near the blue line, indicating that the PDS becomes the step of *OOH formation. Additionally, it can be clearly observed that the values of $\Delta G_{^*\mathrm{OH}}$ on Fe₂Mn–Mn and Fe₂Ni–Ni are close to 0.94 eV, manifesting that these catalysts possess **Fig. 2** Scaling relationships of (a) ΔG_{*OOH} vs. ΔG_{*OH} and (b) ΔG_{*O} vs. ΔG_{*OH} on Fe₂M clusters. Fig. 3 Volcano plot of $\eta^{\rm ORR}$ and $-\eta^{\rm OER}$ as a function of $\Delta G_{*\rm OH}$ (the square and circle symbols represent $\eta^{\rm ORR}$ and $-\eta^{\rm OER}$, respectively). Taking ORR as an example, blue line: $\eta^{\rm ORR}=0.76\Delta G_{*\rm OH}-0.42$; orange line: $\eta^{\rm ORR}=0.60\Delta G_{*\rm OH}-0.75$; purple line: $\eta^{\rm ORR}=-0.36\Delta G_{*\rm OH}-0.06$; green line: $\eta^{\rm ORR}=-\Delta G_{*\rm OH}+1.23$. good catalytic activity. Notably, the η^{ORR} value of Fe₂Mn–Mn is the minimum (0.42 V), which is smaller than the corresponding value of the Pt(111) surface (η^{ORR} = 0.45 V) [42], showing that the catalytic activity of Fe₂Mn–Mn is comparable to that on the Pt(111) surface. For OER, the volcanic top appears when ΔG_{*OH} value is equal to 0.72 eV, and the minimum theoretical η^{OER} value is calculated as 0.32 V. When ΔG_{*OH} value is less than 0.72 eV, the PDS of Fe₂M clusters is the third proton-coupled electron transfer step (*O \rightarrow *OOH). As the binding strength of *OH on Fe₂M clusters weakens, the PDS is calculated as the step of *OH \rightarrow *O or H₂O \rightarrow *OH. Apparently, Fe₂Co–Co possesses the smallest η^{OER} value of 0.32 V, which is smaller than the corresponding value on the RuO₂(110) surface ($\eta^{OER} = 0.37$ V) [43], manifesting that it has excellent catalytic activity toward OER. #### 3.2 Bifunctional catalytic activity of Fe₂M clusters To further examine the bifunctional catalytic activity of this material, the values of ΔE on Fe₂M clusters are calculated and shown in Fig. 4. The smaller the values of ΔE , the better the bifunctional catalytic performance of Fe₂M clusters. Among all Fe₂M clusters, it can be clearly noticed that Fe₂Mn, Fe₂Co, and Fe₂Ni clusters possess better bifunctional catalytic activity due to their smaller ΔE values. Furthermore, the energy gap ($E_{\rm gap}$) values between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Fe₂M clusters are calculated to investigate their electronic property, as shown in Table 2. As is well known, a relatively small $E_{\rm gap}$ value implies high chemical reactivity and low dynamic stability [47]. In addition, our previous work has pointed out that an appropriate HOMO value is conducive to the transfer of electrons from the catalyst to O_2 , which can weaken the O-O bond and further promote the subsequent reaction process [48]. Compared with other Fe_2M clusters, Fe_2Mn , Fe_2Co , and Fe_2Ni have moderate $E_{\rm gap}$ and HOMO values. This may explain why they possess good bifunctional activity. # 3.3 Structure and catalytic activity of Fe₂M–PCN–Fe₂M Although Fe₂Mn–Mn and Fe₂Co–Co have the highest ORR and OER catalytic activity, respectively, their bifunctional catalytic activities are not ideal. Compared with some reported bifunctional catalysts, including carbon nanotube-supported trimetallic (Mn-Ni-Fe) oxide catalyst ($\Delta E = 0.73$ V) [49], Ni₃Fe nanoparticles embedded in porous nitrogen-doped carbon sheets catalyst ($\Delta E = 0.84 \text{ V}$) [50], and commercial carbonsupported iridium metal nanoparticles catalyst ($\Delta E =$ 0.92 V) [51], the ΔE values of Fe₂Mn and Fe₂Co clusters are relatively larger. To further promote their bifunctional catalytic activity, Fe₂-PCN-Fe₂M is constructed, in which Fe₂Mn and Fe₂Co clusters are connected through the organic linker ABTC. Instead of interacting with the metal element, the carboxylate linker in the heterometallic cluster interacts with the ABTC linker. The optimal configurations of Fe₂Mn–PCN–Fe₂Mn, Fe₂Co–PCN– Fe₂Co, and Fe₂Co-PCN-Fe₂Mn are shown in Fig. 5. Additionally, only Mn and Co sites are considered active sites for the corresponding catalysts due to the fact that Fig. 4 Values of ΔE on Fe₂M clusters. **Table 2** HOMO, LUMO, and E_{gap} values of Fe₂M clusters | Item | Fe ₂ Ti | Fe_2V | Fe ₂ Cr | Fe ₂ Mn | Fe ₂ Co | Fe ₂ Ni | Fe ₂ Cu | Fe ₂ Zn | |-----------------------|--------------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | HOMO/eV | -4.749 | -4.724 | -4.708 | -5.859 | -5.792 | -5.269 | -5.985 | -6.146 | | LUMO/eV | -3.829 | -4.311 | -4.087 | -5.049 | -4.978 | -4.672 | -5.041 | -4.995 | | $E_{\rm gap}/{ m eV}$ | 0.920 | 0.413 | 0.621 | 0.810 | 0.814 | 0.597 | 0.944 | 1.151 | Fig. 5 Optimal configurations of (a) Fe₂Mn–PCN–Fe₂Mn, (b) Fe₂Co–PCN–Fe₂Co, and (c) Fe₂Co–PCN–Fe₂Mn. Fe₂Mn–Mn and Fe₂Co–Co, respectively, have the best ORR and OER catalytic activity, as well as relatively small ΔE values. The optimal configurations of the reaction intermediates on Fe₂M–PCN–Fe₂M are calculated, as shown in Fig. S3 (cf. ESM). Meanwhile, the corresponding $\Delta E_{\rm species}$ on Fe₂M–PCN–Fe₂M are calculated, as presented in Table 3. For ORR, the $\Delta E_{*{\rm OOH}}$ values on almost all Fe₂M–PCN–Fe₂M are smaller than those on Fe₂Mn–Mn and Fe₂Co–Co, suggesting the binding strength of *OOH is enhanced on almost all Fe₂M–PCN–Fe₂M. The findings show that the catalytic activities of Fe₂M–PCN–Fe₂M may be improved. Moreover, except for Fe₂Co–PCN–Fe₂Co, the values of $\Delta E_{*{\rm O}}$ and $\Delta E_{*{\rm OH}}$ on Fe₂M–PCN–Fe₂M do not change significantly compared with those on Fe₂Mn–Mn and Fe₂Co–Co. Specifically, Fe₂Co–PCN–Fe₂Co possesses the $\Delta E_{*{\rm O}}$ value of 3.15 eV, which is **Table 3** $\Delta E_{\text{species}}$ values on Fe₂M–PCN–Fe₂M | Catalyst | Site | $\Delta E_{*OOH}/eV$ | $\Delta E_{*O}/\text{eV}$ | $\Delta E_{*{ m OH}}/{ m eV}$ | |-------------------------------------------|---------|----------------------|---------------------------|-------------------------------| | Fe ₂ Mn–PCN–Fe ₂ Mn | Mn site | 3.71 | 2.56 | 0.61 | | Fe ₂ Co–PCN–Fe ₂ Co | Co site | 3.61 | 3.15 | 0.82 | | Fe ₂ Co-PCN-Fe ₂ Mn | Mn site | 3.68 | 2.55 | 0.72 | | | Co site | 3.68 | 2.82 | 0.98 | much larger than the corresponding values on Fe₂Co–Co (2.84 eV) and Pt(111) (1.65 eV), indicating that such weak *O binding strength may cause the ORR process restricted by the formation of *O. For OER, the PDS of Fe_2Mn-Mn and Fe_2Co-Co is the step of *OH \rightarrow *O, which is attributed to the weak binding strength of *O. Fortunately, the values of ΔE_{*O} on almost all $Fe_2M-PCN-Fe_2M$ are smaller than that on Fe_2Mn-Mn and Fe_2Co-Co , implying stronger *O binding. Therefore, their OER catalytic activity may be improved by the strong binding strength of *O. As is well known, the $\Delta E_{*{\rm OOH}}$, $\Delta E_{*{\rm O}}$, or $\Delta E_{*{\rm OH}}$ alone is insufficient to predicate catalytic activity. Hence, the detailed catalytic process and overpotential are further discussed. The Gibbs free energy change in each reaction step of ORR and OER on Fe₂M-PCN-Fe₂M is calculated, as shown in Fig. 6. For ORR, it can be found that the free energy curves of each ORR step on all Fe₂M-PCN-Fe₂M being studied are downhill, showing that ORR can occur spontaneously on them. Except for Fe₂Co-PCN-Fe₂Co, the PDS of all Fe₂M–PCN–Fe₂M is the first proton-electron transfer step (the formation of *OOH). The PDS of Fe₂Co-PCN-Fe₂Co is the step of *OOH \rightarrow *O, which is attributed to its weak binding strength to *O. The corresponding η^{ORR} values on Fe₂Mn–PCN–Fe₂Mn, Fe₂Co-PCN-Fe₂Co, as well as the Mn and Co sites of Fe₂Co-PCN-Fe₂Mn are 0.42, 0.41, 0.39, and 0.39 V, respectively, demonstrating that they have remarkable catalytic activity, even better than the Pt(111) surface $(\eta^{ORR} = 0.45 \text{ V})$ [42]. For OER, the PDS of all Fe_2M -PCN- Fe_2M being studied is the step of *OH \rightarrow *O. It is noteworthy that the Mn and Co sites of $Fe_2Co-PCN-Fe_2Mn$ have small η^{OER} values of 0.30 and 0.31 V, respectively. These values are even less than that on the RuO₂(110) surface (0.37 V) [43], indicating that Fe₂Co–PCN–Fe₂Mn possesses excellent OER catalytic activity. Furthermore, some experimental studies have shown that the Fe₂Co cluster-based organic frameworks exhibit excellent OER performance, including Fe₂Co–MOF (0.34 V) [17] and Fe₂Co-BPTC (0.38 V) [25]. Additionally, the bifunctional catalytic activity of Fe₂M–PCN–Fe₂M is also investigated. For Fe₂Co–PCN– Fe₂Co, its ΔE value (1.17 V) is larger than that for Fe₂Co-Co (1.07 V), implying its inferior bifunctional catalytic activity. For Fe₂Mn–PCN–Fe₂Mn, its ΔE value only becomes 0.05 V smaller than Fe₂Mn-Mn (0.89 to 0.84 V). Following the above analysis, forming Fe₂M-PCN-Fe₂M by the same Fe₂M clusters cannot significantly improve the bifunctional catalytic activity. Encouragingly, when forming mixed-metal Fe₂Co-PCN-Fe₂Mn, the ΔE values on the Mn and Co sites on it are 0.69 and 0.70 V, respectively, significantly smaller than the corresponding values on Fe₂Co-Co, Fe₂Mn-Mn, and other previously reported catalysts [49-51]. All in all, forming mixed-metal Fe₂Co-PCN-Fe₂Mn is an effective strategy to improve the bifunctional catalytic performance of the original Fe₂M clusters. #### 3.4 Origin of the activity The number of electrons in the 3d orbital of Mn or Co **Fig. 6** Free energy diagrams of ORR and OER on (a) $Fe_2Mn-PCN-Fe_2Mn$, (b) $Fe_2Co-PCN-Fe_2Co$, (c) Mn site of $Fe_2Co-PCN-Fe_2Mn$, and (d) Co site of $Fe_2Co-PCN-Fe_2Mn$. The PDS of ORR and OER are denoted by blue and green lines, respectively. active atoms of Fe₂Co–PCN–Fe₂Mn, Fe₂Co, and Fe₂Mn is calculated to investigate the origin of catalytic activity of Fe₂Co-PCN-Fe₂Mn. A previous study has found that a greater number of electrons in the 3d orbital of an active metal atom is more conducive to the binding of *OOH [52]. As shown in Fig. 7, the profiles of density of states (DOS) are integrated to calculate the accurate number of electrons in 3d orbital metal atom. The number of electrons under the Fermi level in 3d orbitals of the Mn and Co sites of Fe₂Co–PCN–Fe₂Mn is 8.75e and 10.72e, which are respectively larger than that of the Mn site of Fe₂Mn (8.44e) and Co site of Fe₂Co (9.59e). The greater number of electrons in the 3d orbital makes the Mn and Co sites of Fe₂Co-PCN-Fe₂Mn have stronger *OOH binding strength than that on the Mn site of Fe₂Mn and Co site of Fe₂Co, respectively, which is proven by the calculated values of ΔE_{*OOH} (Table 1 Additionally, taking Fe₂Mn and Fe₂Co-PCN-Fe₂Mn as examples, the corresponding DOS is calculated to reflect the electronic properties of catalysts before and after forming a mixed-metal cluster, as shown in Fig. 8. It can be observed that the Mn-d orbitals of the catalysts overlap with O-p orbitals of *OOH near the Fermi level, implying that the specific interaction between the catalyst and *OOH. Compared with the case of Fe₂Mn, the peak of O-p orbitals of *OOH on Fe₂Co–PCN–Fe₂Mn is split into several peaks and shifted to a lower energy level, indicating the stronger orbital hybridization between Mn-d and O-p orbitals. Therefore, the results reveal that the strategy of constructing a mixed-metal cluster can effectively tune the electronic property of the active site, increasing the catalytic activity of the catalyst. # 4 Conclusions The ORR and OER catalytic activities of heterometallic cluster-based organic frameworks are systematically explored by DFT methods in this work. Firstly, the Fig. 7 (a) The number of electrons in the 3d orbital of Mn active atoms of $Fe_2Co-PCN-Fe_2Mn$ and Fe_2Mn ; (b) the number of electrons in the 3d orbital of Co active atoms of $Fe_2Co-PCN-Fe_2Mn$ and Fe_2Co . The Fermi level is set to zero. Inset is the magnified pattern near the Fermi level. Fig. 8 DOS of d orbitals for Fe₂Mn and Fe₂Co-PCN-Fe₂Mn. The O-p refers to the p orbital of the oxygen atom of *OOH. binding strength of the reaction intermediates on Fe₂M clusters is studied. It can be found that Fe₂Mn and Fe₂Co clusters may have excellent ORR and OER catalytic activities due to the $\Delta E_{\rm species}$ values on them are close to that on the Pt(111) and $RuO_2(110)$ surfaces. Subsequently, the scaling relationships of ΔG_{*OOH} and ΔG_{*O} with ΔG_{*OH} on Fe₂M clusters are established, and the volcano plot between the overpotential and ΔG_{*OH} is constructed. Fe₂Mn–Mn possesses the highest ORR activity ($\eta^{ORR} = 0.42 \text{ V}$), which is better than the Pt(111) surface ($\eta^{ORR} = 0.45 \text{ V}$). Fe₂Co–Co has the smallest η^{OER} value of 0.32 V, which is smaller than that on the $RuO_2(110)$ surface ($\eta^{OER} = 0.37$ V). Additionally, the potential gap on Fe₂M clusters is calculated to assess the bifunctional catalytic activity. Among them, Fe₂Mn, Fe₂Co, and Fe₂Ni clusters have better bifunctional catalytic activity due to the ΔE values on them being relatively small. Furthermore, Fe₂M–PCN–Fe₂M formed by Fe₂Mn and Fe₂Co clusters is constructed, and the bifunctional catalytic activity is investigated. For ORR, except for Fe₂Co–PCN–Fe₂Co (*OOH \rightarrow *O), the PDS of all Fe₂M–PCN–Fe₂M is the formation of *OOH. Compared with the Pt(111) surface, the η^{ORR} values on all Fe₂M–PCN–Fe₂M being studied are smaller, indicating that they have excellent ORR catalytic activity. For OER, the PDS of all Fe₂M–PCN–Fe₂M under study is the step of *OH \rightarrow *O. Fe₂Co–PCN–Fe₂Mn possesses excellent OER catalytic activity due to the small η^{OER} values on the Mn and Co sites of the catalyst. Encouragingly, it can be found that both the Mn and Co sites of Fe₂Co-PCN-Fe₂Mn have excellent bifunctional catalytic activity, which is attributed to their potential gap of 0.69 and 0.70 V, respectively. Moreover, the analysis of the number of electrons in the 3d orbital of an active atom indicates that formed mixed-metal Fe₂Co–PCN–Fe₂Mn can effectively tune the electronic properties of the active site. These results demonstrate that mixing Fe₂Co and Fe₂Mn clusters to construct mixed-metal Fe₂Co-PCN-Fe₂Mn is an effective strategy to improve the catalytic activity of the original Fe₂M clusters. Acknowledgements This work was supported by the Science and Technology Project of Sichuan Province (Grant No. 2022YFS0447), the Local Science and Technology Development Fund Projects Guided by the Central Government of China (Grant No. 2021ZYD0060), the Science and Technology Project of Southwest Petroleum University (Grant No. 2021JBGS03), the Special Project of Science and Technology Strategic Cooperation between Nanchong City and Southwest Petroleum University (Grant No. SXQHJH064), and the Postgraduate Research and Innovation Fund of Southwest Petroleum University (Grant No. 2021CXYB14). We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and Materials Studio. **Electronic Supplementary Material** Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2247-y and is accessible for authorized users. # References - Li N, Nam Y, Lee J Y. Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514: 146073 - Zheng X, Cao X, Sun Z, Zeng K, Yan J, Strasser P, Chen X, Sun S, Yang R. Indiscrete metal/metal–N–C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn–air batteries. Applied Catalysis B: Environmental, 2020, 272: 118967 - Deng L, Yang Z, Li R, Chen B, Jia Q, Zhu Y, Xia Y. Graphenereinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1487–1499 - Koper M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chemical Science, 2013, 4(7): 2710–2723 - Sun F, Li C, Li B, Lin Y. Amorphous MoS: X developed on Co(OH)₂ nanosheets generating efficient oxygen evolution catalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(44): 23103–23114 - Chen X. Oxygen reduction reaction on cobalt-(n)pyrrole clusters from DFT studies. RSC Advances, 2016, 6(7): 5535–5540 - Zhang S, Lv F, Zhang X, Zhang Y, Zhu H, Xing H, Mu Z, Li J, Guo S, Wang E. Ni@RuM (M = Ni or Co) core@shell nanocrystals with high mass activity for overall water-splitting catalysis. Science China Materials, 2019, 62(12): 1868–1876 - Lu X, Ge L, Yang P, Levin O, Kondratiev V, Qu Z, Liu L, Zhang J, An M. N-doped carbon nanosheets with ultra-high specific surface area for boosting oxygen reduction reaction in Zn-air batteries. Applied Surface Science, 2021, 562: 150114 - 9. Yu X H, Yi J L, Zhang R L, Wang F Y, Liu L. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407 - Sun C, Li Z, Yang J, Wang S, Zhong X, Wang L. Twodimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction. Catalysis Today, 2020, 353: 279–286 - Zhang Y, Chen X, Zhang H, Ge X. Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. Journal of Colloid and Interface Science, 2022, 609: 130–138 - 12. Chen X, Sun F, Bai F, Xie Z. DFT study of the two dimensional metal–organic frameworks X_3 (HITP)₂ as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471: 256–262 - Zhang H, Zhao W, Wu Y, Wang Y, Zou M, Cao A. Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium–sulfur battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(15): 9195–9201 - 14. Witman M, Ling S, Anderson S, Tong L, Stylianou K C, Slater B, - Smit B, Haranczyk M. *In silico* design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chemical Science, 2016, 7(9): 6263–6272 - Ban Y, Zhao M, Yang W. Metal-organic framework-based CO₂ capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 188–215 - 16. Zhang Z, Chen Y, Wang Z, Hu C, Ma D, Chen W, Ao T. Effective and structure-controlled adsorption of tetracycline hydrochloride from aqueous solution by using Fe-based metal-organic frameworks. Applied Surface Science, 2021, 542: 148662 - Gu M, Wang S C, Chen C, Xiong D, Yi F Y. Iron-based metal-organic framework system as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions. Inorganic Chemistry, 2020, 59(9): 6078–6086 - Shao Q, Yang J, Huang X. The design of water oxidation electrocatalysts from nanoscale metal-organic frameworks. Chemistry, 2018, 24(27): 15143–15155 - 19. Gao Z, Yu Z W, Liu F Q, Yang C, Yuan Y H, Yu Y, Luo F. Stable iron hydroxide nanosheets@cobalt-metal-organic-framework heterostructure for efficient electrocatalytic oxygen evolution. ChemSusChem, 2019, 12(20): 4623–4628 - 20. Kirchon A, Zhang P, Li J, Joseph E A, Chen W, Zhou H C. Effect of isomorphic metal substitution on the fenton and photo-fenton degradation of methylene blue using Fe-based metal-organic frameworks. ACS Applied Materials & Interfaces, 2020, 12(8): 9292–9299 - Gopalsamy K, Babarao R. Heterometallic metal organic frameworks for air separation: a computational study. Industrial & Engineering Chemistry Research, 2020, 59(35): 15718–15731 - Li S, Gao Y, Li N, Ge L, Bu X, Feng P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy & Environmental Science, 2021, 14(4): 1897–1927 - Senthil Raja D, Lin H W, Lu S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57: 1–13 - 24. Zhou W, Huang D D, Wu Y P, Zhao J, Wu T, Zhang J, Li D S, Sun C, Feng P, Bu X. Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2019, 58(13): 4227-4231 - 25. Wang X L, Dong L Z, Qiao M, Tang Y J, Liu J, Li Y, Li S L, Su J X, Lan Y Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal—organic framework system. Angewandte Chemie International Edition, 2018, 57(31): 9660–9664 - 26. Liu W, Ye L, Liu X, Yuan L, Jiang J, Yan C. Hydrothermal syntheses, structures and luminescent properties of d¹⁰ metal—organic frameworks based on rigid 3,3',5,5'-azobenzenetetracarboxylic acid. CrystEngComm, 2008, 10(10): 1395–1403 - 27. Li Y P, Zhang L J, Ji W J. Synthesis, characterization, crystal structure of magnesium compound based 3,3',5,5'- - azobenzentetracarboxylic acid and application as highperformance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure, 2017, 1133: 607–614 - Osta R E, Frigoli M, Marrot J, Guillou N, Chevreau H, Walton R I, Millange F. A lithiumeorganic framework with coordinatively unsaturated metal sites that reversibly binds water. Chemical Communications, 2012, 48(86): 10639–10641 - Saha D, Maity T, Koner S. A magnesium-based multifunctional metal-organic framework: synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study. Dalton Transactions, 2013, 42(38): 13912–13922 - Dong H, Zhang X, Yan X C, Wang Y X, Sun X, Zhang G, Feng Y, Zhang F M. Mixed-metal-cluster strategy for boosting electrocatalytic oxygen evolution reaction of robust metal-organic frameworks. ACS Applied Materials & Interfaces, 2019, 11(48): 45080–45086 - Delley B. From molecules to solids with the DMol³ approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764 - 32. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868 - Dong L Z, Zhang L, Liu J, Huang Q, Lu M, Ji W X, Lan Y Q. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angewandte Chemie International Edition, 2020, 59(7): 2659–2663 - 34. Chen X, Ge F, Chang J, Lai N. Exploring the catalytic activity of metal-fullerene $C_{58}M$ (M = Mn, Fe, Co, Ni, and Cu) toward oxygen reduction and CO oxidation by density functional theory. International Journal of Energy Research, 2019, 43(13): 7375–7383 - Modak B, Srinivasu K, Ghosh S K. Exploring metal decorated porphyrin-like porous fullerene as catalyst for oxygen reduction reaction: a DFT study. International Journal of Hydrogen Energy, 2017, 42(4): 2278–2287 - Calle-Vallejo F, Martínez J I, Rossmeisl J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13(34): 15639–15643 - 37. Chen X, Zhang H, Li X. Mechanisms of fullerene and single-walled carbon nanotube composite as the metal-free multifunctional electrocatalyst for the oxygen reduction, oxygen evolution, and hydrogen evolution. Molecular Catalysis, 2021, 502: 111383 - 38. Zhao X, Liu X, Huang B, Wang P, Pei Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24583–24593 - 39. Ma Y, Jin F, Hu Y H. Bifunctional electrocatalysts for oxygen reduction and oxygen evolution: a theoretical study on 2D metallic WO₂-supported single atom (Fe, Co, or Ni) catalysts. Physical Chemistry Chemical Physics, 2021, 23(24): 13687–13695 - 40. Wei B, Fu Z, Legut D, Germann T C, Du S, Zhang H, Francisco J S, Zhang R. Rational design of highly stable and active MXene- - based bifunctional ORR/OER double-atom catalysts. Advanced Materials, 2021, 33(40): 2102595 - Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G. A new isoreticular class of metal–organic-frameworks with the MIL-88 topology. Chemical Communications, 2006(3): 284–286 - 42. Chen X, Sun F, Chang J. Cobalt or nickel doped SiC nanocages as efficient electrocatalyst for oxygen reduction reaction: a computational prediction. Journal of the Electrochemical Society, 2017, 164(6): F616–F619 - 43. Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Nørskov J K. Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007, 607(1-2): 83–89 - Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302–2312 - 45. He T, Matta S K, Will G, Du A. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods, 2019, 3(9): 1800419 - 46. Chen X, Huang S, Zhang H. Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution reaction catalysts: a density functional theory study. Journal of Alloys and Compounds, 2022, 894: 162508 - 47. Aihara J I. Reduced HOMO-LUMO gap as an index of kinetic - stability for polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A, 1999, 103(37): 7487–7495 - 48. Ge F, Qiao Q, Chen X, Wu Y. Probing the catalytic activity of M- $N_{4-x}O_x$ embedded graphene for the oxygen reduction reaction by density functional theory. Frontiers of Chemical Science and Engineering, 2020, 15(5): 1206–1216 - 49. Morales D M, Kazakova M A, Dieckhöfer S, Selyutin A G, Golubtsov G V, Schuhmann W, Masa J. Trimetallic Mn–Fe–Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Advanced Functional Materials, 2020, 30(6): 1905992 - 50. Fu G, Cui Z, Chen Y, Li Y, Tang Y, Goodenough J B. Ni₃Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Advanced Energy Materials, 2017, 7(1): 1601172 - 51. Gorlin Y, Jaramillo T F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. Journal of the American Chemical Society, 2010, 132(39): 13612–13614 - 52. Tang T, Jiang W J, Niu S, Liu N, Luo H, Chen Y Y, Jin S F, Gao F, Wan L J, Hu J S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328