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Abstract This work introduces a deep-learning network,
i.e., multi-input self-organizing-map ResNet (MISR), for
modeling refining units comprised of two reactors and a
separation train. The model is comprised of self-
organizing-map and the neural network parts. The self-
organizing-map part maps the input data into multiple two-
dimensional planes and sends them to the neural network
part. In the neural network part, residual blocks enhance
the convergence and accuracy, ensuring that the structure
will not be overfitted easily. Development of the MISR
model of hydrocracking unit also benefits from the
utilization of prior knowledge of the importance of the
input variables for predicting properties of the products.
The results show that the proposed MISR structure predicts
more accurately the product yields and properties than the
previously introduced self-organizing-map convolutional
neural network model, thus leading to more accurate
optimization of the hydrocracker operation. Moreover, the
MISR model has smoother error convergence than the
previous model. Optimal operating conditions have been
determined via multi-round-particle-swarm and differential
evolution algorithms. Numerical experiments show that the
MISR model is suitable for modeling nonlinear conversion
units which are often encountered in refining and
petrochemical plants.
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1 Introduction

Large amounts of data collected daily in refining plants
are a rich source of information about the performance of
the processing units. Using that data to create models for
monitoring and optimization of plant operations can lead
to significant benefits. Due to the abundance of the
heavier crude oil resource and the stricter product
requirement [1], the performance of the hydrocracking
unit is crucial to the profitability of a refinery [2].
Hydrocracking is a catalytic cracking process that
operates under high temperature and pressure to convert
heavy oil to more valuable products and remove sulfur
and undesired impurities [3]. Changes in the feed
properties require adjustment of operating conditions so
that the yields and properties of the products will
contribute to the optimal operation of the refinery. Hence,
it is desirable to build an accurate model that enables
accurate optimization of the hydrocracker operations.
There are two main types of methods for modeling the
hydrocracking unit in general. One is the mechanistic
model, which is also called the white-box model. The
other is the data-driven model, also called the black-box
model. In the white-box model, the description of the
process is based on first principles, mechanistic or
phenomenological model equations that are known [4,5].
Due to the complex composition of the feed and products
and the difficulty of characterizing hydrocracking
reactants, component lumping models have become a
common way to describe hydrocracking units. Lumping
methods divide the reaction system into several pseudo-
components according to the molecular kinetic properties
and establish the kinetic equations based upon these
pseudo-components  [6]. Discrete lumping [7-9],
continuous lumping [10,11], structure-oriented lumping
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[12], and single-event lumping are the main kinds of
lumping methods [13,14].

A recent focus on modeling processing units employs
deep-learning technologies by relying on a large amount
of reliable historical data in a refinery. Most of the prior
efforts have used a neural network (NN), or more
specifically a feedforward NN (FNN) to make some
predictions [15—-18]. McGreavy et al. [19] adopted FNN
in modeling the fluid catalytic cracking (FCC) unit to
predict the yield distribution of main products and
byproducts. Ochoa-Estopier et al. [20] developed an FNN
model for the crude distillation column and utilized
simulated annealing optimizer to maximize the revenue
and minimize energy consumption. Yang et al. [21]
integrated a lumped kinetic model with a traditional NN
which has more hidden layers and exhibited better
predictions. Recently, Song et al. [22] proposed a new
method using a self-organizing map (SOM) and a
convolutional NN (CNN) and achieved accurate
predictions of the yield of the hydrocracking unit. The
structure that Lecun et al. [23] developed was based on
LeNet, a deep learning model that was used to recognize
handwriting in the 1990s. A drawback of that structure is
that the gradients may vanish as the network becomes
deeper. In addition, Lecun et al. [23] model predicts only
the yields of the products but does not predict product
properties. If such model is employed to predict
additional variables (e.g., properties) or if it includes
more inputs, it may be easily overfitted.

In the last 10 years, numerous new deep learning
techniques have emerged, especially in the fields of
computer vision and natural language processing [24-27].
Within the scope of Industry 4.0, some of these methods
have also been applied to the field of industrial research.
In recent years, the CNN structure has become popular in
fault detection and diagnosis [28—30]. Yuan and Tian [31]
proposed a multiscale feature learning scheme based upon
the discrete wavelet transform, CNN and long short-term
memory network for fault detection and diagnosis; they
verified it on the Tenesee Eastman process and p-xylene
oxidation reaction process. Elhefnawy et al. [32] propo-
sed an industrial fault classification that converts data into
polygons based on Hamiltonian cycles first and then
sends them to the CNN structure for training. Glaeser
et al. [33] proposed a CNN model which contains four
blocks to detect and classify fault conditions in industrial
cold forging and achieved a detection and classification
accuracy of more than 90%. Such deep-learning techni-
ques have the potential to deliver improved data-driven
models of refining and petrochemical process units.

This paper introduces a deep NN structure for modeling
the hydrocracking unit based upon the recently developed
deep-learning technologies, which can predict both the
yields and properties of the products. The input variables
are categorized via prior knowledge into separate inputs
to the model. The model structure is divided into the
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SOM part and the NN part. The former part maps the
input data into multiple two-dimensional planes and sends
them to the NN part. In the NN part, residual blocks are
used to enhance convergence and accuracy and to ensure
that the structure will not get overfitted easily [27]. In
order to verify the effectiveness of the method, particle
swarm optimization (PSO) and differential evolution
(DE) algorithm have been applied to maximize profit by
adjusting the operating conditions. The results showed
that the proposed structure, i.e., multi-input SOM ResNet
(MISR), performs better than Song et al. [22] in predi-
cting product yields and leads to higher profits. Novel
contributions of this work include a new deep-learning
model, comprehensive comparisons among this new
model, the SOM-CNN model and a typical NN model
with respect to the accuracy of the training and testing,
interpolation capability, and the effect when used to
optimize the operating conditions. The results provide a
basis for the selection of the most appropriate NN model
structure for modeling conversion units such as
hydrocracker or similar.

2 Hydrocracking process overview and
data collection

Hydrocracking is one of the most important secondary
processing units in the refinery, which converts heavy oil
(e.g., wax oil and diesel) into lighter and cleaner middle
distillations. Most often, the primary source of the
feedstock is vacuum gas oil (VGO) and diesel. A two-
stage hydrocracking process from a real refinery in China
is shown in Fig. 1. The fresh feed, VGO, is mixed with
hydrogen and enters the first reactor through a heater. The
primary function of the first stage is hydrotreating, i.e.,
hydrogenation removal of metals, sulfur, nitrogen
compounds, and part of the aromatic hydrocarbons in the
feedstock, thereby producing a second stage feedstock
with a few impurities. Typical operation achieves
conversion of around 50% in the first stage by adding
cracking catalyst. The purer second stage feedstock, the
more likely it is that one can limit deactivation of the acid
center of the cracking catalyst and be able to maintain the
long-term operation of the equipment.

The bottom oil from the fractionation tower, mixed
with lighter feedstock (e.g., diesel), is sent to the second
stage. The task of the second stage is catalytic hydroc-
racking, which operates at high temperature (350—450 °C)
and pressure (> 10 MPa) to convert the heavy fractions in
the distillate from the first reactor into light fractions. Due
to the high hydrogen partial pressure and the use of dual-
function catalysts, the coking and deactivation rates are
very low. The bottom products from the two reactors are
sent to the fractionation train, first to a high-pressure
separator, where the hydrogen-rich gas is separated and
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Fig. 1 A simplified flow diagram of a two-stage-series hydrocracking process.

recycled to the reactor section for mixing of fresh
hydrogen feed. The separated liquid product is sent to the
fractionation tower, where the gaseous product is taken
out from the top of the tower, while light naphtha (LN),
heavy naphtha (HN) and kerosene are removed as side
products. The bottom of the fractionation tower is mixed
with the hydrotreated diesel and sent to the second-stage
reactor.

The complete data-driven modeling process in this work
consists of five steps. The first step is data acquisition,
which takes data from real refineries to determine the
lower and upper limits of the input data of the HYSYS
model and gathers HYSYS model outputs. The collected
output data, together with the input, will be preprocessed
in the second step. The second step is data preprocessing,
including outlier removal, normalization to reduce the
data noise, and data quality enhancement. The third step
is dividing the data into a training set and a testing set that
will be used to validate the accuracy of the model. The
fourth step is to deliver the data into a model framework
like FNN or the MISR model for training. Finally, the last
step is to verify the accuracy of the various models.

2.1 Data generation and preprocessing

Aspen HYSYS contains models required for a rigorous
simulation of the processing unit of a refinery [20]. In this
work, the training and testing data are both obtained from
an Aspen HYSYS model of a hydrocracking unit. Upper
and lower limits of the operating conditions and feedstock
properties have been obtained from a refinery in China
from June 2019 to July 2021. There are several reasons

for using the simulation outputs from the Aspen HYSYS
model instead of the data sets from the real refinery
directly: (a) Aspen HYSYS can provide a complete set of
data, while missing points may appear in the data sets
collected from the database system of the refinery; (b)
measuring instruments (e.g., flow and temperature) some-
times may have systemic errors; (c) stream analysis data
are available infrequently and there is usually a long time
interval between two analyses, usually several days or
even several weeks. Moreover, the laboratory results
sometimes contain errors; (d) although two years of data
from the real refinery are available, around 700 daily
average samples, the amount of the data may still not be
sufficient to develop a deep NN model; (e¢) in a real
refinery, the industrial data will be affected by catalyst
deactivation which is difficult to model. This process can
be simplified by using HYSY'S models.

A total of 36 input variables and 80 output variables are
considered in this work. As shown in Table 1, the input
variables can be classified into three categories. The first
and second categories consist of the properties of the two
feeds (VGO and hydrotreated FCC diesel) separately,
both containing the true boiling points (9 values), density,
sulfur content and nitrogen content. The third category
contains the operating conditions of the hydrocracking
unit, including the ratio of the two feeds, hydrogen to oil
ratio (2 values), reactor pressure, and inlet temperatures
of the catalyst beds (8 values). The output variables
contain the yields and properties of the eight products:
sour gas (H,S), dry gas, LPG, LN, HN, kerosene, diesel,
and tail oil (TO). The properties of the products are
described in detail in the Electronic Supplementary
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Material (ESM). The inputs are randomly varied between
the lower and upper limits, which have been obtained
from the real refinery [20]. Then, a total of 5000 data
samples were generated by Aspen HYSYS. Two
additional steps are needed before sending the data
samples to the models for training. Since the recycled
bottom flow rate is fixed to 25% of the total feed in the
HCR module in HYSYS, as a consequence, when the
lighter feedstock (hydrotreated FCC diesel) becomes a
high proportion of the total feed, there will be a high
probability that the yield of the TO will be a negative
value, which is physically impossible.

Hence, the first step is that, only the samples with the
TO yield within 15% to 30% have been used, yielding
3833 examples, having a distribution of yields of the
products as shown in Fig. 2. In the second step, the
normalization of the sample data is carried out. All input
and output variables are normalized into the interval
[0,1], as shown in Eq. (1). Then, scaling of the outputs of
the data-driven model is as shown in Eq. (2).

— X — Xmin

= —— (1)
Xmax ~ Xmin
X = ’x\(-xmax - xmin) + Xonins (2)
where x denotes the input and output variables, x,,, and
Table 1 Inputs and outputs of the model
Category Definition Number
Inputs-feed 1 (VGO) True boiling points 9
Density 1
Sulfur content 1
Nitrogen content 1
Inputs-feed 2 (hydrotreated FCC diesel) ~ True boiling points 9
Density 1
Sulfur content 1
Nitrogen content 1
Inputs-operating conditions Feed ratio 1
Hydrogen to oil ratio 2
Reactor pressure 1
Inlet temperatures 8
Outputs Yields 8
Properties 72
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Fig. 2 Distribution of raw data (yields of the eight products).
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X, denote the maximum and minimum values of these
variables.

Randomly selected 3000 samples have been used for
training and the rest have been used for testing. That is,
the testing data accounts for 21.7% of the total data. We
take 3000 training data examples (integer multiples of
one thousand) in order to facilitate the testing of different
batch sizes when training the NN models.

3 MISR model

As mentioned in the Introduction, the SOM-CNN model
was first proposed by Song et al. [22] and applied in the
prediction of product yields and bed temperatures of the
hydrocracking unit. SOM in the SOM-CNN framework
maps high-dimensional data into a two-dimensional
plane. SOM without training can increase the information
entropy in the local area and thus improve the accuracy of
the prediction. The conventional NN, usually containing
convolutional, pooling and fully connected layers, is
commonly used for feature extraction and classification
of images and is able to achieve high accuracy. Popularity
of CNN started with LeNet in 1998 to solve the task of
handwritten digit recognition [23] and flourished over the
last decade with the emergence of AlexNet (2012) [25],
GoogLeNet (2015) [26], VGGNet (2015) [34], ResNet
(2016) [27], etc. With the advancement of computer
hardware capabilities, CNN networks are becoming more
structurally complex and better able to implement more
complex classification and prediction tasks.

In Song’s work, the high-dimensional input vectors are
mapped into a two-dimensional plane represented by a
28 x 28-size SOM and sent into the CNN part. The CNN
structure consecutively contains two convolutional and
pooling layers, followed by a fully connected layer. This
structure is highly similar to LeNet proposed by LeCun
[23]. Compared with the conventional FNN, the absolute
prediction errors of heavy products like kerosene, diesel,
and TO have been reduced by 0.1%, and the absolute
mean error of the total products has been decreased to
0.36%. However, the premise of Song’s work is that the
data are continuous, less fluctuating, and only eight
products’ yields need to be predicted. When the same
framework is applied to a more fluctuating and
discontinuous data set to predict both the yields and
properties of the products, the results are unsatisfactory.
This has been confirmed by a series of experiments
carried out in the present work.

This work introduces a different deep NN structure that
resolves issues associated with the SOM-CNN model.

3.1 Multi-input-SOM-CNN

In computer vision processing, a colorful image will be
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split into red, green, and blue channels and then sent to
the conventional NN. Inspired by this, prior knowledge of
the processing unit can be utilized to divide the input
variables into multiple groups and then map them into
several different two-dimensional planes via different
SOM weights, respectively.

The two parts of the proposed MISR framework can be
seen in Fig. 3. As shown in Fig. 3(a), in the SOM part, the
36-dimensional inputs will be split into three sets. The
first and second sets are the variables for the two different
feeds, and the third one contains the operating conditions,
as listed in Table 1. Then, three 32 x 32 sized channels
will be obtained via three training-free SOM weights and
sent to the CNN structure. The selection of SOM size is
determined by the execution time and the accuracy. As
listed in Table 2, five different structures ranging from
24 x 24 to 128 x 128 have been evaluated. R? represents
the correlation coefficient of the 13 output variables. It is
evident that the execution time increases exponentially,
and the accuracy increases with the size of SOM. For the
balance between computing time and accuracy, 32 x 32

Input data Neurons
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was selected as the size of the SOM. It is worth noting
that all experiments in this work except the optimization
part in Section 5 are based on a Linux server with a Xeon
gold 6240 2.60 GHz CPU and a Nvidia 2080 TI GPU.

3.2 Residual blocks

The ResNet proposed by He et al. [27] won imagenet
competition in 2015. As shown in Fig. 4, compared with
the traditional CNN structure (left), each block of the
ResNet (right) has an additional map from input to
output. The core concept of ResNet is that each additional
layer should contain the original function easily. Hence,
the new model will be at least equivalent to or more
effective than the previous model when adding new
layers to the NN to reduce the training error. Many
research and commercial network structures have been
influenced by ResNet [35,36].

In this work, the residual blocks are used for the
reconstruction of the NN structure. As shown in Fig. 3(b),
each residual block contains a convolutional layer, a
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Fig. 3 Structure of MISR of (a) SOM part and (b) residual part (3 residual blocks).
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batch normalization (BN) layer, a pooling layer, and a
convolutional layer in sequence. The number of input and
output channels of the residual blocks is the same to
ensure the input can be added to the output. In this work,
models containing 2-6 residual blocks have been
evaluated. It has been found that the training time
increases exponentially as the number of residual blocks
increases, and the error barely decreases when it reaches
5 residual blocks. The model with three residual blocks is
recommended in the proposed framework and employed
in the following experiments for comparison.

3.3 MISR framework

As shown in Fig. 3, the proposed MISR framework can
be divided into two parts: the SOM part and the ResNet
part. Figures 3(a) and 3(b) represent the SOM part and
the NN part, respectively. The SOM maps an input vector
into two-dimensional planes. In this work, specifically,
the three groups of input variables were mapped by three
32 x 32 SOMs to obtain three 32 x 32 two-dimensional
data. Significantly, the weights of three SOMs were
randomly initialized in the range of [0,1] and remained
unchanged, which is called “train-free”. The main advan-

Table 2 Statistics related to performances of different SOM sizes
under 2000 iterations (prediction of 13 outputs)

Index 24 x 24 32 x32 48 x 48 96 x 96 128 x 128
Executing time/min 7.58 8.09 851 17.33 32.99
R? (correlation coefficient)  0.950 0.956 0.953 09611 0.9606
Mean relative error (MRE)  2.3587 1.9645 2.2186 1.8196 1.6652
Mean absolute error (MAE) 0.4263 0.3610 0.3768 0.3171  0.2960
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tage of “train-free” SOMs is increasing the information
entropy to improve the final prediction accuracy [22]. It
should be mentioned that the outputs of the SOMs are
expected to be approximately n/2 times the input. Thus, it
needs to be multiplied by 2/n before being sent to the
ResNet part, in which n represents the number of
variables in an input vector.

The ResNet part stacks the residual blocks. As is shown
in Fig. 3(b), the architecture of the adopted ResNet part is
conv-pooling-residual blocks-pooling-fe-fc-output. In a
single residual block, a 3 x 3 kernel will half the
resolution (which is the size of the two-dimensional input
data) in a stride of 2, followed by a BN layer. ReLU was
chosen as the activation function applied immediately
behind the BN layer, followed by another convolutional
layer. The additional convolutional layer was used to
identity mapping the input data. The output of the former
convolutional and the additional layer will be added and
sent to the activation function.

4 Training and comparison of SOM-CNN,
MISR, and FNN models

The following sections will analyze the impact of network
structure on model accuracy and convergence. In addi-
tion, the experiments listed below predict only 13 key out-
puts, including the 8 flow rates of the product, the octane
number of the LN and HN, the smoke point of kerosene,
and the cetane number of diesel, and the bureau of mines
correlation index of the TO. Comparative results for pre-
dicting all 80 output variables are presented in the ESM.
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Fig. 4 Residual block (right) compared with the classical CNN (left).
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4.1 Influence of BN

BN is a method used to make artificial NNs faster and
more stable through the normalization of the layers’
inputs by re-centering and re-scaling. It was first
proposed by loffe in 2015 [24] and then widely used in
various efficient NN structures. This section describes
experiments comparing the original SOM-CNN structure
and the SOM-CNN structure with the BN layers.

The SOM in two contrastive experiments will be both
free of training for increasing the information entropy to
enhance the accuracy of the prediction. The CNN part of
the former structure is a bit different from the one
proposed by Song et al. [22], the active function used is
ReLU, and the pooling method is average pooling. The
BN layers are added behind each active function. Ten
independent runs have been performed for the two
frameworks, and the results have been averaged. There
are 2000 iterations in each run.

The convergence curves of the two structures can be
seen in Fig. 5. It is clear that the loss function of SOM-
CNN with BN converges quickly at the beginning of the
iterations. However, SOM-CNN without BN converges
slowly in the first 750 generations, with sharp
fluctuations occurring in the process. In addition, the
ultimate loss of the SOM-CNN with BN is a bit lower
than the one without BN. As shown in Table 3, although
the training time per round of the structure with BN is
two minutes longer than the one without BN, the
accuracy of the former is better than the latter. The
correlation coefficient of the former can reach 0.9468,
which is 0.014 higher than the latter. The mean relative
and absolute errors of the 13 outputs of the structure with
BN are reduced by 8.9% and 10.2% compared with those
without BN, reaching 2.316 and 0.4416, respectively.

As a commonly used method in modern NNs, the utili-
zation of BN can indeed improve convergence and accu-
racy, especially for the data set with a large fluctuation
range as in the hydrocracker data set used in this work.
This result has motivated the use of BN in the subsequent
residual blocks and fully connected layers to improve the

765

convergence rate and accuracy of the overall MISR
network.

4.2 Influence of multi-input channels

In this section, the effect of using multi-input is exami-
ned. One of the two contrastive models tested in this
section was the same as the SOM-CNN model with BN
mentioned in the previous section. In the other model, 36
input variables were classified into three groups and then
sent to the three SOMs mentioned in Section 3.1, the
other structure remaining the same. Ten independent runs
were performed for two frameworks, with 2000 iterations
for each run.

The convergence curves of the two structures can be
seen in Fig. 6. The loss of the two frameworks are not
much different because BN layers are added to both two
CNN structures. However, the convergence speed of the
structure with multi-input is still a bit faster than the
other, and the ultimate loss is a bit lower in addition. As
can be seen in Table 4, although the training time per
round is 0.35 min longer, the accuracy of the framework
with multi-input is better than the one without. The
correlation coefficient of the former is 0.9533, which is
0.69% higher than the latter. The mean relative and
absolute errors of the 13 outputs of the structure with
multi-input are reduced by 8.59% and 13.3% compared
with the one without multi-input, reaching 2.117 and
0.3870, respectively.

It can be concluded that classifying the input variables
by prior knowledge in advance and mapping them via the
SOMs to obtain the input channels of the NN structure is
an effective modeling method. This is likely due to the
reduction of model complexity caused by separating the
sets of input variables based on prior knowledge.

4.3 Comparison of MISR, FNN, and SOM-CNN
frameworks

In this section, residual blocks will be introduced to
modify the original CNN structure to enhance the
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Fig. 5 The loss of SOM-CNN with and without BN.
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stability and robustness of the framework. The resulting
network MISR is compared with the classical FNN and
the SOM-CNN structure to analyze the convergence and
accuracy of this proposed structure.

The MISR structure applied contains three layers of the
residual blocks mentioned in Section 3.3. The comparison
of the real data and the prediction data of MISR for the 8
product yields of the hydrocracking unit on a test set of
883 samples is shown in Fig. 7, where the x-axis
represents the predicted value of the MISR structure and
the y-axis represents the actual value simulated by
HYSYS. It can be seen that the scatter points follow the
y = x line closely, implying the prediction is accurate
enough. In addition, the correlation coefficients of the
prediction for each product can be seen in this figure. The
correlation coefficients of most of the predictions can
reach around 0.98. Absolute error bands are added to each
prediction to visualize the errors clearly. In addition, the
same structure with more residual blocks has been tested
(see Table 5). It can be seen that the error gradually
decreases as the number of residual blocks increases until
reaching 5 residual blocks. The highest accuracy that the
structure can achieve has 0.9655 of the average
correlation coefficient, and the mean relative and absolute
errors of 1.6740 and 0.3071, respectively.

The classical FNN models with 1 to 5 hidden layers and
different structures have been tested to evaluate their
competitiveness with the proposed framework. As shown
in Table 6, the parameters of the NN grow rapidly and the
accuracy of the model improves as the number of hidden
layers increases. However, when the number of hidden
layers was increased from 4 to 5, the number of network
parameters was doubled, and there was little improve-

Table 3 Comparison of SOM-CNN with and without BN

Front. Chem. Sci. Eng. 2023, 17(6): 759-771

ment in accuracy, with the MRE reduced by only 0.001.

The classical FNN model with 3 hidden layers was
chosen as the “baseline” to analyze the improvement that
MISR made compared with the SOM-CNN and multi-
input-SOM-CNN frameworks. The structure of the tested
SOM-CNN follows closely the structure in Song’s work
[22], except that the size of the SOM was expanded to
36 x 36 to accept more input variables. The structure of
the multi-input-SOM-CNN is described in Section 4.2.
Data presented in Table 7 show that the prediction results
of the classical FNN and SOM-CNN are similar in terms
of the correlation coefficient, mean absolute and relative
errors. The multi-input-SOM-CNN can improve a little
bit on the SOM-CNN in terms of the same three
indicators. What stands out in this table is that compared
with the original SOM-CNN, the MISR framework has a
2.3% improvement in the correlation coefficient, and the
relative error decreased from 2.33% to 1.68%. The
absolute error decreased from 0.46 to 0.31.

The test error curves of the four frameworks mentioned
above are shown in Fig. 8. It is apparent from the figure
that the SOM-CNN structure has a more dramatic
fluctuation during the convergence process. On the other
hand, the convergence of multi-input-SOM-CNN is much
smoother, mainly due to the addition of the multi-input
structure and BN. What stands out in this figure is that the
MISR structure with only three residual blocks has faster
convergence, less fluctuation, and lower final loss.

The interpolation test of the MISR model for different
feed ratios has been carried out to verify the interpolation
ability of the model and the ability to judge the trend of
product yields when operating conditions change. This
information is also useful when using the model for the
optimization of operating conditions (in Section 5). The
results of the comparison with the HYSYS and the
classical FNN models can be seen in Fig. 9. Though
MISR has more slight fluctuations, it captures the trend
when the feed ratio changes. In particular, when
predicting the yield of the HN, the FNN model gave the
opposite trend to HYSYS, while the trend given by MISR
was consistent.

— SOM-CNN without multi-input
— SOM-CNN with multi-input

At dathick

Index SOM-CNN without BN  SOM-CNN with BN
Iterations 2000 2000
Correlation coefficient g2 0.9329 0.9468
MRE (10 samples) 2.543 2.316
MAE (10 samples) 0.4970 0.4464
Time cost/min 5.50 7.66
0.025
2 0.020
=
Z
£ 0.015
[}
£
§ 0.010
A
0.005 L.
0.000

0 250 500

750

1000 1250 1500 1750 2000

Iteration

Fig. 6 The loss of SOM-CNN with and without multi-input.
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These results suggest that the MISR framework inherits  technology, the multi-input structure, and the residual

the superimposed effect of the advantages of the BN

blocks, having satisfactory fitting accuracy and conver-

gence characteristics. It is likely that MISR is capable of

Table 4 Comparison of SOM-CNN with and without multi-input modeling complex refinery processes.
Index SOM-CNN Multi-input-SOM-CNN
Correlation coefficient g2 0.9468 0.9533 - H H
MRE ftest semplos) S a1 S 5 Optimization of hydrocracker operation
MAE (test samples) 0.4464 0.3870
Time cost/min 7.66 801 In order to verify the applicability of the MISR
3017 HS A 08 GAS 50l ° LPG 451 0N
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Fig. 7 The predicted yields vs. actual yields of the eight products on the testing data: (a) H»S, (b) GAS, (c) LPG, (d) LN, (e) HN, (f)
kerosene, (g) diesel, and (h) bottom.

Table 5 Performances of MISR with multiple residual blocks

Index 2 residual blocks 3 residual blocks 4 residual blocks 5 residual blocks
Loss 0.00104 0.00102 0.00102 0.00100
Iterations 2000 2000 2000 2000
Total time/min 19.7 25.9 33.1 70.8
Correlation coefficient R? (total outputs) 0.9628 0.9635 0.9638 0.9655

R? (properties only) 0.9369 0.9354 0.9368 0.9402
MRE (test samples) 1.862 1.6928 1.6710 1.6700
MAE (test samples) 0.3371 0.3177 0.3195 0.3071
Number of trainable parameters 378,413 1,580,000 6,379,000 25,563,000

Table 6 Performances of classical FNN models with different hidden layers

Index 1 hidden layer 2 hidden layers 3 hidden layers 4 hidden layers 5 hidden layers
Structure 36-64-13 36-128-64-13  36-128-128-64-13  36-128-256-128-64-13  36-128-256-256-128-64-13
Loss 0.00211 0.00174 0.00161 0.00125 0.00120
Iterations 5000 5000 5000 5000 5000

Total time/min 3.8 5.2 6.2 9.4 10.3
Correlation coefficient R (total outputs) 0.928 0.939 0.943 0.954 0.956

R? (properties only) 0.868 0.890 0.895 0.915 0.917

MRE (test samples) 2.623 2.328 2.249 1.999 1.914

MAE (test samples) 0.518 0.470 0.455 0.4187 0.4035

Number of trainable parameters 3213 13837 30349 96269 145549
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Table 7 Performances of different networks

Index FNN SOM-CNN Multi-input-SOM-CNN MISR with 3 residual blocks
Loss 0.00161 0.00157 0.00127 0.00099
Iterations 5000 2000 2000 2000
Total time/min 6.2 7.6 8.1 25.2
Correlation coefficient R2 (total outputs) 0.9434 0.9418 0.9536 0.9638
R? (properties only) 0.895 0.892 0.917 0.937
MRE 2.249 2.332 1.987 1.686
MAE 0.455 0.456 0.386 0.314
— FNN
— SOM-CNN
0.030 —— Multi input SOM-CNN
MISR (3 blocks)
0.025
g 0.020}
% 0.020
= 0.015¢
51
E 0015 0.010}
0.010 0.005 -
25 50 75 100 125 150 175 200
0.005 f
0.000 £ ; i i ; ) i i i
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Fig. 8 Loss curves of the four networks.
hydrocracker model, the operation of the hydrocracker RON,x = Post — Pooy (4)
unit has been optimized via PSO and DE optimization Oysy — Ooyy

algorithms. The objective function, which contains both
the yields and properties of the products, is calculated by

0=462xSG+2200xG +2200x LPG + (1378
+ (RON_y —7500)) X LN + (1168 + (RONyy
—5660))x HN + (1442 +(19.8 — 1000 x S P))
X KE + (2962 + 100 x (Ce —40)) x DI
+(1075+200%x (30-BMCI))xTO, 3)

where SG, G, LPG, LN, HN, KE, DI, and TO denote the
product yields of sour gas, dry gas, LPG, LN, HN,
kerosene, diesel, and TO, respectively. The coefficients of
all yields are the prices of these products. Each product
price has been calculated in two parts: one is the original
price obtained from an average market price for a specific
time period, and the other is the price penalty factor given
by the key properties of the products obtained by
estimation. For each product, we selected its key property
to calculate the price penalty factor. In the formula,
RON;  and RON denote the research octane number
(RON) of LN and HN. SP denotes the smoking point of
kerosene, and Ce denotes the cetane number of diesel.
BM(CI is the bureau of mines correlation index of the TO.
An example of how to calculate the price penalty factor
of gasoline RON,| \ is shown in Eq. (4):

where, Pos; and P,,; denote the price of 95# and 92#
gasoline. Oys; and Oy, denote the octane number of 95#
and 92# gasoline, respectively. That is, RON,  equals the
price deviation of two gasoline types (95# and 92#
gasoline) divided by the octane number deviation. All of
these products and properties have been calculated by the
MISR and SOM-CNN models for comparison purposes.
The operating conditions are optimized within the
specific range, consistent with the range of the input
variables mentioned in Section 2.1. It should be noted that
the operating cost and utility cost were ignored in the
following experimental cases.

Three implementations of optimization algorithms have
been compared: (i) single DE, (ii) single PSO, and (iii)
40-round-PSO. The last one was chosen as the final
optimization algorithm since it exhibited acceptable
execution times and stable optimal results, as is shown in
Table 8. Compared with PSO, DE has better population
diversity and can find better solutions in a single round.
However, the disadvantage is a longer execution time, up
to 9.25 s per iteration, due to the special selection-
crossover-mutation process. PSO is simpler and has a
much faster convergence speed, taking only 0.31 s per
iteration step. However, it converges to a local optimum
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Fig. 9 Interpolation test of different models to predict yields of
(c) LN, (d) HN, (e) kerosene, and (f) diesel.

Table 8 Optimization effects of three methods

Index 1 round-PSO 1 round-DE  Multi-round-PSO
Rounds 1 1 40
Iterations per round 400 1000 400

Total time/min 2.06 154.16 82.54
Seconds per iteration 0.31 9.25 0.31

Max profit (10 times) 2420.39 2413.02 2429.67
Mean profit (10 times) 232191 2395.19 2423.19

easily, having a worse average optimal result. Multi-
round-PSO takes advantage of the fast convergence of
PSO, while improving population diversity by multiple
rounds. The result has proven to be better than DE, and
the execution times are about half as long as the single-
round DE method. Consequently, 40-round-PSO has been
chosen as the main method, while DE has been used to
verify the results. All calculations in this section have
been carried out on i7-8700 CPU 3.2 GHz and 16 G
memory.

Ten real cases which differ in the feed properties were
chosen to be optimized. In each case, the properties of the
two feeds (TBP, density, sulfur, and nitrogen) were fixed.
The operating conditions, including the feed ratio, two
hydrogen oil ratio, reactor pressure, and eight reactor bed
temperature, were optimized. Optimal operation

the six products based on different feed ratios: (a) dry gas, (b) LPG,

250 T T T T T : . -
—6— SOM-CNN
—o— MISR
2004 ]
8
5150 + 8
Q D
E
[}
2100 1
<
50¢ ]
0 | L L L L L L f D
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Case

Fig. 10 Difference between true optimum profit and profit by
SOM-CNN and MISR.

conditions were entered into the HYSYS model to obtain
the ‘real” products information, and then the ‘real’ profit
was calculated. As is shown in Fig. 10 and Table 9, MISR
locates better profit than SOM-CNN. The prediction error
of MISR (48.28 on average) is nearly 1/3 of SOM-CNN
(158.36 on average). MISR identifies higher profit in
cases 1, 3,4, 6, 7,9, 10, resulting in higher average profit
(2228.98) than SOM-CNN (2211.38). The results show
that the profit based on the MISR model is significantly
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Table 9 Profit prediction and real optimization results via SOM-CNN and MISR

Case SOM-CNN prediction SOM-CNN real SOM-CNN prediction MISR prediction MISR real MISR prediction
number benefit benefit error benefit benefit error
Case 1 2068.98 2268.22 199.24 2232.38 2278.4 46.02
Case 2 2066.36 2279.12 212.76 2224.89 2236.27 11.38
Case 3 2036.59 2089.14 52.55 2238.26 2142.88 -95.38
Case 4 2076.25 2277.07 200.82 2207.9 2298.58 90.68
Case 5 2040.76 2172.62 131.86 2192.5 2158.91 -33.59
Case 6 2065.55 2186.73 121.18 2243.26 2291.41 48.15
Case 7 2034.07 2177.14 143.07 2165.76 2187.69 21.93
Case 8 2041.77 2247.44 205.67 2200.91 2244.65 43.74
Case 9 2048.19 2229.03 180.84 2155.81 2246.63 90.82
Case 10 2051.72 2187.32 135.6 2203.24 2204.42 1.18
Mean 2053.024 2211.383 158.36 2206.491 2228.984 48.28

more accurate than SOM-CNN due to the fact that it can
predict better both yields and properties.

6 Conclusions

This study proposes a new deep learning model, i.c.,
MISR, for modeling hydrocracking units in petroleum
refineries. Compared with the SOM-CNN structure, this
model is distinguished by the use of prior knowledge to
differentiate between different types of network input
data and by the introduction of BN technology and
residual blocks. These changes to the model structure
enable better accuracy, convergence and robustness of the
model. Multiple comparative experiments confirm the
significance of the multi-input method, the BN
technology, and the utilization of the residual blocks.
Compared with the SOM-CNN structure, the MISR
framework has a 2.3% improvement in the R? (correlation
coefficient), the MRE decreases from 2.33% to 1.68%,
and the MAE decreases from 0.46 to 0.31. In addition,
MISR exhibits a more stable decreasing trend of
prediction error during the training process. The MISR
model of a hydrocracking unit has been optimized via
multi-round-PSO and DE algorithms. The results show
that the prediction of the optimal operation based upon
the MISR structure is much more accurate, and the
objective function is higher than those computed via the
previously published SOM-CNN model.

Results of this work suggest that the MISR model is an
accurate and robust data-driven model with excellent
convergence. It is shown to have a better performance in
predicting the complicated properties (more than 70) of
products than the typical FNN model and the SOM-CNN
model. Provided an adequate amount of industrial data
can be used for training, the MISR model will be easier to
build and more accurate. In contrast, the HYSYS model is
not easy to build and its kinetic parameters need to be
constantly adjusted, which is a cumbersome trial and
error procedure. Besides, it is likely that the MISR
framework can accurately model other types of

conversion units in the refining and petrochemical plants.
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