RESEARCH ARTICLE # Oxygen-deficient MoO_x/Ni₃S₂ heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction Zihuan Yu¹, Haiqing Yan¹, Chaonan Wang¹, Zheng Wang¹, Huiqin Yao $(\boxtimes)^2$, Rong Liu $(\boxtimes)^3$, Cheng Li $(\boxtimes)^4$, Shulan Ma $(\boxtimes)^1$ 1 Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China 2 School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China 3 Analytical and Testing Center, Beijing Normal University, Beijing 100875, China 4 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China © Higher Education Press 2022 **Abstract** High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoO_x/Ni₃S₂ spheres comprising Ni₃S₂ nanoparticles inside and oxygen-deficient amorphous MoO, outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoO₂/Ni₃S₂/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoO_x/Ni₃S₂/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA·cm⁻² (η_{10} = 76 mV) and an ultra-small Tafel slope of 46 mV·dec⁻¹ in $0.5 \text{ mol} \cdot \text{L}^{-1} \text{ H}_2 \text{SO}_4$. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoO_x wraps the inside Ni₃S₂/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoO_x/Ni₃S₂ heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption ($|\Delta G_{H^*}|$) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoO₂/Ni₃S₂/NF is promising to serve as a highly effective and durable electrocatalyst toward HER. **Keywords** molybdenum oxides, oxygen vacancies, heterostructure, electrocatalysts, hydrogen evolution reaction Received May 6, 2022; accepted July 27, 2022 E-mails: huiqin_yao@163.com (Yao H.), liur@bnu.edu.cn (Liu R.), licheng@sinap.ac.cn (Li C.), mashulan@bnu.edu.cn (Ma S.) ## 1 Introduction With the fast growth of energy demands and deterioration of environment, it is necessary to develop renewable and clean energy [1]. Hydrogen (H₂), thanks to its environmental friendliness and high energy density, has attracted great attention [2]. Electrocatalytic water splitting has be considered as the most eco-friendly and economical route to produce H2, because water is an abundant and renewable source [3]. However, the hydrogen evolution reaction (HER) during water electrolysis suffers from large overpotential and slow kinetics [4]. To speed up the HER kinetics, highly active and durable electrocatalysts are applied to lower the dynamic overpotentials [5]. Pt-based compounds have been considered as the most efficient electrocatalysts toward HER, but the preciousness and scarcity of Pt seriously restrict its practical utilization in water electrolysis [6]. Thus, it is vital to explore low-cost while high-efficiency electrocatalysts to replace Pt-based materials. Nonprecious metal materials, such as Mo-based sulfides [7], oxides [8], phosphides [9], and carbides [10], have been investigated as potential HER catalysts. Compared with molybdenum sulfides, molybdenum oxides are highly stable and readily available in large scale and can also show acceptable HER property [11]. MoO_3 (α - MoO_3), as a low-price and nontoxic material, has been reported to be widely applied in HER, exhibiting an overpotential of 112 mV achieving the current density of $10 \text{ mA} \cdot \text{cm}^{-2}$ ($\eta_{10} = 112 \text{ mV}$) in acid media [12]. However, because of the less active sites and poor conductivity of intrinsic MoO_3 , its catalytic performance has been reported to be much lower than that of Pt-based materials [13]. If the MoO₃ is combined with other substances to fabricate certain active interfaces, the active sites of MoO₃ may be exposed as much as possible [14]. Zhang's group [15] coupled MoO₃ with 1T'-MoS₂ to assembly 1T'-MoS₂/MoO₃ heterostructure nanosheets, in which the MoS₂/MoO₃ interfaces can facilitate electron transfer and surface hydrogen generation, leading to the improvement of electrocatalytic performance. Besides, loading P element onto MoO₃ nanosheets can also improve the HER catalytic performance [16], for which the P component can boost the adsorption/desorption of proton and afterwards increase electrocatalytic performance. A composite electrocatalyst comprising RuO₂ supported on MoO₃ nanosheets was investigated as an HER electrocatalyst, in which the synergetic effect created through interaction between MoO₃ and RuO₂ led to the enhancement of catalytic activity [17]. Nevertheless, their HER performance is still inferior to that of precious metals. In addition, the oxygen vacancy in MoO₂ may not only produce greater conductivity, but also act as HER active site [13]. For example, MoO_{3-x} with oxygen vacancies depicted higher HER catalytic activity than com-MoO₃ [13]. Density functional theory (DFT) calculation revealed that the oxygen vacancy prominently reduces the adsorption energy of H₂O and then improves the catalytic activity. Thus, fabricating oxygen vacancies and active interfaces into molybdenum oxides may be effective ways to enhance the HER performance of molybdenum oxides. The known researches molybdenum oxides with oxygen vacancy are all about crystalline MoO₃, but there are lack of reports focused on amorphous MoO_x with oxygen vacancy. Meanwhile, Ni-based materials have shown a big potential for using as HER catalysts [18]. Ni₃S₂, because of the existence of Ni–Ni networks throughout its crystal structure, exhibits good metallic conductivity [19]. So far, many studies revealed that Ni₃S₂ owns HER activity [20], while its catalytic activity and stability are still less competitive relative to noble-metal catalysts. On the other hand, self-supported catalysts, compared to powdery ones, avoid the addition of polymer binder. Meanwhile, the introduction of substrates in self-supporting catalysts can raise electrochemical active areas. The threedimensional nickel foam (NF) is a low-cost template with large surface area, and is normally used as a conductive substrate to host electrocatalyst materials [21]. Using thiourea, Ni(NO₃)₂·6H₂O and NF as reactants, Ni₃S₂/NF was fabricated to depict high HER activity and good durability in basic and neutral conditions [22]. Hybridizing Ni₃S₂ with other electrocatalysts such as MoS₂ [23] and/or Co₉S₈/MoS₂ [24] is also a commonly employed method to augment the catalytic activity. Moreover, Ni₃S₂ is generally combined with other sulfides, while the integration of Ni₃S₂ with amorphous MoO_x is rarely reported. As known, Ni₃S₂ and NF matrix are unstable in acidic solutions, while MoO_3 or MoO_x is acid-resistant. Therefore, if NF and the *in situ* grown Ni_3S_2 are wrapped by dense layers of MoO_x , it is expected to improve the acid resistance of the integrated elelctrocatalysts. Herein, via a facile solvothermal method, we fabricate MoO₂/Ni₃S₂ spheres which consist of dispersed Ni₃S₂ nanoparticles and amorphous MoO_r wrapped outside. By adjusting ratios of water/ethanol solvents, the as-prepared $MoO_{\gamma}/Ni_{3}S_{\gamma}/NF-11$ (volume ratio of ethanol:water is 1:1) exhibits optimum HER performance, requiring an extremely low overpotential ($\eta_{10} = 76 \text{ mV}$) and a much low Tafel slope of 46 mV dec⁻¹ in 0.5 mol·L⁻¹ H₂SO₄. Benefiting from the existing oxygen vacancy and formed heterojunction, Mo atoms are exposed as much as possible to exhibit reduced Gibbs free energy of hydrogen adsorption (ΔG_{H^*}) and act as active-sites. Additionally, the stability of the catalyst under acidic conditions is greatly improved because the acid-resistant amorphous MoO_x layer is wrapped around Ni₃S₂/NF. The MoO₂/Ni₃S₂/NF-11 displays extremely high stability (≥ 100 h at 23.5 mA·cm⁻²). This study would give a novel perspective on the fabrication of amorphous molybdenum oxides or oxygen-deficient materials with excellent HER performance. # 2 Experimental ## 2.1 Synthesis of MoO_x/Ni₃S₂/NF composites A series of MoO_x/Ni₃S₂/NF composites (labeled as $MoO_r/Ni_3S_2/NF$ -mn, where m and n are volume ratios of ethanol:water) were synthesized via a one-pot solvothermal reaction. Typically, two pieces of commercial NF (1 cm × 2 cm) were first immersed in an acid solution (1 mol·L⁻¹ HCl) for 20 min, to remove the oxides on the surface of NF. Then the NF was washed using acetone, water and ethanol in turn, and then was dried in vacuum at 45 °C, followed by weighing. Meanwhile, 2 mmol of Na₂MoO₄·2H₂O was dissolved in 30 mL of ethanol:water mixture solvents. After stirred for 30 min, 10 mmol of thiourea was dissolved in the solutions. The abovementioned solutions and pre-treated NF were simultaneously transferred to a Teflon-lined autoclave (50 mL) and reacted at 140 °C for 18 h. After cooled, the obtained MoO₂/Ni₃S₂/NF-mn products were washed with excess deionized water and ethanol several times, and then dried in vacuum at 45 °C overnight. #### 2.2 Electrochemical measurements The electrochemical tests were conducted in a threeelectrode cell in a 0.5 mol·L⁻¹ H₂SO₄ solution. Ag/AgCl (saturated KCl) electrode and a graphite rod electrode worked as reference and counter electrodes, respectively. The as-prepared samples were used directly as working electrodes. For a reliable comparison, we loaded Pt–C and commercial MoO₃ (com-MoO₃) on NF with the same mass loading as MoO_x/Ni₃S₂/NF-11. Table S1 (cf. Electronic Supplementary Material, ESM) listed the mass loading of all catalysts. The details of electrochemical measurements are shown in ESM. ## 3 Results and discussion #### 3.1 Material characterization The fabrication procedure of the $MoO_x/Ni_3S_2/NF$ composites is described in Scheme 1. In the solvothermal reaction, the thiourea may break down to release HS^- ions (Eq. (1)); meantime, the NF can release Ni^{2+} into the solution, and the Ni^{2+} would react with the active HS^- to generate the Ni_3S_2 particles (Eq. (2)) [24]: $$NH_2CSNH_2 + 3H_2O \rightarrow 2NH_4^+ + HS^- + HCO_3^-$$ (1) $$3Ni + 2HS^{-} + 2H_{2}O \rightarrow Ni_{3}S_{2} + 2OH^{-} + 2H_{2}$$ (2) The structures of the MoO₂/Ni₃S₂/NF-mn were studied firstly by X-ray diffraction (XRD) measurements. As shown in Fig. 1, for all samples, there appeared diffraction peaks at 21.7°, 31.1°, 37.8°, 49.7° and 55.2° respectively assigned to the (101), (110), (003), (113) and (122) planes of hexagonal Ni₃S₂ (JCPDS no. 44-1418) [25]. This indicates that the partial NF surface was converted to Ni₃S₂ under the solvothermal conditions. Three strong diffraction peaks of Ni were derived from the NF substrate. However, no distinguishable diffractions related to MoO_x were found, suggesting that if there is certain MoO_r phase, it would exist in amorphous form. The transmission electron microscope (TEM) characterization discussed below with the absence of lattice fringes would provide important evidence of the amorphous characteristic. The morphologies of NF (Fig. S1, cf. ESM) and MoO₂/Ni₃S₂/NF-mn (Fig. 2) were characterized by **Scheme 1** Schematic illustration of formation of oxygen-deficient MoO₂/Ni₃S₂/NF composites. Fig. 1 XRD patterns of (a) $MoO_x/Ni_3S_2/NF-01$, (b) $MoO_x/Ni_3S_2/NF-11$ and (c) $MoO_x/Ni_3S_2/NF-21$. scanning electron microscopy (SEM). Figure S1(a) shows the 3D porous characteristic of NF, and at higher magnification, the surface of NF can be observed to be very smooth (Fig. S1(a')). The special skeleton of NF provides large surface area and ideal mechanical stability. As seen in Fig. 2, the entire NF surface is tightly covered by the MoO_x/Ni₃S₂. When ethanol solvent was absent in the reaction (no ethanol), the resulting product of MoO_x/Ni₃S₂/NF-01 (Figs. 2(a) and 2(a')) has some cracks on its surface, which may reduce the conductivity of the catalyst [26]. At the ethanol:water ratio of 1:1, the asformed MoO_x/Ni₃S₂/NF-11 presents irregular small spheres grown on the substrate (Figs. 2(b) and 2(b')). In addition, it can be seen from Fig. 2(b) that there is no **Fig. 2** SEM images of (a, a') $MoO_x/Ni_3S_2/NF-01$, (b, b') $MoO_x/Ni_3S_2/NF-11$ and (c, c') $MoO_x/Ni_3S_2/NF-21$. crack on the surface of the sample, which means that the acid-resistant NF matrix is completely coated by MoO_x/Ni₃S₂, so that NF cannot be corroded by acid, paving the way for the excellent stability of the catalyst under acidic conditions. As the ethanol:water ratio is increased to 2:1 (with more ethanol), as found in MoO_x/Ni₃S₂/NF-21, the formed MoO_x/Ni₃S₂ spheres on the NF surface become larger (Figs. 2(c) and 2(c')). For the $MoO_x/Ni_3S_2/NF-11$ with the most regular and perfect appearance, detailed morphology and structure were further explored by TEM (Figs. 3 and S3, cf. ESM) via scratching the samples from the NF substrate. TEM images (Figs. 3(a) and 3(b)) show that the MoO_x/Ni_3S_2 spheres are comprised of nanoparticles. Figure 3(c) reveals the interface region of the Ni_3S_2 nanoparticles, indicating that there are two clearly distinguishable phases between the inside and outside of the particle, and the Ni_3S_2 nanoparticle is closely connected to the amorphous MoO_x . For clarity, the original image (without scaling) of Fig 3(c) is shown in Fig. S2 (cf. ESM). The TEM investigations of MoO₂/Ni₃S₂-11 (see Figs. 3(d) and 3(e)) further exhibit the tight connection between the Ni₃S₂ particles and MoO_x. The lattices of 0.24 (Fig. 3(d)) and 0.29 nm (Fig. 3(e)) are ascribed to (003) and (110) crystal planes of Ni₃S₂ [27], further proving its presence. The above results can be supported by the SAED pattern (Fig. 3(f)), which displays characteristic crystal planes of Ni₃S₂ and diffuse rings of the amorphous MoO_r. The amorphous characteristic of MoO_x leads to the absence of XRD diffractions (see Fig. 1). The MoO_x surrounding for Ni₃S₂ further ensures the acid resistance of the electrocatalyst. The compositional distributions of the MoO_x/ Ni₃S₂-11 sphere are confirmed by elemental mapping analyses (Fig. 3(g)), high angle annular dark field scanning transmission electron microscope (HAADF-STEM) image (Fig. S3(a)) and line scans (Fig. S3(b)). In Fig. 3(g), uneven distribution of Mo/O and Ni/S is clearly observed throughout the whole sphere. The elements of Mo and O appear in the same region, while Ni and S elements locate in other regions, indicating that the two **Fig. 3** (a, b) TEM images of MoO_x/Ni_3S_2-11 , (c, d, e) HR-TEM images of MoO_x/Ni_3S_2-11 , and the visible lattice fringes images obtained from the blue and yellow square regions; (f) SAED pattern of MoO_x/Ni_3S_2-11 ; (g) HAADF-STEM and energy dispersive spectroscopy elemental mappings of Mo, O and Ni of MoO_x/Ni_3S_2-11 ; (h) electron paramagnetic resonance (EPR) spectrum of $MoO_x/Ni_3S_2/NF-11$ before and after 60 h *I-t* test, and the control sample of com-MoO₃. phases of MoO_x and Ni_2S_3 have distinct interfaces. From Fig. 3(g), the atom ratio of Mo:O is 1:2.94, which is close to MoO_3 , with the oxygen content slightly reduced. All these results prove the existence of Ni_3S_2 crystalline phase along with amorphous MoO_x . To clarify the detailed structure of MoO₂/Ni₃S₂/NF-11, EPR spectroscopy and X-ray photoelectron spectroscopy (XPS) were carried out and the results were shown in Fig. 4, with com-MoO₃ as a control sample. In Fig. 3(h), the EPR spectra of com-MoO₃ (black line) shows no signal, while MoO_x/Ni₃S₂/NF-11 (red line) displays a signal at about 3512 Guass (g = 2.0036), indicating the existence of oxygen vacancy. For XPS spectra of MoO_x/Ni₃S₂/NF-11 (Fig. 4(a)), the binding energies of 235.6 and 232.4 eV are related to Mo $3d_{3/2}$ and $3d_{5/2}$ of Mo⁶⁺, the same as found in com-MoO₃ [28]. In contrast to com-MoO₃, MoO_x/Ni₃S₂/NF-11 shows a pair of peaks of Mo⁵⁺ (234.0 eV for Mo $3d_{3/2}$ and 230.8 eV for Mo $3d_{5/2}$) [29]. Comparison of O 1s spectra of MoO₂/Ni₃S₂/NF-11 and com-MoO₃ is presented in Fig. 4(b) As shown, for com-MoO₃, the binding energy of 531.9 eV is assigned to lattice oxygen (O²⁻) [30], while in MoO_x/Ni₃S₂/NF-11, the energy of O^{2-} is reduced to a lower level (531.5 eV). Also, the half-peak width of O 1s core-level spectra of the MoO₂/Ni₃S₂/NF-11 is widened in comparison with that of the com-MoO₃. The difference of half-peak width of O 1s core-level spectra in the materials with and without oxygen vacancies has also been observed in other literature [31]. For MoO_x/Ni₃S₂/NF-11, the appearance of Mo⁵⁺ and the shift of O 1s simultaneously prove the presence of oxygen vacancy, which is consistent with EPR results. All these indicate a changed coordination configuration between Mo and O, as discussed in literatures [13,16]. It was reported that the shift of O 1s to a lower energy level means the electron transfer to the neighboring oxygen vacancies [32]. Meanwhile, one weak peak detected at 533.4 eV can be assigned to O 1s of surface adsorbed species (here is OH⁻) [33]. In Fig. 4(c), for Ni 2p spectra of MoO_x/Ni₃S₂/NF-11, the peaks at 873.8 and 856.0 eV are related to Ni $2p_{1/2}$ and Ni $2p_{3/2}$ of Ni²⁺, accompanied by two satellite peaks at 879.8 and 861.7 eV [34]. The peak at 853.4 eV is assigned to Ni⁰, which belongs to Ni₃S₂ or NF [35]. In the spectra of S 2p (Fig. 4(d)), the two signals at 162.9 and 161.7 eV belong to $2p_{1/2}$ and $2p_{3/2}$ of S^{2-} , and the other two signals at 164.4 and 163.2 eV are attributed to $2p_{1/2}$ and $2p_{3/2}$ of S_2^{2-} [36], suggesting the presence of terminal unsaturated S of Ni-S bonds [37]. The peak at 168.2 eV is assigned to oxidized sulfur species (here is SO_4^{2-}) owing to surface oxidation [38]. In Raman spectra of MoO₂/Ni₃S₂/NF-11 (Fig. S4, cf. ESM), the band at 324 cm⁻¹ is associated with A₁ vibration mode of the Ni₃S₂ phase [39], and the Fig. 4 X-ray photoelectron spectra with deconvolution of (a) Mo 3d, (b) O 1s for $MoO_x/Ni_3S_2/NF-11$ and com- MoO_3 , (c) Ni 2p, and (d) S 2p for $MoO_x/Ni_3S_2/NF-11$. peaks ranging from 800 to 1000 cm⁻¹ are related to Mo=O modes [16]. We also measured the infrared spectrum of MoO_x/Ni₃S₂/NF-11 (Fig. S5, cf. ESM). The bands at 975 and 914 cm⁻¹ correspond to the stretching vibration of Mo=O, and the bands at 615 and 514 cm⁻¹ are assigned to stretching and bending vibrations of Mo-O, respectively [40]. No Mo-S related spectral peaks can be observed, which proves that the sample does not contain Mo-S bond. ## 3.2 Electrocatalytic performance for HER HER performance of $MoO_x/Ni_3S_2/NF-mn$ synthesized at different ethanol: H_2O ratios and control samples of com-MoO₃/NF, Ni_3S_2/NF and Pt–C/NF was measured (Fig. 5 and Fig. S6, cf. ESM). As observed (Fig. S6), among the three samples, the $MoO_x/Ni_3S_2/NF-11$ at an ethanol: H_2O ratio of 1:1 exhibits an extremely low η_{10} value of 76 mV, demonstrating HER performance much better than Fig. 5 (a) Polarization curves of $MoO_x/Ni_3S_2/NF-11$, com- MoO_3/NF , Ni_3S_2/NF and Pt-C/NF; (b) Tafel slopes of $MoO_x/Ni_3S_2/NF-11$, com- MoO_3/NF and Pt-C/NF at -200 mV versus RHE measured from electrochemical impedance spectroscopy (EIS) in the frequency range from 10^5 to 0.01 Hz; (d) plots of current density as a function of scan rates for $MoO_x/Ni_3S_2/NF-11$, com- MoO_3/NF and Pt-C/NF; (e) chronoamperometric curve of $MoO_x/Ni_3S_2/NF-11$ at a constant applied potential of -180 mV versus RHE; (f) polarization curves of before and after 100 h I-t test of $MoO_x/Ni_3S_2/NF-11$. All the measurements were performed in a 0.5 mol· L^{-1} H₂SO₄ electrolyte. $MoO_x/Ni_3S_2/NF-01$ ($\eta_{10} = 127$ mV) without ethanol added during synthesis and MoO₂/Ni₃S₂/NF-21 (η_{10} = 114 mV) prepared at an ethanol:H₂O ratio of 2:1. From the SEM images mentioned above, the MoO_x/Ni₃S₂/NF-11 has a relatively small particle size and no crack on the surface, which is conducive to increasing the contact area between the catalyst and the electrolyte and accelerating the electron transmission. Therefore, the MoO₂/Ni₃S₂/NF-11 exhibits the optimal HER performance. Furthermore, the η_{10} of 76 mV of MoO_x/Ni₃S₂/NF-11 is extremely lower than that (235 mV) of com-MoO₃/NF, and is close to that (37 mV) of Pt-C/NF, showing performance exceeding com-MoO₃ and comparable to Pt-C. As listed in Table 1 [16,17,41–46], the η_{10} of MoO₂/Ni₃S₂/NF-11 is obviously lower compared with the reported Mo-related electrocatalysts. The excellent catalytic performance of MoO_x/Ni₃S₂/NF-11 may be mainly attributed to the oxygen vacancy. For the P-MoO₃ [16], though it also contains oxygen vacancies coming from P doping, it has a larger η_{10} of 166 mV, meaning an inferior HER activity than MoO₂/Ni₃S₂/NF-11. The outstanding HER activity of MoO₂/Ni₃S₂/NF-11 suggests that there may be heterojunctions formed in the two integrated phases of MoO₃ and Ni₃S₂. The heterojunction and oxygen vacancy would offer rapid electron transfer favorable to the HER activity. To explore the catalytic mechanism of the electrocatalysts, Tafel plots were calculated (Fig. 5(b)). The Tafel slope of MoO_x/Ni₃S₂/NF-11 is 46 mV·dec⁻¹, which is close to the value (30 mV·dec⁻¹) of Pt–C/NF and much **Table 1** HER performance of $\rm MoO_x/Ni_3S_2/NF-11$ and some reported electrocatalysts in 0.5 mol·L⁻¹ $\rm H_2SO_4$ | Catalysts | η_{10}/mV | Tafel slope/(mV·dec ⁻¹) | Ref. | |---------------------------------------------------------|-----------------------|-------------------------------------|-----------| | MoO _x /Ni ₃ S ₂ /NF-11 | 76 | 46 | This work | | $P-MoO_{3-x}^{a)}$ | 166 | 42 | [11] | | MoO ₃ @RuO ₂ ^{b)} | 110 | 62 | [17] | | Pd NDs/DR MoS ₂ ^{c)} | 103 | 41 | [41] | | UDSL-MoS ₂ -rGO ^{d)} | ca. 210 | 35 | [42] | | Mo/Mo ₂ Ce) | 89 | 62 | [43] | | $(1T/2H) \text{ MoS}_2/\alpha\text{-MoO}_3^{f)}$ | 232 | 81 | [44] | | MoP/NGg) | 94 | 50 | [45] | | $MoC_x^{h)}$ | 142 | 53 | [46] | a) P doped MoO $_{3-N}$, prepared via two-step intercalation method by using dodecylamine (DDA) and 4-bromine benzyl phosphoric acid; b) RuO $_2$ nanoparticles supported on MoO $_3$ nanosheets, prepared by a sonochemical method followed by calcination in air; c) Pd nanodisks (NDs) assembled on the basal plane of defect-rich MoS $_2$ nanosheets (DR-MoS $_2$); d) ultradispersed and single-layered MoS $_2$ nanoflakes coupled with reduced graphene oxide sheets (UDSL-MoS $_2$ -rGO), synthesized by a hydrothermal method using (NH $_4$) $_6$ Mo $_7$ O $_2$ 4·4H $_2$ O, L-cysteine and GO under pH = 1; e) Mo/Mo $_2$ C heteronanosheets, obtained by a NaCl template method followed by the reduction and carbonization under H $_2$ and CH $_4$, respectively; f) (1T/2H) MoS $_2$ /a-MoO $_3$ prepared by hydrothermal method using thiourea, MoO $_3$ and N $_2$ H $_4$ -H $_2$ O; g) MoP nanoflakes intercalated nitrogen-doped graphene nanobelts (MoP/NG), synthesized by inserting DDA into MoO $_3$ nanobelts followed by phosphorization; h) MoC $_x$ obtained by MOFs-assisted strategy followed by annealing under N $_2$ flow. lower than that (115 mV·dec⁻¹) of com-MoO₃/NF. Table 1 listed the Tafel slopes of reported Mo-based HER catalysts. The low Tafel slope of MoO_x/Ni₃S₂/NF-11 demonstrates its effectively enhanced kinetics during the H₂O dissociation [17]. On the basis of kinetic models, the Tafel slopes of 120, 40 and 30 mV·dec⁻¹ are assigned to Volmer (Eq. (3)), Heyrovsky (Eq. (4)) and Tafel (Eq. (5)) reactions, respectively: $$H_3O^+ + * + e^- \rightarrow H_{ads} * + H_2O$$ (3) $$H_{ads}^* + H_3O^+ + e^- \rightarrow * + H_2 + H_2O$$ (4) $$H_{ads}^* + H_{ads}^* \rightarrow 2^* + H_2 \uparrow \tag{5}$$ The first step is Volmer reaction (Eq. (3)), for which one proton (H₃O⁺) first adsorbs on the surface of the catalyst and accepts one electron to generate one hydrogen atom (H_{ads}*). The second step involves two kinds of reactions: one is Heyrovsky reaction and the other is Tafel reaction. For the Heyrovsky reaction (Eq. (4)), which is an electrochemical desorption, another proton (H₃O⁺) accepts one electron and desorbs from catalyst surface and react with the former H atom to generate one H₂. For the Tafel step (Eq. (5)), two H_{ads} desorb from catalyst surface and combine directly and then release one H₂. The slope of 46 mV·dec⁻¹ for $MoO_r/Ni_3S_2/NF-11$ indicates it follows Volmer-Heyrovsky mechanism, while Pt-C/NF with the much lower slope of 30 mV·dec⁻¹ follows the Volmer-Tafel mechanism. Nyquist plots were obtained by measuring EIS and the charge-transfer resistance (R_{ct}) values were fitted by the equivalent circuit model (Fig. 5(c)). It can be seen that the MoO_x/Ni₃S₂/NF-11 shows an extremely small $R_{\rm ct}$ of 6.51 Ω , which is much lower than the com-MoO₃/NF (21.51 Ω), indicating that the MoO₂/Ni₃S₂/NF-11 has faster charge transfer dynamics in HER process (see Table S2, cf. ESM). The fast charge transfer is probably attributed to synergetic effect of the amorphous MoO_x and the Ni₃S₂ nanoparticles. The abundant interfaces of the two phases make the hydrogen adsorption and desorption more effective [17]. In general, good electrocatalytic activity is accompanied by a large electrochemically active surface area, which is normally proportional to the electrochemical double-layer capacitance ($C_{\rm dl}$). From the cyclic voltammetry curves carried out at varied scan rates (Fig. S7, cf. ESM), the $C_{\rm dl}$ of MoO_x/Ni₃S₂/NF-11 is calculated as 42 mF·cm⁻² (Fig. 5(d)). This $C_{\rm dl}$ value is much larger than those many reported catalysts, such as MoO₃ (13.58 mF·cm⁻²) [14], UDSL-MoS₂-rGO (24 mF·cm⁻²) [42], MoP/NG (9.1 mF·cm⁻²) [45] and MoO₂/MoSe₂ (18.68 µF·cm⁻²) [47]. This large $C_{\rm dl}$ unveils the large amount of electrochemical active sites in the MoO_x/Ni₃S₂/NF-11. These results reveal that the MoO_x/Ni₃S₂/NF-11 with oxygen vacancies generates more accessible active sites, thereby promoting the H₂ evolution process. #### 3.3 DFT calculations DFT calculations (Fig. 6) were employed to well understand the influence of oxygen vacancy and Ni₃S₂ component on the catalytic activity. According to TEM characterization, MoO_r was found to be wrapped outside the Ni₃S₂. Therefore, when building the optimized models, the possibility of H* adsorption on MoO₃ is given priority, and Ni₃S₂ is regarded as the "substrate" of MoO₃. As shown in Figs. 6(A), we calculate the ΔG_{H*} of MoO₃ (on O site), oxygen-deficient MoO₃ (noted as O_v-MoO₃, on Mo site), MoO₃/Ni₃S₂ (on O site), and O_y-MoO₃/Ni₃S₂ (on O and Mo sites). The MoO₃ (Fig. 6(Aa)) shows a ΔG_{H^*} of -2.37 eV, for which the negative value indicates easy H adsorption (Volmer reaction, Eq. (3) discussed above) but difficult H desorption (Heyrovsky reaction, Eq. (4) discussed above). Because the surface of MoO₃ is all O atoms and the O-H* bond is strong, the H* is difficult to be desorbed. At this time, desorption step becomes the rate-determining step. When oxygen vacancy is present, as in O_v-MoO₃ (Fig. 6(A-b)), Mo sites are exposed to exhibit a smaller $|\Delta G_{H^*}|$ of 2.30 eV. When MoO₃ and Ni₃S₂ form the heterojunction (Fig. 6(A-c), the MoO₃/Ni₃S₂ has a much smaller $|\Delta G_{H*}|$ of 1.82 eV, which means weakened binding between O and H, thus facilitating the H desorption. While for the heterojunction of O_v-MoO₃/Ni₃S₂ containing oxygen vacancy, $|\Delta G_{H^*}|$ on the O site adjacent to oxygen vacancy is slightly increased to 1.98 eV (Fig. 6(A-d)), indicating strengthened O-H bonding (difficult H desorption). More importantly and interestingly, the Mo site of O_v- MoO_3/Ni_3S_2 has a much lower $|\Delta G_{H^*}|$ of 1.54 eV (Fig. 6(A-e)), which is the most close to the value of 0. As known an electrocatalyst with $|\Delta G_{H^*}|$ approaching to zero would have high HER activity. So the exposed Mo due to oxygen defect serves as active sites. By comparing (a) and (c), or (b) and (d) in Fig. 6(A), it can be seen that the heterojunction greatly improves the catalytic activity of both O and Mo sites, while comparison of (c), (d) and (e) in Fig. 6(A) shows that although oxygen deficiency slightly reduces the activity of O sites, the exposed Mo sites result in much better catalytic activity. **Fig. 6** (A) Optimized structures of (a) MoO_3 , (b) O_v-MoO_3 , (c) MoO_3/Ni_3S_2 , (d) O_v-MoO_3/Ni_3S_2 with H^* on O site and (e) O_v-MoO_3/Ni_3S_2 with H^* on Mo site and the corresponding H adsorption free energy (ΔG_{H^*}) at a potential U=0 V relative to standard hydrogen electrode at pH = 0; (B) differential charge density distribution of O_v-MoO_3/Ni_3S_2 ; (C) vacancy formation energy of O_v-MoO_3/Ni_3S_2 and O_v-MoO_3 and corresponding models. Symbols for atoms: Mo is cyan in A and C while purple in B, S is yellow, Ni is blue in A and C while grey in B, O is red and H^* is white. The dotted box shows the position of oxygen vacancy. Differential charge density distribution of the O_v-MoO₃/ Ni₃S₂ has been calculated, with results shown in Fig. 6(B). It is found that there is a strong charge transfer between Ni₃S₂ and MoO₃. Compared with MoO₃/Ni₃S₂ (without oxygen vacancy, Fig. S8, cf. ESM), the O atoms in O_v-MoO₃/Ni₃S₂ (Fig. 6(B)) gain more electrons. The increase of surface charge of oxygen will strengthen the binding of O–H and make the desorption more difficult. This is the reason why the $|\Delta G_{H*}|$ on O site of O_v -MoO₃/ Ni₃S₂ is larger than that of MoO₃/Ni₃S₂. In addition, Fig. 6(B) depicts electron deficiency of exposed Mo site in O_v-MoO₃/Ni₃S₂. During the Heyrovsky reaction, Mo–H* bond needs to be dissociated prior to H₂ release. In this process, electrophilic Mo will pull the electrons between Mo and H, which will weaken the Mo-H* bond thus promoting hydrogen evolution via the cleavage of Mo-H* [48]. Long-term durability is another crucial requirement for the catalysts in real applications. To measure the durability of MoO₂/Ni₃S₂/NF-11, the time-dependent current density was measured at a constant potential of -0.18 V for 100 h. The excellent stability is due to that the acidresistant amorphous MoO_r encases the Ni₃S₂ and NF substrate which are unstable under acidic conditions. As seen in Fig. 5(e), the MoO_x/Ni₃S₂/NF-11 was continuously operated for 100 h with no significant degradation observed, confirming the ultra-durable stability. Figure 5(f) shows the linear sweep voltammetry before and after 100 h *I–t* HER test. As observed, the catalytic activity of the MoO_x/Ni₃S₂/NF-11 was even increased after the stability test. This may be thankful to the surface reconfiguration of the catalyst [49]. In order to deeply learn about the reaction mechanism in the HER process, we have carried out SEM and XPS for MoO_x/Ni₃S₂/NF-11 after stability test. From the SEM images shown in Fig. S9 (cf. ESM), we see after the HER test, the microstructure of MoO_x/Ni₃S₂/NF-11 has not changed significantly, and many irregular small spheres are still attached to the surface of NF. From XPS (Fig. 7), after long-term stability test (100 h), the valence states of Ni and S do not change [50]. For Mo, the mixed valence state of Mo⁵⁺ and Mo⁶⁺ is still reflected after the stability test. The peaks at 235.6 and 232.4 eV correspond to Mo⁶⁺ [28], and the binding energies of 234.0 and 230.8 eV are related to Mo⁵⁺ [29]. At the same time, it can be seen from the integral area of the curve that the content of Mo⁵⁺ increases compared with that before. In addition, the O 1s peaks shift towards lower binding energy by 0.2 eV after stability test. The increase of Mo⁵⁺ content and the shift of O 1s with lower binding energy also prove that the oxygen vacancy content increased after long-term stability. The *in situ* surface reconfiguration may result in more oxygen vacancies on catalyst surface, which exposes more Mo active sites. EPR spectroscopy (Fig. 3(h)) shows that the MoO_x/Ni₃S₂/NF-11 after 60 h *I*-t test displays a much stronger signal, proving increased content of oxygen vacancy in the catalyst after HER testing, which is consistent with the XPS characterization. To further confirm the *in situ* surface reconfiguration of the catalyst, we calculated the formation energy of oxygen vacancy in MoO₃ and MoO₃/Ni₃S₂. As shown in Fig. 6(C), when MoO₃ and Ni₃S₂ form heterojunction, the formation energy of oxygen vacancy is significantly reduced, and thus decreases the energy barrier for structural reconfiguration. This will enable MoO₃ to have more oxygen vacancies, thus exposing more active sites of Mo. The low $|\Delta G_{H*}|$ of exposed Mo sites is beneficial to the improvement of the HER activity. With the continuation of the electrolysis reactions, the performance of the catalyst will gradually improve. From the longterm durability test (Fig. 5(e)), the initial current density is 18.2 mA·cm⁻², while until 100 h, the current density increases to 23.5 mA·cm⁻². This phenomenon confirms the rationality of the above conjecture. The higher durability of the MoO₂/Ni₃S₂/NF-11 than that of the existing catalysts endows it a broad application. Overall, from the above results we see clearly that the electrocatalytic performance of the $MoO_x/Ni_3S_2/NF-11$ material exceeds most known transition metal sulfides and oxides catalysts. Benefiting from the oxygen vacancy and heterostructure, the exposed Mo sites exhibit much reduced $|\Delta G_{H^*}|$, which endows the function as active sites, leading to the excellent HER performance. The outstanding catalytic activity and wonderful durability of $MoO_x/Ni_3S_2/NF-11$ demonstrate it is a promising electrocatalyst for HER. ### 4 Conclusions In summary, by a facile and cost-effective solvothermal method, amorphous and oxygen-deficient MoO, integrated with Ni₃S₂ nanoparticles are embedded in the Ni foam to fabricate the new electrocatalysts of MoO₂/Ni₃S₂/ NF-mn. The optimum oxygen-deficient MoO_x/Ni₃S₂/NF-11 exhibits remarkable HER activity, requiring a much low η_{10} value of 76 mV and an extremely small Tafel slope of 46 mV·dec⁻¹ in acidic media. The oxygen vacancy leaves the Mo sites exposed, and the reduced $|\Delta G_{\rm H*}|$ of Mo sites ensures the enhancement of HER activity. Moreover, the formed MoO_x/Ni₃S₂ heterostructure further reduces the $|\Delta G_{H*}|$ of Mo and O sites, which is another key factor in improving the catalytic activity. The high activity of MoO₂/Ni₃S₂/NF-11 can be maintained for more than 100 h at constant potential of 180 mV. The outside acid-resistant MoO_x layer encases the inside Ni₃S₂ and NF which are unstable under acidic conditions, thus increasing the acid resistance of the overall catalyst. In addition, the heterostructure can effectively reduce the formation energy of oxygen vacancy, which leads to the *in situ* reconstruction of the catalysts during the electrocatalytic process, thus Fig. 7 XPS spectra of (a) Ni 2p, (b) O 1s, and (c) S 2p for $MoO_x/Ni_3S_2/NF-11$ before and after HER testing, and (d) Mo 3d for $MoO_x/Ni_3S_2/NF-11$ after HER testing. promoting HER performance. As a high-performance and ultra-durable electrocatalyst, MoO_x/Ni₃S₂/NF-11 might be regarded as a cost-effective candidate to take the place of noble metals catalysts used in HER. This work could provide new ideas for the design of other oxygen-deficient materials, therefore starting new opportunities to develop high-performance materials for HER or other applications. Acknowledgements Experimental work is supported by the National Natural Science Foundation of China (Grant No. 22176017), Scientific Research Project of the Ningxia Higher Education Department of China (Grant No. NGY2020034) and CAS "Light of West China Program (Grant No. XAB2020YW16)". **Electronic Supplementary Material** Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2228-1 and is accessible for authorized users. #### References 1. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts - for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180 - Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974 - Holladay J D, Hu J, King D L, Wang Y. An overview of hydrogen production technologies. Catalysis Today, 2009, 139(4): 244–260 - Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49(79): 8896–8909 - Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi₄ electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8(1): 15437 - Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247 - Wang K W, She X L, Chen S, Liu H L, Li D H, Wang Y, Zhang H W, Yang D J, Yao X D. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP₃ and Ni₂P. - Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(14): 5560-5565 - Lu W, Song Y, Dou M, Ji J, Wang F. Ni₃S₂@MoO₃ core/shell arrays on Ni foam modified with ultrathin CdS layer as a superior electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2018, 54(6): 646–649 - Wang X, Ma W, Ding C, Xu Z, Wang H, Zong X, Li C. Amorphous multi-elements electrocatalysts with tunable bifunctionality toward overall water splitting. ACS Catalysis, 2018, 8(11): 9926–9935 - Liang Q, Jin H, Wang Z, Xiong Y, Yuan S, Zeng X, He D, Mu S. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo₂C complex for efficient overall water splitting. Nano Energy, 2019, 57: 746–752 - 11. Li L, Zhang T, Yan J, Cai X, Liu S. P doped MoO_{3-x} nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small, 2017, 13(25): 1700441 - 12. Sinaim H, Ham D J, Lee J S, Phuruangrat A, Thongtem S, Thongtem T. Free-polymer controlling morphology of α-MoO₃ nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. Journal of Alloys and Compounds, 2012, 516: 172–178 - 13. Zhu Y H, Yao Y, Luo Z, Pan C Q, Yang J, Fang Y R, Deng H T, Liu C X, Tan Q, Liu F D, Guo Y. Nanostructured MoO₃ for efficient energy and environmental catalysis. Molecules, 2020, 25(1): 26 - 14. Li J, Cheng Y, Zhang J, Fu J, Yan W, Xu Q. Confining Pd nanoparticles and atomically dispersed Pd into defective MoO₃ nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS Applied Materials & Interfaces, 2019, 11(31): 27798–27804 - 15. Xue X, Zhang J, Saana I A, Sun J, Xu Q, Mu S. Rational inert-basal-plane activating design of ultrathin 1T' phase MoS₂ with a MoO₃ heterostructure for enhancing hydrogen evolution performances. Nanoscale, 2018, 10(35): 16531–16538 - 16. Liu P T, Zhu J Y, Zhang J Y, Xi P X, Tao K, Gao D Q, Xue D S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS₂ nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Letters, 2017, 2(4): 745–752 - Sadhanala H K, Harika V K, Penki T R, Aurbach D, Gedanken A. Ultrafine ruthenium oxide nanoparticles supported on molybdenum oxide nanosheets as highly efficient electrocatalyst for hydrogen evolution in acidic medium. ChemCatChem, 2019, 11(5): 1495–1502 - Lim K J H, Yilmaz G, Lim Y F, Ho G W. Multi-compositional hierarchical nanostructured Ni₃S₂@MoS_x/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20491–20499 - 19. Kou T, Smart T, Yao B, Chen I, Thota D, Ping Y, Li Y. Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni₃S₂ in alkaline medium. Advanced Energy Materials, 2018, 8(19): 1703538 - 20. Feng L L, Yu G, Wu Y, Li G D, Li H, Sun Y, Asefa T, Chen W, Zou X. High-index faceted Ni_3S_2 nanosheet arrays as highly - active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026 - Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W, Wei K H, Li L J. Highly efficient electrocatalytic hydrogen production by MoS_x grown on graphene-protected 3D Ni foams. Advanced Materials, 2013, 25(5): 756–760 - 22. Tang C, Pu Z, Liu Q, Asiri A M, Luo Y, Sun X. Ni₃S₂ nanosheets array supported on Ni foam: a novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. International Journal of Hydrogen Energy, 2015, 40(14): 4727–4732 - 23. Cao J, Zhou J, Zhang Y, Wang Y, Liu X. Dominating role of aligned MoS₂/Ni₃S₂ nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2018, 10(2): 1752–1760 - 24. Yang Y, Yao H, Yu Z, Islam S M, He H, Yuan M, Yue Y, Xu K, Hao W, Sun G, Li H, Ma S, Zapol P, Kanatzidis M G. Hierarchical nanoassembly of MoS₂/Co₉S₈/Ni₃S₂/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. Journal of the American Chemical Society, 2019, 141(26): 10417–10430 - 25. Li T T, Zuo Y P, Lei X M, Li N, Liu J W, Han H Y. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni₃S₂ nanorod/nanowire arrays for high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(21): 8029–8040 - 26. Tang T, Jiang W J, Niu S, Liu N, Luo H, Chen Y Y, Jin S F, Gao F, Wan L J, Hu J S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328 - He W, Wang C, Li H, Deng X, Xu X, Zhai T. Ultrathin and porous Ni₃S₂/CoNi₂S₄ 3D-network structure for superhigh energy density asymmetric supercapacitors. Advanced Energy Materials, 2017, 7(21): 1700983 - 28. Yang J, Zhang F J, Wang X, He D S, Wu G, Yang Q H, Hong X, Wu Y, Li Y D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angewandte Chemie International Edition, 2016, 55(41): 12854–12858 - Weber T, Muijsers J C, Niemantsverdriet J W. Structure of amorphous MoS₃. Journal of Physical Chemistry, 1995, 99(22): 9194–9200 - Li L D, Yan J Q, Wang T, Zhao Z J, Zhang J, Gong J L, Guan N J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 10 - 31. Li J, Cheng Y, Zhang J, Fu J, Yan W, Xu Q. Confining Pd Nanoparticles and atomically dispersed Pd into defective MoO₃ nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS Applied Materials & Interfaces, 2019, 11(31): 27798–27804 - 32. Kang Q, Cao J Y, Zhang Y J, Liu L Q, Xu H, Ye J H. Reduced - ${ m TiO_2}$ nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(18): 5766–5774 - 33. Yan J Q, Zhang Y X, Liu S Z, Wu G J, Li L D, Guan N J. Facile synthesis of an iron doped rutile TiO₂ photocatalyst for enhanced visible-light-driven water oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(43): 21434–21438 - Xie F, Wu H, Mou J, Lin D, Xu C, Wu C, Sun X. Ni₃N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172 - Zhou W, Wu X J, Cao X, Huang X, Tan C, Tian J, Liu H, Wang J, Zhang H. Ni₃S₂ nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 2013, 6(10): 2921 - Chia X, Sutrisnoh N A A, Pumera M. Tunable Pt-MoS_x hybrid catalysts for hydrogen evolution. ACS Applied Materials & Interfaces, 2018, 10(10): 8702–8711 - 37. Kuang P Y, Tong T, Fan K, Yu J G. *In situ* fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catalysis, 2017, 7(9): 6179–6187 - 38. Wang B, Huang H, Sun T, Yan P, Isimjan T T, Tian J, Yang X. Dissolution reconstruction of electron-transfer enhanced hierarchical NiS_x-MoO₂ nanosponges as a promising industrialized hydrogen evolution catalyst beyond Pt/C. Journal of Colloid and Interface Science, 2020, 567: 339–346 - 39. Cheng Z, Abernathy H, Liu M L. Raman spectroscopy of nickel sulfide $\rm Ni_3S_2$. Journal of Physical Chemistry C, 2007, 111(49): 17997–18000 - Li Z, Ma J, Zhang B, Song C, Wang D. Crystal phase- and morphology-controlled synthesis of MoO₃ materials. CrystEngComm, 2017, 19(11): 1479–1485 - 41. Qi K, Yu S S, Wang Q Y, Zhang W, Fan J C, Zheng W T, Cui X Q. Decoration of the inert basal plane of defect-rich MoS₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(11): 4025–4031 - 42. Huang H L, Huang J Y, Liu W P, Fang Y P, Liu Y. Ultradispersed and single-layered MoS₂ nanoflakes strongly - coupled with graphene: an optimized structure with high kinetics for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(45): 39380–39390 - 43. Xiong J, Li J, Shi J W, Zhang X L, Suen N T, Liu Z, Huang Y J, Xu G X, Cai W W, Lei X R, Feng L, Yang Z, Huang L, Cheng H. *In situ* engineering of double-phase interface in Mo/Mo₂C heteronanosheets for boosted hydrogen evolution reaction. ACS Energy Letters, 2018, 3(2): 341–348 - 44. Manikandan A, Ilango P R, Chen C W, Wang Y C, Shih Y C, Lee L, Wang Z M M, Ko H, Chueh Y L. A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS₂/MoO₃ hybrid heterostructured nanoflowers. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(31): 15320–15329 - 45. Huang C, Pi C R, Zhang X M, Ding K, Qin P, Fu J J, Peng X, Gao B, Chu P K, Huo K F. *In situ* synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO₃-amine hybrid for high-efficient hydrogen evolution reaction. Small, 2018, 14(25): 7 - 46. Wu H B, Xia B Y, Yu L, Yu X Y, Lou X W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6(1): 8 - 47. Chen X, Liu G, Zheng W, Feng W, Cao W, Hu W, Hu P. Vertical 2D MoO₂/MoSe₂ core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2016, 26(46): 8537–8544 - 48. Zhu L F, Liu L J, Huang G M, Zhao Q. Hydrogen evolution over N-doped CoS₂ nanosheets enhanced by superaerophobicity and electronic modulation. Applied Surface Science, 2020, 504: 144490 - He L, Zhang W, Mo Q, Huang W, Yang L, Gao Q. Molybdenum carbide-oxide heterostructures: *in situ* surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(9): 3544–3548 - 50. Yilmaz G, Yang T, Du Y, Yu X, Feng Y, Shen L, Ho G. Stimulated electrocatalytic hydrogen evolution activity of MOFderived MoS₂ basal domains via charge injection through surface functionalization and heteroatom doping. Advancement of Science, 2019, 6(15): 1900140