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regression with machine learning is proposed.
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ABSTRACT

The identification of factors that may be forcing ecological observations to approach the upper
boundary provides insight into potential mechanisms affecting driver-response relationships, and can
help inform ecosystem management, but has rarely been explored. In this study, we propose a novel
framework integrating quantile regression with interpretable machine learning. In the first stage of the
ARTICLE INFO framework, we estimate the upper boundary of a driver-response relationship using quantile
regression. Next, we calculate “potentials” of the response variable depending on the driver, which are
defined as vertical distances from the estimated upper boundary of the relationship to observations in

Ar th.e history: the driver-response variable scatter plot. Finally, we identify key factors impacting the potential using
Received 5 June 2022 a machine learning model. We illustrate the necessary steps to implement the framework using the
Revised 21 October 2022 total phosphorus (TP)-Chlorophyll a (CHL) relationship in lakes across the continental US. We found
Accepted 26 November 2022 that the nitrogen to phosphorus ratio (N:P), annual average precipitation, total nitrogen (TN), and

summer average air temperature were key factors impacting the potential of CHL depending on TP.
We further revealed important implications of our findings for lake eutrophication management. The
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important role of N:P and TN on the potential highlights the co-limitation of phosphorus and nitrogen
and indicates the need for dual nutrient criteria. Future wetter and/or warmer climate scenarios can
decrease the potential which may reduce the efficacy of lake eutrophication management. The novel
framework advances the application of quantile regression to identify factors driving observations to
approach the upper boundary of driver-response relationships.
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1 Introduction

Relationships between a predictor variable and an
ecosystem response variable are widely used to illustrate
the quantitative association between a driver and an
ecological property of interest (Dillon and Rigler, 1974;
Huo et al., 2013; Larned and Schallenberg, 2018; de
Vries et al., 2021). Such driver-response relationships are
often used to inform ecosystem management (Hunsicker
et al., 2015; McDowell et al., 2018; Schallenberg, 2020).
Quantile regression, which explores the effect of a driver
on any interested quantile(s) of the response variable
distribution (Koenker and Bassett 1978; Das et al., 2019),
has been introduced as a useful alternative to models that
focus on the mean of the response variable distribution to
develop the driver-response relationship in environmental
and ecological studies (Cade et al., 1999). Particularly,
quantile regression can estimate the limiting effect of a
driver on the response variable by fitting the upper
boundary of the relationship (Cade et al., 1999; Xu et al.,
2015). Here, the limiting effect reflects behaviors of the
response variable when the driver is the only limiting
factor, and under such conditions the driver-response
relationship is recognized as the upper boundary of the
relationship (Cade and Noon, 2003). For example,
Sankaran et al. (2005) showed changes in maximum
woody cover of African savannas with mean annual
precipitation using a 99th quantile regression. Carvalho
et al., (2013) applied quantile regression to characterize
the relationship between the maximum biovolume of
cyanobacteria and nutrient concentrations in lakes.

Exploring factors affecting or mediating driver-respo-
nse relationships is an interest of ecologists (Freeman
et al., 2009; Wagner et al., 2011). The identification of
factors driving observations to approach the upper
boundary of the relationship can help understand
mechanisms and processes governing the driver’s effect
on the response variable (Liang et al., 2021a). A better
understanding of such mechanisms can help inform
management strategies that could inhibit or promote the
effect of an ecological driver (Zou et al., 2020). However,
identifying such factors has rarely been discussed. In
particular, there is not an analytical framework available
that outlines the necessary steps to identify key factors
that may drive observations to approach the upper
boundary of a driver-response relationship.

In this study, we propose a novel framework for
identifying key factors driving observations to approach
the upper boundary of a driver-response relationship. We

achieve this framework by integrating quantile regression
with interpretable machine learning (Murdoch et al.,
2019; Rudin 2019). Interpretable machine learning has
been introduced into environmental and ecological
studies and has been shown to be an attractive approach
for providing transparent and understandable associations
(Lucas 2020; Ryo et al., 2020; Cha et al., 2021; Wang
et al., 2021). In the framework, we firstly estimate the
upper boundary relationship using quantile regression at
an upper regression quantile (Sankaran et al., 2005;
Carvalho et al., 2013; Fornaroli et al., 2018). Next, we
define the potential of the response variable, depending
on the drive, as the vertical distance from the upper
boundary of the relationship to a specific observation in
the driver-response variable scatter plot. This “potential”
is calculated using the predicted value from the fitted
quantile regression model minus the observed value of
the response variable. Potentials of the response variable
are calculated for all observations. Finally, we explore
key factors impacting potentials using a machine learning
model. As such, the factors identified as being important
in predicting potentials are factors that are potentially
important in driving observations to approach the upper
boundary of the driver-response relationship.

To demonstrate the steps of the proposed framework,
we use the widely studied total phosphorus (TP)-
Chlorophyll a (CHL) driver-response relationship in
inland lakes (Dillon and Rigler, 1974; Jones et al., 1998;
Havens and Niirnberg, 2004; Filstrup and Downing,
2017) as a case study. The TP-CHL relationship provides
quantitative information that can help guide lake eutrophi-
cation management (Stow and Cha, 2013; Rowland et al.,
2019) and receives continuous attention in the scientific
literature (Yuan and Jones 2020; Quinlan et al., 2020).
Although the limiting effect of TP on CHL has been
explored in some studies (Jones et al., 2011; Chen and Li
2014; Xu et al., 2015), factors driving observations to
approach the upper boundary of the TP-CHL relationship
have not been investigated. We applied the proposed
novel framework to further identify such factors.

2 Materials and methods

2.1 Study area

Lake water quality data were obtained from US Environ-
mental Protection Agency’s National Lakes Assessment
sampled in 2007, 2012, and 2017. Water quality
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indicators included TP, CHL, total nitrogen (TN),
nitrogen to phosphorus ratio (N:P, calculated by TN/TP),
ammonia nitrogen (NH,), nitrate nitrogen (NO,), water
temperature (WT), dissolved organic carbon (DOC), acid
neutralizing capacity (ANC), conductivity (COND), pH,
lake surface area (AREA HA), lake depth (Depth), and
dissolved oxygen (DO). The Environmental Protection
Agency’s ecoregion (EPA_REQG) was also included.

Meteorological and land use/land cover variables may
also impact the growth of phytoplankton and influence
lake eutrophication (Collins et al., 2019; Cheruvelil et al.,
2022). Meteorological indicators were derived from the
database of Monthly Climate and Climatic Water Balance
for Global Terrestrial Surfaces (Abatzoglou et al., 2018).
We considered six climate indicators, including summer
average air temperature of the sampling year (TEMP),
annual average air temperature of the past 30 years
(TEMP_30), monthly average precipitation of the
sampling summer (PRCP), monthly average precipitation
of the past 30 years (PRCP_30), summer average wind
speed of the sampling year (WS), and annual average
wind speed of the past 30 years (WS_30). Land use data
were derived from the US Geological Survey National
Land Cover Database (Dewitz and U.S. Geological
Survey, 2021). For the land use data, we calculated two
indicators: the ratio of areas with a mixture of constructed
materials and vegetation (Developed) and the ratio of
areas dominated by trees generally greater than 5 m tall
and greater than 20% of total vegetation cover (Forest).
We provide details of data preparation and processing in
the supplementary materials.

Observations of TP and CHL were used to develop the
quantile regression model. The remaining variables (i.e.,
predictor variables) were used as factors impacting the
potential of CHL depending on TP. We explored drivers
of the potential at multiple spatial scales. For example,
EPA_REG, PRCP, PRCP 30, TEMP, TEMP 30, WS,
and WS 30 are regional scale drivers, while the other
variables were derived at the lake scale. We restricted TP
and CHL data to those that were collected during the
summer period (from 15 June to 14 September). We
removed observations with any missing values among the
variables. We also removed 13 observations with extreme
WT (i.e., WT <5 °C or >40 °C) or TP (i.e., TP <1 ug/L
or > 1500 pg/L) levels. The final sample size was 3230
observations included in the quantile regression and
machine learning models. TP, CHL, TN, N:P, AREA
HA, Depth, COND, and DOC were logl0 transformed
prior to analyses.

2.2 Methodological framework

The analytical framework includes three steps (Fig. 1). It
is worth noting that the framework is not constrained to a
specific quantile regression or machine learning model.
Despite displaying a linear quantile regression model in
Fig. 1, nonlinear models (Koenker et al., 1994; Koenker
and Park 1996) could also be used.

2.2.1 Estimating the upper boundary of a driver-response
relationship using quantile regression

The first step of the framework is estimating the upper
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% Improve model performance: features selection & parameters tuning
«% Identify key factors: factors importance based on permutation analysis

<+ Show partial dependence of potential on key factors

Fig. 1 Flowchart of the proposed methodology framework.
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boundary of the driver-response relationship. Theoreti-
cally, when the response variable is only limited by the
driver, the upper boundary of relationship can be directly
obtained by illustrating the behavior of the response
variable with the change of driver. However, this is not
observed in nature because observations are always below
the upper boundary relationship when other factors limit
the response variable (Cade and Noon 2003; Zou et al.,
2020).

Quantile regression at an upper regression quantile is a
proper tool to estimate the upper boundary of a driver-
response relationship (Cade et al., 1999; Fornaroli et al.,
2018). Since the regression quantile is less than one, the
estimated relationship should be below the true upper
boundary of the relationship. Generally, the use of a very
large regression quantile (e.g., 99th percentile) will lead
to a closer estimate to the true upper boundary of
relationship, but it can be highly uncertain due to the
small sample size that typically exists when estimating
parameters at such a large quantile. Therefore, the
selection of regression quantile is a trade-off between
seeking a higher quantile to better represent the upper
boundary of relationship and reducing the prediction
uncertainty (Konrad et al., 2008). To distinguish the
upper boundary relationship estimated using quantile
regression with the true upper boundary, we refer to the
former as the estimated upper boundary of the driver-
response relationship.

For the TP—CHL relationship, following previous
practices (Chen and Li 2014; Xu et al., 2015), both TP
and CHL were log,, transformed prior to applying linear
quantile regression to fit the upper boundary of the TP-
CHL relationship. The main function of the linear
quantile regression can be expressed by Eq. (1) (Koenker
and Bassett, 1978):

yi=ax+B+e€ (D)
where i is the index of observations (i =1, 2, ..., N. N is
the sample size). x and y represent log,, transformed TP
and CHL (units: pg/L). a and S represent the regression
slope and intercept. ¢ is the residual. Parameters
estimation is based on the minimum of sum of the

absolute residuals (Koenker and Bassett, 1978):

min Tly; —ax; —
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where 7 (0 < t < 1) represents the regression quantile.
Because the prediction uncertainty can be large for
extreme regression quantiles (Das et al., 2019), we used
the 0.95 regression quantile for estimating the upper
boundary relationship. That is, 7 equals to 0.95 in Eq. (2).

2)

2.2.2  Calculating potentials of the response variable

The second step of the framework is calculating

potentials of the response variable depending on the
driver. As mentioned before, the definition of potential is
the distance from the estimated upper boundary to a given
observation in the driver-response variable scatter plot
(Fig. 1). Supposing that the response variable is only
limited by the driver under consideration, all the
observations should be on the upper boundary. Because
there more than one factor that limit ecological response
variables (Cade and Noon, 2003), a single driver cannot
fulfill its maximum effect on the response variable. Thus,
the newly defined concept, the “potential”, can be used to
represent the joint effect of other limiting factors.
Conversely, by mining the relationship between the
potential and possible factors, we can reveal key factors
impacting the potential and driving observations to
approach the upper boundary of the relationship (See
Section 2.2.3). Note that since some observations may be
above the estimated upper boundary of relationship, their
corresponding calculated potentials can be negative.

We emphasize two features of the newly defined
concept, potential. 1) It is the difference of the response
variable between the ideal (i.e., the stressor is the only
limiting factor) and real (other factors may also limit the
response variable) conditions. 2) It is driver dependent,
because the calculation of potential relies on the driver-
response relationship. Accordingly, in the TP-CHL
relationship, potentials of CHL depending on TP were
calculated by subtracting observed values of log,,CHL
from predicted log,,CHL at the 0.95 regression quantile.

2.2.3 Identifying factors impacting the potential using
machine learning

The third step of the framework is applying a machine
learning approach to identify key factors impacting the
potential of the response variable depending on the driver
(Fig. 1). Machine learning models have been widely used
in environmental and ecological studies (Sun and
Scanlon, 2019; Castrillo and Garcia 2020; Lucas, 2020;
Tiyasha et al., 2020). One appealing aspect of many of
these models is their ability to handle nonlinear and
complicated relationships (Liang et al., 2020, Rousso
et al., 2020). Moreover, the convenience in ranking the
importance of input (predictor) variables (Chen et al.,
2020; Dugan et al., 2020) makes machine learning
particularly suitable in our framework.

In the framework, inputs (predictor variables) to the
machine learning model were variables considered to
possibly impact the potential, while the output (response)
variable was the calculated potential values derived from
the quantile regression. We conducted feature selection
and hyperparameter tuning to obtain an optimized
machine learning model (Niu et al.,, 2021). Feature
selection is a process to select a subset of relevant input
variables for model development, by which effects from
noise or irrelevant variables are reduced (Chandrashekar
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and Sahin 2014; Li et al., 2018). After the feature
selection, we tuned several hyperparameters to seek an
optimum set for the machine learning model (Araya and
Ghezzehei 2019; Yang and Shami 2020). By using
feature selection and hyperparameter tuning, the
optimized model is expected to perform better with fewer
input variables. Next, we ranked the importance of
variables based on a permutation analysis (Altmann et al.,
2010) for the optimized model and determined key
factors impacting the potential. Finally, we explore the
change of the response variable (the potential) as a
function of each predictor while holding other predictors
constant. We used the partial dependence profile (Biecek
and Burzykowski, 2021) to show changes of potential
predictions for a given predictor variable. The partial
dependence profile is the average of ceteris paribus
profiles showing how model predictions would change if
the value of a single predictor variable changed (Becker
et al., 2021).

For our case study, we used random forests (Breiman,
2001) to explore the relationship between the potential
and possible predictor variables. There were 21 input
variables before the feature selection, namely WT, pH,
DO, DOC, ANC, COND, TN, N:P, NO;, NH,,
AREA HA, Depth, Developed, Forest, EPA REG,
PRCP, PRCP_30, TEMP, TEMP 30, WS, and WS 30.
The output was the potential of CHL. We used 5-fold
cross-validation to reduce the impact of overfitting of the
random forest model (Yadav and Shukla, 2016). We used
the average R? (RSQ) value of testing data sets as the
measure of model performance. For the feature selection,
we applied the sequential backward search algorithm
(Yusta, 2009). For the hyperparameter tuning, we applied
the hyperband algorithm (Li et al., 2017). According to
prior knowledge on the importance of hyperparameters to
the performance of random forests models (Probst et al.,
2019), we selected four hyperparameters to tune (Table
1). Both feature selection and hyperparameter tuning
aimed to maximize RSQ. We used the root mean square
error (RMSE) loss after permutation to represent
variables importance.

We used the R software (version 4.1.0, R Core Team,
2021) for all the computations. We developed the linear
quantile regression model using the quantreg (version
5.85, Koenker, 2021) package. Random forests were

Table 1 Search space for the four tuned hyperparameters in the
random forests model

Hyperparameters Abbreviation  Type Range
Number of randomly drawn Mtry Integer 1-6
candidate variables

Minimum number of observations Min.node.size Integer 1-5

in a terminal node

Number of trees Num.trees  Integer  200-1000
Sampling size controlled by Sample.fraction Double 0.75-1

sampling fraction

fitted using the ranger (version 0.12.1, Wright and
Ziegler, 2017) and mlr3verse (version 0.2.1, Lang and
Schratz, 2021) packages.

3 Results

3.1 Upper boundary of TP-CHL relationship
Estimated average regression slope and intercept for the
quantile regression (Eq. (1)) were 0.885 and 0.164,
respectively. Because both TP and CHL were log,
transformed, the regression slope can be explained as the
percent change in CHL concentration per 1% change in
TP (Qian, 2009), that is, the 95th quantile of CHL
distribution increases by 0.885% per 1% increases of TP.
The regression intercept is the log,,CHL value when
log,, TP is zero (where the TP concentration is 1 pg/L).
We used the quantile regression results at the 95th
regression quantile (Fig. 2) to estimate the upper
boundary of TP-CHL relationship. According to the
parameter estimation algorithm (Eq. (2)), there are
approximately 5% (the exact number is 4.96% in our
case) of observations above or on the fitted curve (the
black line in Fig. 2). Note that the 95% credible intervals
for the predicted values are very small, indicating high
reliability of potentials calculated in the second step of
the framework.

3.2 Potentials of CHL depending on TP

Summary statistics of the calculated potentials are shown
in Table 2 and Fig. S1. The average value was 0.59,
which is higher than the median (0.52), indicating the
distribution of the calculated potential is right skewed.
The standard deviation was 0.45. It is not surprising that
the minimum value was negative (—0.91), because there
were some observations above the estimated upper
boundary of TP-CHL relationship (Fig. 2).

log,,CHL

log,, TP

Fig.2 Quantile regression results (z = 0.95) for the TP-CHL
relationship, representing the estimated upper boundary of TP-CHL
relationship. Points are observations. The black line and gray shaded
region represent the fitted line and 95% credible intervals, respectively.
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Table 2 Basic statistics of calculated potentials of CHL depending on
TP

Quantiles
Mean  Standard deviation Minimum Maximum
25% 50% 75%
0.59 0.45 -0.91 2.98 0.28 0.52 0.82

3.3 Key factors impacting the potential

The RSQ of the random forests model before feature
selection was 0.498. After feature selection, 12 input
variables remained, namely N:P, PRCP_30, TN, TEMP_
30, DOC, NH;, pH, NO;, ANC, AREA HA, COND,
EPA REG. Tuned hyperparameters values were 6, 2,
595, and 0.9804 for mtry, min.node.size, num.trees, and
sample.fraction, respectively. The RSQ of the optimized
random forests model increased to 0.522 (refer to Fig. S2
for the fitted plot). The optimized model had slightly
better performance compared to the pre-tuned model. We
also conducted a multivariate linear regression and found
the RSQ was only 0.227, which was much less than that
of the random forests model.

Results of variables importance are shown in Fig. 3.
The variable N:P was the most important variable,
followed by PRCP_30 and TN. Their RMSE losses were
0.335, 0.292, and 0.274, respectively, which were much
higher compared with the rest of the predictor variables.
TEMP 30 ranked fourth, with an RMSE loss of 0.240.
RMSE losses for the other eight variables were relatively
small (=< 0.20) compared with the aforementioned four
factors.

Marginal effects of N:P, PRCP_30, TN, and TEMP_30
on the predicted potential of CHL are shown in Fig. 4.
Generally, the predicted potential decreased with
increasing of N:P, PRCP_30, TN, and TEMP_30, but at
different rates. The predicted potential decreased the
fastest with the increasing N:P. With increasing PRCP_30
and TN, the predicted potential decreased slower than that

\ Optimized model: feature importance results
N:P
PRCP 30
TN
TEMP_30
DOC
NH,
PH
NO,
ANC
AREA_HA
COND
EPA_REG

0.15 0.20 0.25 0.30 0.35
Root mean square error (RMSE) loss after permutations

Fig.3 Variables importance measured by the root mean square error
loss from a random forest model based on permutation analysis. Bars
charts and box plots show averages and distributions of root mean
square error losses across the iterations of the algorithm.

for N:P. The decreasing rate of predicted potential also
appears smaller for TEMP_30 than those for the aforemen-
tioned three factors. As for the variation of the remaining
factors, the corresponding predicted potentials were
relatively constant (Fig. S3). Therefore, according to the
rank of variable importance (Fig. 3) and marginal effects
of factors (Fig. 4), we determined that key factors
impacting the potential of CHL depending on TP were
N:P, PRCP_30, TN, and TEMP_30.

An increase of each of these four factors reduces the
potential of CHL depending on TP. Based on the
definition of potential, the decrease of potential means
that the observation approaches the upper boundary of
TP-CHL relationship and thus leads to a higher CHL
concentration with a given TP concentration value.
Therefore, the increase in N:P, PRCP 30, TN, or
TEMP 30 is likely to increase the CHL concentration.

4 Discussion
4.1 Implications for lake eutrophication management

The identification of factors that may be forcing ecolo-
gical observations to approach the upper boundary of a
driver-response relationship may help better understand
system dynamics and inform ecosystem management
(Zou et al., 2020; Liang et al., 2021a). Specifically, for
the lake TP-CHL relationship, identifying key factors
impacting the potential of CHL depending on TP has the
following implications for lake eutrophication manage-
ment. First, the results show factors governing the effect
of TP on CHL, which is helpful to deepen our under-
standing of the TP-CHL relationship in lakes. N:P was
identified as the most important factor effecting the
potential, emphasizing the critical role of N:P on
mediating the effect of TP on CHL. In addition, TN was
also identified as an important factor impacting the
potential of CHL, which is consistent with previous
studies that have identified TN as an essential limiting
nutrient for phytoplankton growth (Conley et al., 2009;
Paerl et al., 2019). Because N:P is calculated using the
log,, transformed TN to TP ratio, N:P is closely related
to, but not identical to, TN. For example, if TP
concentration doubles, to keep the same effect of N:P on
the potential, TN concentration should also double.
Otherwise, if the TN concentration remained unchanged,
N:P would become smaller and the potential would
become larger. Importantly, N:P is a commonly accepted
indicator for nutrient limitation (Redfield 1958; Elser
et al., 2007; Moon et al., 2021). A larger N:P indicates a
greater possibility of TP limitation (Guildford and Hecky
2000; Liang et al., 2018), which strongly supports our
finding in this study that a larger N:P leads to a smaller
potential of CHL depending on TP.

Monthly average precipitation of the past 30 years
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Fig. 4 Partial dependence profiles (thick blue lines) showing changes of potential predictions with N:P, PRCP_30, TEMP_30, and
TN. For each factor, narrow gray lines are ceteris paribus profiles given a set of observations and the corresponding partial
dependence profile is the average of ceteris paribus profiles. Ceteris paribus profiles show how a model’s prediction would change if
the value of a single exploratory variable changed (Biecek and Burzykowski 2021). Dots are 100 randomly sampled observations for
the profiles calculation. N:P and TN are log,, transformed. Units for PRCP_30, TEMP_30, and TN are mm, °C, and pg/L,

respectively.

(PRCP_30) may not directly affect phytoplankton
growth; however, it can indirectly impact lake ecosystems
through direct effects on watershed runoff (Nyenje et al.,
2010; Stockwell et al., 2020). Increasing watershed runoff
can lead to an increase in bioavailable nutrients, such as
dissolved inorganic nitrogen or soluble reactive phos-
phorus, in the waterbody (Motew et al., 2018; Woolway
et al., 2020) and promote the phytoplankton growth.
Therefore, lakes in wetter climates (a larger PRCP_30)
are likely to experience smaller potentials of CHL. Note
that PRCP_30, rather than PRCP, was identified as a key
factor, indicating that PRCP 30 was a more robust
indicator of a lake’s climate than PRCP. A possible
reason is that summer nutrients concentrations in lakes
can be affected by load input in previous months or years
(Obenour et al., 2014; Collins et al., 2019) due to the
internal processing of nutrients (Sendergaard et al., 2003;
Tong et al., 2021).

Monthly average temperature of the past 30 years
(TEMP_30) and WT were positively correlated with one
another and both are important for phytoplankton growth
(Paerl and Paul, 2012). TEMP_30 is also related to other
factors (such as sunshine duration and air pressure)
impacting phytoplankton growth (Zhang et al., 2018),
which may be the reason that TEMP 30, rather than WT,
was identified as a key factor. Compared with TEMP_30,
TEMP was not identified as a key factor, reflecting the
long-term effects of temperature on the phytoplankton

growth. The importance rank of TEMP 30 falls behind
those of N:P and PRCP_30, indicating a less important
role of summer temperature in limiting the phytoplankton
growth when compared to N concentrations.

Second, our framework and findings are useful for
informing management actions aimed at curbing lake
eutrophication. The results highlight critical roles of N:P
and TN for lake eutrophication management from the
new perspective of CHL potential depending on TP.
Traditionally, N:P is used to help indicate a shift in
nutrient limitation of phytoplankton (Guildford and
Hecky 2000; Liang et al., 2018). Our results broaden the
impact of N:P on phytoplankton growth by revealing the
effect of N:P on the potential of CHL, and highlights that
a decrease in N:P can help the reduction of CHL concent-
ration via the decrease of CHL potential depending on
TP. The reduction of TN can directly and indirectly (by
the reduction of N:P) lead to a higher potential of CHL
and be conducive to the reduction of CHL concentration,
which possibly provides two additional explanations on
how TN impacts CHL in lakes. Besides, lower N:P can
lead to the dominance of nitrogen-fixing cyanobacteria
(Havens et al., 2003), which makes lake eutrophication
management more difficult in many cases. Therefore, the
simultaneous control of N and P concentrations is likely
necessary for effective lake eutrophication management
(Elser et al., 2007, Paerl et al., 2016; Liang et al., 2021b),
while solely reducing TP concentrations may lead to an
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increase in N:P which can partially offset the direct effect
of TP concentration reduction on CHL concentrations.

Our findings also reveal that lakes at wetter and warmer
climates are likely to have lower potentials and thus
higher CHL concentrations given the same TP concen-
tration. Future wetter and/or warmer climate scenarios
(Sinha et al., 2017; Kalcic et al., 2019) might decrease the
potential of CHL depending on TP and reduce the effect
of TP concentration reduction on CHL. Such a scenario
could result in difficulties implementing traditional lake
eutrophication management strategies.

Third, it is worth noting that N:P and TN are lake-
specific variables, while PRCP 30 and TEMP are
regional factors. Our findings show that factors at both
site-specific and regional scales can impact the potential
of CHL, emphasizing the need to consider factors at
multiple scales when identifying forcing variables of
driver-response relationships for informing lake eutro-
phication management (Soranno et al., 2014).

Last, our findings help inform future studies on lake
eutrophication management. We recognize that the RSQ
of the optimized model is not extremely high, indicating
important factors may have been excluded as input
variables for the random forests model. For example,
carbon is also treated as an essential nutrient for phyto-
plankton growth (Kragh and Sand-Jensen, 2018). How-
ever, DOC does not reflect bioavailable carbon sources
well (Mette 1997; Hammer et al., 2019; Zagarese et al.,
2021) and the inclusion of inorganic carbon could im-
prove model performance. Light has also been identified
as a limiting factor of phytoplankton growth (Loiselle
et al., 2007; Chen et al., 2015). Unfortunately, we did not
find a reliable indicator of light limitation. Although we
did obtain transparency and turbidity data for the study
lakes, exploratory analysis showed a negative correlation
between CHL and transparency and turbidity, indicating
that the variation in CHL was more likely to be the cause,
instead of the effect, of changes in transparency and
turbidity. To further improve model performance and
better inform lake eutrophication management, future
efforts could incorporate additional factors impacting the
light environment and the potential of CHL.

4.2 Advancing the application of quantile regression

The novelty of this study lies in the proposal of the
analytical framework, by which we make a step forward
in the application of quantile regression. Conventionally,
quantile regression has been widely used to estimate the
upper boundary of driver-response relationships (Cade
et al., 1999; Xu et al., 2015), as we did in the first step of
the framework. To obtain a deeper understanding of the
driver-response relationship, it is also important to
identify factors driving observations to approach the
upper boundary of the relationship. As we demonstrated
using the TP-CHL relationship for inland lakes, the

proposed framework was indeed capable of revealing
such factors, which can help inform ecosystem manage-
ment. As such, the proposed novel framework is expected
to broaden the application of quantile regression in
environmental and ecological studies.

Here, we also emphasize the merit of interpretable
machine learning. Because there are few studies explor-
ing factors impacting the potential of the response varia-
ble, we have limited information on which variables were
important for effecting CHL potential and what the
relationship between the potential and possible drivers
was. Under such conditions, machine learning methods
are advantageous because of their ability in handling
complicated nonlinear relationships (Liang et al., 2020;
Rousso et al., 2020) and ranking variable importance
(Chen et al., 2020; Dugan et al., 2020).

4.3 Generalization of the proposed framework

In this study, we used the TP-CHL relationship of inland
lakes as a case study to illustrate the necessary steps to
implement the proposed framework. The novel frame-
work is flexible and can accommodate more complicated
driver-response relationships, such as a nonlinear relation-
ship (Sankaran et al., 2005) or a relationship with a
change point (Liang et al., 2021a). In addition, a hierar-
chical structure can be used for parameter estimation
based on partial data pooling (Fornaroli et al., 2014).
Moreover, multiple drivers can be used in quantile
regression models (Zou et al., 2020). Also, the framework
is applicable when the response variable is categorical
(Benoit and den Poel, 2010), counts (Lee and Neocleous,
2010), or left-censored (Alhamzawi and Ali, 2020). The
proposed framework can also be applicable when joint
potentials - potentials of more than one driver - are of
interest. In this case, a multivariate quantile regression
model could be developed. As such, we expect that the
proposed framework can be generalized to other
environmental and ecological studies.
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