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Abstract With multiple microgrids (MGs) integrated
into power distribution networks in a distributed manner,
the penetration of renewable energy like photovoltaic (PV)
power generation surges. However, the operation of power
distribution networks is challenged by the issues of multi-
ple power flow directions and voltage security. According-
ly, an efficient voltage control strategy is needed to ensure
voltage security against ever-changing operating
conditions, especially when the network topology informa-
tion is absent or inaccurate. In this paper, we propose a
novel data-driven voltage profile improvement model, deno-
ted as system-wide composite adaptive network (SCAN),
which depends on operational data instead of network
topology details in the context of power distribution
networks integrated with multiple MGs. Unlike existing
studies that realize topology identification and decision-
making optimization in sequence, the proposed end-to-end
model determines the optimal voltage control decisions in
one shot. More specifically, the proposed model consists
of four modules, Pre-training Network and modified
interior point methods with adversarial networks
(Modified IPMAN) as core modules, and discriminator
generative adversarial network (Dis-GAN) and Volt
convolutional neural network (Volt-CNN) as ancillary
modules. In particular, the generator in SCAN is trained by
the core modules in sequence so as to form an end-to-end
mode from data to decision. Numerical experiments based
on IEEE 33-bus and 123-bus systems have validated the
effectiveness and efficiency of the proposed method.
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1 Introduction

To meet environmental concerns, renewable energy resour-
ce penetration rates have been soaring in power distri-
bution networks, especially for photovoltaic (PV) power
generation. Microgrids (MGs) are ideal for accommoda-
ting PV needs and are increasingly prevalent in power
distribution networks [1-3], where the power distribution
network and MGs serve as the backbone and end nodes,
respectively. PV output fluctuations lead to random and
varying MG outputs, causing a complicated varying and
multi-directional power flow in the power distribution
networks, especially at noon with strong sunlight. This
volatile power flow poses a challenge to distribution sys-
tem operators (DSOs), forcing voltages to fluctuate over
a wide range on all buses. This voltage profile fluctuation
can lead to an increasing probability of too high and too
low voltages happening in power distribution networks,
damaging the electrical equipment and preventing it from
running properly, thereby endangering the operation of
power distribution networks. Therefore, DSOs need a
control strategy that fits the new operation status.
Generally, engineers use on-load tap changers (OLTCs)
and reactive power compensations to tackle these issues
[4,5]. This voltage profile improvement (VPI) problem
can be solved as a typical optimization problem by
changing the problem to a second-order cone program-
ming (SOCP) problem or applying other optimization
methods; however, these methods are strongly dependent
upon the knowledge of detailed network topology.
Unfortunately, power distribution network topologies
change variably, and the topology information can be
inaccurate at times due to power distribution network
expansion. Lacking an accurate topology can result in a
lack of constraints reflecting the physical properties of a
power distribution network. Improving the voltage profile
of power distribution networks without accurate topology
information is crucial and usually done in a way
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consisting of three separate topics, that is, topology
identification [6,7], parameter estimation, and control
strategy based on identified topology [8—10]. Notably, the
performance of the control strategy will be inescapably
influenced by the accuracy of the identified topology. In
some scenarios, the voltage quality of several buses is
more important than that of other buses; however, since
the power system is a highly coupled system, it is not
clear how the reliability of these buses can be improved
in topology identification. Meanwhile, by having three
separate topics instead of one, this research path increases
the number of problems to be solved, causing
inflexibility.

With the rise of contemporary artificial intelligence
(Al), data-driven methods have drawn substantial atten-
tion. End-to-end methods are promising and prevailing
data-driven methods that intend to solve these problem
through one deep learning neural network, aiming at the
final objective from the beginning. Therefore, it is
possible for these methods to focus specifically on the
voltages of certain buses. Additionally, compared with
multi-stage methods, the end-to-end procedure reduced
the complexity of the problem, leading to a higher
flexibility and easier deployment.

Among these studies on end-to-end methods, solving
the “predict then optimize (PO)” problems [11-13] has
attracted attention from researchers. In these problems,
the prediction results affect the constraints or objective
function of optimization. The raised problem is a
generalized PO problem, which first requires a prediction
for the topology. Generally, PO problems are solved via
the existing structures within the neural network,
especially via the overall loss function. Elmachtoub and
Grigas [11] and Mandi et al. [12] focused on PO
problems whose objective function coefficients are
unknown and required data-based predictions. They
proposed and enhanced a novel loss function containing
both the deviation of prediction and distance to the
optimal solution. Furthermore, Babier et al. [13] targeted
PO problems whose constraints cannot be presented in
expressions and are thus named hidden constraints and
proposed a generative adversarial network (GAN)-based
neural network denoted as interior point methods with
adversarial networks (IPMAN). The hidden constraints
are gradually reconstructed as a discriminator belonging
to a Style-GAN, while the generator inside IPMAN is
gradually trained to generate optimal or sub-optimal
solutions. These previous works focused on a linear
problem; however, the VPI problem is nonlinear.
Furthermore, due to their Style-GAN structures, the
number of scenarios is limited, rendering them unsuitable
for the countless number of scenarios in a power system.

PO problems exist throughout power engineering
[14-16], and the majority of researchers have focused on
the correlation between load forecasting and power
dispatch. For example, Han et al. [14] focused on load

forecasting by taking the cost of optimal power flow
(OPF) into load forecasting and training a deep learning
network that can make a more suitable prediction of OPF
calculations. Furthermore, Lu et al. [15] studied the load
forecasting containing cost and combined it with the
economic dispatch problem to propose a model-free end-
to-end learning model. Zhang et al. [16] studied the loss
function in cost-oriented load forecasting and proposed a
piecewise loss function for use in various machine
learning models. Although the constraints in these
optimization problems are affected by forecasting results,
accurate topology is still required. Forecasting results
merely influence the factors in constraints whose
structures are pellucid; however, in VPI problems
without accurate topology, neither the structure nor the
number of constraints are clear.

Facing a VPI problem without accurate or detailed
topology information, we considered the network
topology as hidden constraints and proposed system-wide
composite adaptive network (SCAN), based on IPMAN,
to overcome limitations in existing studies. SCAN was
composed of four modules, including the Pre-training
Network, Modified IPMAN, the discriminator generative
adversarial network (Dis-GAN), and volt convolutional
neural network (Volt-CNN). The first two are core
modules and the last two are ancillary modules. This
study provides the following technical contributions to
the field:

1) An end-to-end data-driven optimization method for
the power distribution networks without accurate
topology, which can optimize the OLTCs and reactive
power compensation output simultaneously under an
unlimited number of scenarios.

2) SCAN, which we developed on IPMAN, composed
of four modules composited inside, magnifying the
physical connections between variables and reinforcing
the capability of convergence facing the nonlinear
objective function.

3) A two-step training procedure introduced into
SCAN, offering additional guidance when there is
insufficient training data and overfitting.

The remainder of this paper is organized as follows:
Section 2 raises the investigated problems and models
them in detail; Section 3 intercalates IPMAN and SCAN;
Section 4 comprehensively presents the ancillary SCAN
modules; Section 5 demonstrates the core modules of
SCAN; Section 6 explores IEEE 33- and 123-bus system
case studies; and Section 7 poses our conclusions.

2 VPI modeling for power distribution
network integrated with MGs

In this Section, the influence of MGs on power
distribution networks are investigated, especially the
voltage profile uncertainty. Furthermore, the VPI
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problem is precisely modeled as an optimization problem,
and its complexity is also proposed in this Section.

2.1 Functionality and influences of MGs

Since MG operators and DSOs are unique entities, we
considered that MGs have low controllability and are
highly dependent on the environment. An MG usually
contains three parts, that is, loads, energy storage systems
(ESSs), and distributed generations (DGs) [17]; however,
because of their high cost, the ESS capacities are quite
small compared to the loads and DGs in practical
planning. Consequently, we omitted the ESS in the
modeling of MGs. The DGs inside an MG consist of
many generators, of which PVs account for a large
proportion. Given that a power distribution network
normally encompasses a small area, PV power generation
inside various MGs shares the same light intensity.

For the operation paradigm, grid-forming and grid-
following are two prevalent MG choices [18,19]. Grid-
forming is predominantly used in islanded MGs that need
to maintain a fixed voltage level, while grid-following is
predominantly used in a strong grid [20] where the MGs
can be recognized as current sources. The relatively
cheap cost and simplicity of grid-following has made it
widely used in the integration of MGs in a power
distribution network [21,22]. Moreover, without
converter-generated inertia, grid-following MGs have fast
responses, which are also a pertinent safety point for
DSOs. Thus, to mimic the actual application scenario, we
assumed that all the MGs operated in the grid-following
mode. Accordingly, when PV output was high, MGs are
randomly fluctuating power injection sources for the
power distribution network, whose injection amounts are
approximately dominated by the light intensity.
Moreover, the power flow inside the power distribution
network may frequently change due to the varying power
outputs of PVs inside MGs, as illustrated in Fig. 1.

With MG integration, the power flow direction was not

fixed, which brings uncertainty to the voltage profile. The
voltages of all buses fluctuate in a relatively large range,
meaning that a targeted operation strategy is required.

2.2 VPI-based operational decision-making

In DSOs, there are two primary ways to improve the
voltage profile of the power distribution network, namely
OLTCs and reactive power compensations such as static
var compensators and generators (SVCs and SVGs,
respectively). These controller outputs are generally
solved as an optimization problem, with the operational
decision being the optimal solution; therefore, we first
modeled the VPI problem.

2.2.1 Objective function

The objective function is simpler than the form of the
norm or absolute value, consisting of a sum-of-squares
with a linear derivative, as follows:

min > B,(V,, = V.o, (1)

m=1

where 7 is the number of buses in a power distribution
network, V,, is the voltage at bus m, Vo is the nominal
voltage at bus m, and (3, is a weighting factor reflecting
the importance of the voltage quality at bus m.

Due to the low voltage level in the power distribution
networks, the power loss is more significant than that in
transmission networks and largely affects the economy of
a power distribution network; however, economy is one
of the most concerned indicators in DSO [8,9,23,24].
Thus, we also introduce power loss as one of the
objectives, forming a multi-objective function fu; that
embodies both security and economic indicators of power
distribution networks, as follows:

min obj = m(Vm - ‘/mo)z + a'Ploss’ (2)
=B

m=1
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Fig. 1 A power distribution network integrated with MGs.
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where Ploss 1S the active power loss in this power
distribution network and « is a weighting factor, which
allowed the two objectives to be merged together.

2.2.2 Constraints

Unlike typical VPI optimization, not all power
distribution network constraints can be written correctly
in the equations without accurate topology information.
With inaccurate topology, since the bus connection
remains unelucidated, it is unrealistic to write constraints
that exhibit relevance among buses in equations. For
DSOs, a power distribution network without accurate
topology is a set of buses whose interconnections are
uncertain, that is, it is unfathomable how the buses are
coupled or how other buses respond after applying
control on one bus. The control strategy is thus up to
instincts or experience, which are not reliable or
trustworthy, especially under abnormal operating
conditions. Consequently, those topology-dependent
constraints are hidden constraints in the raised VPI
problem.

Hidden constraints contain power flow constraints
and constraints of substations with OLTC [25], both
of which are fully established on the topology,
rendering them impractical for precise mathematical
manifestation in the absence of an accurate topology.
These hidden constraints are linked to the physical
characteristics of power distribution networks in the
raised VPI problem, which accounts for most of the
constraints.

The explicit constraints are voltage, power loss,
SVC/SVG, and power factor constraints, which are
further explored here.

a) Voltage constraints

To guarantee the normal operation of electrical
equipment, the voltage at each bus should not deviate
substantially from the standard value.

V<V, <V, ?3)

where V,, and V,, stand for the upper and lower limits of
V., respectively.

b) Power loss constraints

Multi-objective optimization can favor one objective
too much, so power loss constraints are introduced into
this problem, as follows:

pct pct
Ploss < Ploss’
pct pct
loss < loss? (4)

pct

where P and Q. stand for the active and reactive

power loss ratios, respectively, which are calculated as
Eq. (5); where P’ and Q™

loss loss
pct pct -
Py and Q) , respectively.

stand for the upper limits of
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n
Piject + Qign Ppy — § Piosam

=1
Piject + Qiign Pry

n n n
Qinjecl +ZstnVC +ZQ,SnVG _ZQload,m
=1 =1 =1

s = - —= x100%, (5)
Qinject+z QySnVC + Z QrSnVG
=1 =1

where Pinject T€presents the active power injected from the
upstream transmission network, gy represents the light
intensity, Ppy represents the sum of capacities of PVs in a
power distribution network, Pjoad, represents the active
load at bus m, Oinject represents the reactive power injec-
ted from the upstream transmission network, Qloadm rep-
resents the reactive load at bus m, and Q5V¢ and Q3" rep-
resent the SVC and SVG output at bus m, respectively.

¢) SVC/SVG constraints

Each SVC/SVG has its own upper and lower output
limits.

PPCl —

loss

% 100%,

stc < stc < W’

QrSnVG < Q,SnVG < W’ (6)
where Q5VC and QS'C are the upper and lower limit of
SVC at bus m, respectively; 05V and Q5'C are the upper
and lower limit of SVG at bus m, respectively.

d) Power factor constraint
Owing to security and economic issues, the power
distribution network, which can be considered a load

from the upstream transmission network, is supposed to
maintain a high level of power factor.

3

COS@p = COs g,
P inject
Cosp = ————, (7
Pi2njecl + iznject
where cos¢ is the power factor of the power distribution
network, and cos ¢ is the lower limit of cosg.
All in all, this optimization problem can be represented

as follows:

. 2
min obj = Zﬂm(Vm - va()) + alplossa
m=1
power flow constraints,
substation OLTC constraints,
voltage constriants,

hidden constraints

s.t.
explicit constraints

SVC/SVG constraints,
power factor constraint.
@®)
2.3 Computational complexity of the proposed model
Generally, for an optimization problem in power

active/reactive power loss constraints,
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distribution networks, it is common to change it into
SOCP [26-28] by applying relaxation to the power flow
equations; however, this is only feasible when the
optimization model is clear. Since hidden constraints
exist in the raised VPI problem (Eq. (8)), DSO can only
draw on their engineering experience to maintain the
voltage security of the power distribution network,
making the control strategy extremely dependent on
certain operators.

To give a control strategy that is independent of certain
operators, it is possible to draw those hidden constraints
based on historical data. In an end-to-end manner, it can
instantly draw hidden constraints and search for the
optimal decision; however, in actual operation, there are
no decisions that violate hidden constraints. It is
inapplicable to draw the hidden constraints by comparing
feasible and infeasible data, where feasible data means
the data satisfying constraints. Furthermore, most explicit
constraints are simple upper and lower boundary
constraints used to guide normalization. The rest one, that
is, the power factor constraint (Eq. (7)), purely focuses on
the active and reactive injected power, which is a tiny
part of all decision variables. Also, in the absence of an
accurate topology, there is no correlation between
decision variables, resulting in the fact that most of those
variables are not constrained.

3 Structure of IPMAN and SCAN

In this Section, we introduce the structure of the end-to-
end method developed for solving optimization problems
with hidden constraints, that is, IPMAN. Then
considering its deficiencies, we propose and introduce
SCAN, that is, a novel composite end-to-end model that
can solve the raised VPI problem.

3.1 Basic structure of IPMAN

The main purpose of IPMAN is to generate an

Decision vector x

approximate optimal solution via GAN, as shown in Fig. 2.
IPMAN learns hidden constraints from the existing
decision vector x and its corresponding scenario vector u
as a training data set, to train a generator F(«), which can
generate approximate optimal decisions on scenarios. In
the raised VPI problem, x contains OLTCs, SVC/SVG
output, controlled voltage profile, and active power loss;
and u contains light intensity, active power load, reactive
power load, and voltage profile before control.

The oracle ¥ is a discriminatory criterion made up of
explicit constraints, to judge whether the generated
decision is feasible or not under explicit constraints. The
dual parameter 4; is a variable to balance the feasibility of
hidden constraints and optimality. {Aj}fzo is a set of 4;
from Ay to A;, where J is the number of A; in the set.
{F(w)}._, is a set of F(u) from FO(u) to F/(u), where Fi(u)
is the generator based on A;.

The IPMAN training process is demonstrated in Fig. 3.
Under most scenarios, all data are feasible, rendering D
as an empty set; therefore, a pre-training GAN was
introduced to generate infeasible data set while
accelerating the IPMAN training process. For better
performance, a Style-GAN [29] was chosen to act as the
pre-training GAN, whose loss function is formulated in
Eq. (9), where the loss function Lgr consists of two parts,
that is, the binary cross-entropy of discriminator Dgan,
and mean square error (MSE) of generator F. Parameter
Asr 1s introduced to raise the importance of MSE.

. 1
minmaxy Lgr := —
F Dgan N,

Z [logDgan (x5 ;)

u (x;,u;)eD
+1og(1 = Dgan (F (u;) ,u:))] + Ast||[F (u;) — x|l }v
©

where (x;, #;) is the ith piece of data in feasible data set D,
N, is the number of (x;, u;) in D.

After Pre-training, the generator F' continues to be
trained in IPMAN, and the classifier B® classifies
feasible and infeasible decisions and is re-trained in each

OLTC

SVC/SVG output

Controlled voltage profile

Feasible dataset D = {(x, u)}

(In the raised VPI problem, D = ¢)

l
l
l
l

Active power loss

|
| 4 Infeasible dataset D = {(x, u)} or ¢
|
|

Scenario vector u

Generator

IPMAN

| Light intensity | Oracle ¥(x,.,

)
e

Ew)

=0

(Style-GAN)

| Active power load |

l Explicit constraints |

I Reactive power load |

Voltage profile before

‘ Dual variables {1}1_ ‘

control

Fig. 2

Input and output of IPMAN.
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generation on the newly augmented training data set, to
carve the feasibility boundary precisely, as depicted in
Fig. 4. Additionally, it assists classifier B in being able to
classify the latest data generated by F(®). Here, F® refers
to the generator F trained in kth generation. Compared
with carving the boundary in advance, progressive
carving is more comprehensible for F¥) in training and
can produce a more precise boundary as it is in a GAN
style.

The loss function of F' in IPMAN is formulated as Eq.
(10), where Lp consists of three parts, that is, the
objective function value fo, the difference between the
generated decision and true decision, and the output value
of the classifier. To minimize Lr, F®) needs to reduce the
value of fon,; while keeping generated decision vector

Pre-training GAN

Feasible dataset D = {x, u}
Explicit constraints ¥ (X, Ygax)
Dual variables {4}/

!
Update generator and
discriminator
Generate a dataset (F (u,), ;)

Front. Energy 2023, 17(2): 211-227

xipmaN = F®(u;) feasible.

. 1
rgl}l{LF :=ﬁ Z(/lj oo (F (u;) ;)

u u;eU

+ sl F ) = xll, = ) [BY(F <u,-),u,-)],)}.
reR (10)

3.2 Functional framework of SCAN

Among the explicit constraints in the raised VPI problem
(Eq. (8)), only the power factor constraint (Eq. (7)) is not
embodied in normalization; therefore, it is the only
constraint that can be used as the oracle ¥. Additionally,

Randomly select training dataset D"
and D from D and D
¥

Train a new classifier 8%

'

)
1
H_L Use 4, to update
generator FU0
[

YN

D—DU(F (u), u,)
Save it to feasible
dataset

D<—DU(F (u), u)
Save it to infeasible
dataset

D—DUF (), u;)
Save the data in
feasible dataset

D—DU(FD(u), u))
Save the data in
infeasible dataset

N
Y

|
|
|
|
|
I
|
I
I
|
| :
| against context vector
|
|
|
|
|
|
|
|
|
|
|
|

N

Y
¥

| Output generator {Fi(u)}7 |

Original data
. Feasible data
@ Infeasible data

Augmented feasible data

Augmented infeasible data

Data augmentation
——— True boundary

Boundary recognized by classifier

Fig. 4 Progressively carving the feasibility boundary.
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this constraint focuses only on the injected active and
reactive power and does not constrain most decision
variables. Although, theoretically, an oracle ¥ made of
even one constraint still makes sense in IPMAN, it is
difficult for classifier B to learn a classification that is
decided by only a few variables instead of all variables,
which leads to a high probability of overfitting. A con-
straint that focuses on all variables is crucial to oracle .
Furthermore, since each sample generated by F in each
generation is checked by true decisions in the second part
of Lp, IPMAN takes advantage of the Style-GAN
structure, resulting in a better performance; however, this
leads to a limited number of scenarios. That is, for each x;
that is generated to a certain existing scenario vector u;,
IPMAN is not able to generate reliable x; to a new
scenario vector. Nevertheless, the scenario vector types
are countless for most issues, especially the VPI problem,
where both loads and light intensity fluctuate randomly.
Additionally, machine learning is a data-driven method
that requires a considerable amount of data. Yet in the
VPI problem, the decision vector x; and the scenario
vector u; share a one-to-one correlation. The data are
insufficient for Style-GAN to recognize each style.
SCAN (Fig. 5) was proposed to address these defects in

Feasible training data

Scenario vector i

[ Lightintensity |

[ Reactive power load |

Voltage profile before

|
|
|
|
|
|
| Active power load | |
|
|
|
|
|
|

—_——————— e — — —

|

|

| o

| Pre-training network
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the contemporary IPMAN model. The SCAN input and
output are the same as [IPMAN, meaning that the input
data comes from the historical data of empirical
decisions. Different from IPMAN, decision vector x is
divided into a controller vector y and controlled vector z
in SCAN. The deviation of x would significantly enhance
the precision and reliability of the SCAN-generated
decisions. The workflow of SCAN is stated as follows:

1) The input data were sent to train the ancillary
modules, that is, Dis-GAN and Volt-CNN. Dis-GAN is a
semi-supervised GAN (Semi-GAN) generating x on u,
whose trained discriminator is preoccupied with Eq. (7)
as oracle ¥ to overcome the insufficiency of explicit
constraints. Volt-CNN is built in a CNN structure,
generating z on u and y. As the voltage calculator @,
Volt-CNN rebuilds the physical correlation between all
above variables.

2) Then, as the input data are all feasible data, a Pre-
training Network is introduced into SCAN, generating y
on u. The voltage calculator ® calculates z on u and the
generated y. Here, a decision vector x is made up of y and
its corresponding z, and each generated x is judged by ¥
to clarify whether it is feasible or not to u. Here,
infeasible data are generated by Pre-training Network.

Volt-CNN (Ancillary module) |
J

Served as voltage
calculator ©

Core modules

i I
i Vo
| Il
| I
| I
| (.
i [
i : i
i i
i g
I b
I : [
: control Modified IPMAN | :
]!
| =11 — . . . y g L |
i E Decision vector x | Continue training b- Finish training : i
: E Controller vector y : I ' . \ : :
5 | | ]
| | OLTC ]! , | P .-'l |
\ / i
| [ SVOSVGouput ]| |! : \ 7 i
| | 4—x| 4 ¥ I
: Controlled vector = | : I :
|
| | Controlled voltage profile | | | : I
I | . s I
| | Active power loss | : | Served as oracle ¥ : i
B e e e Tt T T
: \ I (Ancillary module) \1 | :
e ——————— — — ——— - F ¥ P |
i |
! ‘ Explicit constraints ~~ \————~—__ __ _ _ __ _ _ ___ _ __ _ __ ___ ________ AR
N, I f ey | o e e o S e i e =l i
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e e |
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i Output :
I B v | Correct voltage profile | i
i B Taan . : |
i = \';‘ildg;}_‘lg“ Trained Controller Voltage [ Activepowerloss || |
| = ator [ vector y calculation i
| = vector u,,, generator A, | OLTC | :
: [ SVC/SVG Output | i
i

Fig. 5 The structure of the SCAN.
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3) The generator F in the Pre-training Network is
further trained in Modified IPMAN, where Semi-GAN is
used instead of Style-GAN allow for an unlimited
number of scenarios. Several loss functions are proposed
for the Semi-GAN structure. Additionally, to prevent
overfitting, a two-step training strategy is also introduced
into Modified IPMAN. After training, the SCAN output
is a reliable F.

4) For validation, the decision generator F' generates y
on the validation scenario vector uyq. Next, @ calculates
z on uyg and y and outputs the correct voltage profile,
active power loss, OLTC, and SVC/SVG output.

4 Novel ancillary modules in SCAN

In this Section, we introduce the two ancillary modules in
SCAN in detail. Dis-GAN is a novel GAN module
addressed to expand oracle W by manifesting hidden
constraints in a discriminator, and Volt-CNN is a novel
CNN module serving as the voltage calculator @, which
is applied to escalate the physical relationship between
variables to raise the reliability and credibility of
classifier B and the predicted objective value.
4.1 Realizing oracle augmentation via Dis-GAN
As the power factor constraint focuses on the injected
power rather than all decision variables, an extra
constraint was added to oracle W to improve the
capability of classifier B to classify feasible and
infeasible data. Considering that the newly added
constraint should not change the optimization model
established in Section 2, that constraint reflects the
hidden constraints. Therefore, Dis-GAN is introduced
into SCAN to train a discriminator that can judge whether
the decision vector x is feasible for hidden constraints.
Dis-GAN is a typical GAN module, with the same loss
function as Eq. (9). A Semi-GAN structure is used for
Dis-GAN to avoid the limited scenarios caused by the
structure of Style-GAN. Compared with Style-GAN,

Front. Energy 2023, 17(2): 211-227

Semi-GAN works in a relatively traditional way,
generating a decision vector from one feature map,
instead of the incremental training in Style-GAN (Fig. 6).
With the loss function (Eq. (9)) focusing more on the
MSE, the scenario and decision vectors have a one-to-one
correspondence in the VPI problem, allowing the noise
vector to be removed in Semi-GAN.

The resulting trained discriminator can verify whether a
decision seems feasible, manifesting the hidden
constraints. Together with explicit constraints, it is used
as oracle ¥ in core modules.

4.2 Rebuilding physical correlation via Volt-CNN

The decision vector x consists of the outputs of the
controllers and controlled objects. We refer to the
controller outputs, including OLTC, and SVC/SVG
outputs as the controller vector y, while we refer to the
controlled objects including voltages and active power
loss as controlled vector z. Such decision variables
originally share a strong physical correlation; however, in
the absence of power flow and constraints of substations
with OLTC, from the neural network perspective,
variables in x are independent of each other. Despite the
MSE loss offering a restraint, some variables in the
feature map may still be too large while others are too
small. Nevertheless, since the IPMAN classifier just
outputs a number, and the veracity of the decision is
dependent on whether the number is above 0.5, a clearly
infeasible decision may be considered a feasible one. To
eschew that problem, we split the issue into two parallel
sub-problems by coalescing the knowledge of the power
system into SCAN.

For a power distribution network with fixed topology, z
is completely dictated by the loads and output of the MGs
and controllers, y, and scenario vector u, which share a
one-to-one correspondence. Therefore, a module was
introduced into SCAN to embody this correspondence,
calculating z on u and y as a voltage calculator @. Then,
the generator F only needs to generate y on u. The
significant reduction in the number of generated variables

_ v : L
Incremental—— Generator —D‘L.:::?S;” Discriminator —H‘: I .nss: )
3 AL
( Context vector }‘ Full connect |~ “Train- — _:
e 'I'rain—————————————————F
(a)
i lrain-————————— 3 1.‘
Rcshuptr{ Feature map )—0 Generator —D\f;f:,?n Discriminator —H‘: I,uss: :
- “Tran———
(b)

Fig. 6 The structure of (a) Style-GAN and (b) Semi-GAN.
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ensures higher reliability. Consequently, a Volt-CNN is
imported into SCAN as an ancillary module, and a CNN
structure is selected because the buses are susceptible to
each other, which meets the CNN flair in handling highly
correlated data.

The Volt-CNN is primarily trained on a feasible data
set D independently, then it remains untrainable in the
Pre-training Network and Modified IPMAN.

5 Enhanced core modules in SCAN

In this Section, we enhanced the core modules in SCAN.
By introducing Semi-GAN into SCAN, the number of
SCAN scenarios is broadened unlimitedly, and a novel
two-step training procedure together with an original loss
function Lg.peise 1S proposed to tackle the issues induced
by the introduction of Semi-GAN.

5.1 Generating infeasible data set via Pre-training Network

For a certain scenario vector in a fixed power distribution
network, there is one optimal decision vector that shares a
one-to-one correspondence; therefore, for the raised VPI
problem, a one-shot module with a waterfall training
process is sufficient, and it is unnecessary to use the
GAN with an alternative training process, which likely
increases the computational complexity. Thus, a
simplified and enhanced Pre-training Network was
proposed to generate the infeasible data set D and
individually train the generator F.

The training process of this proposed Pre-training
Network is presented in Fig. 7. First, the generator F was
built and compiled, and a CNN structure resembling the
Volt-CNN was chosen for £ in the Pre-training Network.
Then, the controller vector y; was generated according to
the scenario vector u;. Next, the controlled vector z; was
calculated by the voltage calculator @ on u; and y;. Then,
z; and y; were combined as the decision vector xp;. and
judged by oracle Y. If W(xpre, u;) = 1, which means xp.
was feasible to that scenario, (xp., u;) was saved for the
feasible data set D, otherwise it was saved for the
infeasible data set D. Finally, F is updated based on the

Pre-training network
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MSE loss function, and the process is restarted to
generate y;.

Specifically, the input for F' was a three-dimensional
figure (Fig. 8), with different data of the same bus set in
different layers. Furthermore, light intensity is attached to
the end of bus data in each layer. Compared with the
traditional one-dimensional vector input, the data placed
in different layers preserves the relativity of multi-type
data (e.g., active power, reactive power, and voltage
profile before control). A square matrix formation is
more scrutable to CNN, and well-placed input data
eliminate the need for fully connected layers before
feeding into the convolutional CNN layer. This
accelerates the training and upgrades the performance.

5.2 Broadening the scope of scenarios via modified
IPMAN

In modified IPMAN, the Semi-GAN is used instead of
Style-GAN; however, the loss function Ly (Eq. (10))
contains MSE, resulting in SCAN being able to only seek
optimal decisions from the existing scenario vectors u in
the feasible data set D. Consequently, although Lr has a
good performance in IPMAN, a new training process and
a new loss function are required in the Modified [IPMAN
inside SCAN.

Since the impracticality comes from the MSE in Lg
(Eq. (10)), we can remove it from Lr. We trained F with
randomly generated noise uneise instead of the existing
scenario vector u# to make F able to generate optimal
decisions under all scenarios. The loss function is defined
as follows:

. 1
min LF —noise — E
FeF { N u,noise

(/l.f |:Zﬂm(vm - 1)2 + a'Ploss]
Unoisc € Unoise m=1

= > [BY(F (tto), u)])}

reR

(11)

where the dual parameter A; affects the weight of the
objective value in Lz i, that is, a lower 4; leads to a
more conservative generator, which focuses more on
feasibility instead of optimality. The training procedure,
denoted as Algorithm 1.

| |
Feasible data | = | Continue training
B | Generator / I |
| Training |
| e, y) _py— | -
| (_MSE ) | Augmented feasible data
Infeasible data | vand x,, = | v D= DU {ttp, Xpee}
L2-¢ | Voltage Oracle W I‘I, (Xpres Upre)
| calculator @  [{u, x| | i =17 N Augmented infeasible data

D = DU {fpy., Xru.}

Fig. 7 Training process of pre-training network.
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Fig. 8 Layout of training data in F.

Algorithm 1: Modified IPMAN
Data: Generator F, feasible data set D, infeasible data
set D, number of outer iterations K, number of
middle iterations Eg, Er
Result: Final generator model F
Train F in Pre-training network;
Initialize Classifier B;
for k=1to K do
Randomly select training data set D(k) and D(k)
from D and D;
fore=1to Eg do
Train Classifier B on D(k) and D(k);
end
fore=1to Erdo
Use randomly generated noise uyise to train
Generator F' on Lr_noise;
Data augmentation: expand D and D;
end
end
To balance optimality and feasibility, the first and
second parts of Lzpoise Should be consistent within one
order of magnitude. The output of B is between 0 and 1.
Additionally, considering the decisions are normally
feasible, the second part of Lg.peise should be close to 1.
Meanwhile, the expected objective function value can be
estimated from the training data. The range of proper 4; is
stated as follows:

Ew,-s@,
Nis

: (2

where f stands for the expected objective function value.
Nevertheless, the performance of this training process
strongly depends on the voltage calculator ® and
classifier B. For a small grid with tens of buses, it is
relatively simple to get ample pieces of training data
covering the entire solution space and giving a high
plausibility in the performance of the voltage calculator
® and classifier B; however, when it comes to a big grid
with hundreds of buses, collecting so much data poses a
great challenge. In other conditions, overfitting occurs in
modified IPMAN when 4; is given a large value, weigh-
ting the objective value with a gigantic ratio in Lr poise,
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which leads F to find optimal decisions, and the predicted
objective value is far from the true objective value.

Here, another step is added after the first to provide
additional guidance for F, which is denoted as Algorithm
2. In this step, F' is trained on (x; u;)€D to curb the
overfitting. As each u; has a corresponding x;, the MSE
can be added back to the loss function, rendering Lp
(Eq. (10)) feasible in training. For the raised VPI
problem, Lz is written as follows:

. 1 " >
III:]€]¢1’1{LF _ﬁ Z(/l] [Zlﬁm(vm - 1) + a'Ploss

u u,eU
+ Ast || F (u;) = xilly — Z [B(k) (F (u:), u:)]r)}
reR
13)
Algorithm 2: Modified IPMAN with two-step training

procedure
Data: Generator F, feasible data set D, infeasible data
set D, number of outer iterations K, number of middle
iterations £, Er, number of inner iterations Peiep1, Pstep2
Result: Final generator model F
Train F in Pre-training network;
Initialize Classifier B,
for k=1to K do
Randomly select training data set D(k) and D(k)
from D and D;
fore=1to Eg do
Train Classifier B on D(k) and D(k);
end
fore=1to Erdo
for p =1 to Py do
Use randomly generated noise upise to
train Generator F on Lg.poise;
end
for p =1 to Pgiep do
Use (x;, u;)€D to train Generator F' on
Lr;
end
Data augmentation: expand D and D;
end
end
Similar to 4;, the weight of MSE Agt can be set by the
calculation before training. The expected error of each
element eqstimated 1N the decision vector can be estimated
as follows:

[1
e = inverse — normalization( —) . (14)
Ast

For example, when Agr was set as 30 and the voltages
were normalized on a range from 0.9 to 1.1, ecstimated Was
approximately 0.037. In practice, the MSE part does not
often reach 1, because F is invariably optimizing toward
a lower loss function.

When using the two-step procedure, we can make F an
aggressive or conservative generator by balancing the
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generations of the two steps. For example, we trained F'
in the first step for four generations and trained it in the
second step for one generation, forming two inner
iterations. Then, the inner iterations loop in a middle-
level iteration. Then carry out the middle-level iteration
and the training of B loop in the outer iteration (see Fig.
9) and ensure increasing precision in decision feasibility.

6 Case study

In this Section, we perform case studies on IEEE 33- [30]
and 123-bus [31] test systems to demonstrate the
effectiveness of the proposed model. These experiments
were solved on a personal computer with an Intel Core
(i5-11400F, 2.60 GHz) processor and 8 GB of memory.
Data generation and result validation are implemented by
Matpower 7.1 and Mosek 9.1.9 using MATLAB R2021a.
Data processing, model establishment and training are
implemented by Tables 3.6.1, numpy 1.18.5, tensorflow
2.7.0 in Python 3.8.

The IEEE 33- and 123-bus system configurations are
depicted in Figs. 10 and 11, respectively. The MG
locations, SVCs and SVGs are shown in Tables 1 and 2,

respectively. Since MGs are not built by DSOs, we
randomly chose their locations. Referring to the active
load of buses, the PV capacity of each MG is set as 100
kW, except for bus 24 in the IEEE 33-Bus System, whose
active load was significantly higher than that of the
others. SVCs and SVGs were always set to ensure the
local consumption of reactive power; therefore, they were
evenly set in the grid and their sizes were standard. Each
active and reactive load is timed with an individual factor
that randomly fluctuates in the range [0.5, 1.5], while
light intensity randomly fluctuates from 0 to 1. The tap
settings of OLTC were 0.950, 0.975, 1.000, 1.025, and
1.050, respectively. The nominal voltage of each bus was
set as 1. In Eq. (2), the weighting factors « and 8, and
the standard voltages V;,,0 were set as 1.

The SCAN input is the power distribution network
operating states, containing active and reactive loads of
each bus, light intensity, and voltage profile before
control. The topology of the power distribution network
is assumably inaccurate or missing. The SCAN output is
a decision made on power distribution network status,
including OLTC and SVC/SVG output.

For the training data set, optimal decisions were
generated using Mosek to solve SOCP formed on the

D = Dy U DgaU Dgenn
D = Doy UDgcan

Feasible data 1D
Infeasible data

Data
augmentation

Augmented feasible
data Dy
Augmented infeasible
data D,

Data
classification
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| ————— Output
Voltage
calculation Near-optimal decision
Fczi\rs;lbtll(ny Voltage generator /
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Fig. 9 Outer iteration of Modified IPMAN.
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Fig. 10 Topology of IEEE 33-bus system.
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Fig. 11 Topology of IEEE 123-bus system.
Table 1 Buses integrated with MGs
System Buses integrated with MGs PV capacity/kW
IEEE 33-bus 4,5,9,12,13,16, 19, 21, 22, 23, 28, 30 100
24 400
IEEE 123-bus 2,4,11,13, 17,22, 24, 30, 33, 42, 45, 46, 49, 50, 51, 56, 67, 69, 72, 74, 81, 83, 85, 90, 96, 101, 104, 112, 116 100
Table 2 Buses with reactive compensator
System Reactive compensator type Buses with compensator Max output/Mvar Min output/Mvar
IEEE 33-bus NY® 5,29 1 -0.4
SVG 13,22 0.5 -0.3
IEEE 123-bus NY® 21,76,97 0.5 0.3
SVG 35,52 0.5 -0.3

dist-flow model. In practice, when the compensator
output reached its maximum or minimum value, the
operator changed the OLTCs to keep the output away
from its ceiling and floor, respectively. To mimic this
phenomenon, if there were over two compensators whose
outputs reached the maximum or minimum, the OLTCs
changed to a lower or higher transformer ratio until the
number was lower than two or the OLTCs reaching its
floor or ceiling. Finally, as the decisions are made
empirically and without topology, the SVC and SVG
outputs were added with a number randomly oscillating
in the range of [-0.1, +0.1] Mvar. These decisions present
the empirical decisions, forming the training data set
containing 5000 pieces of feasible data. For the validation
data set, the decisions were the worst ones in the SVC
and SVG oscillation ranges in empirical decisions,
marked as the worst empirical decisions (WEDs).

Overall, there were 100 pieces of data in the validation
data set.

In the process of testing the methods, decision vectors
corresponding to validation data set were generated, and
matpower was used to calculate the voltage profile and
power loss of the controlled system.

6.1 Performance validation of SCAN

To test the performance of SCAN, we trained the Dis-
GAN for 1000 generations, Volt-CNN for 1500
generations, the Pre-training Network for 500
generations. In the Modified IPMAN, the outer iteration
was looped for 15 generations, within which classifier B
was trained for 50 generations and the middle-level
iteration was looped for five generations. For the loss
function Lr.oise and L, A; was set as 100 and Agt was set
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as 30. Since 5000 pieces were sufficient for the 33-bus
system, SCAN was trained with Algorithm 1, with only
step 1 inside. Accordingly, for the 123-bus system, where
the data set was insufficient, it was trained with
Algorithm 2, with four generations for each step.

We tested SCAN with the validation data set, and
compared it with WED, SOCP, deep neural network
(DNN), CNN, and Semi-GAN without Dis-GAN or Volt-
CNN (Table 3). All methods were computed in the
topology-independent case except for SOCP, which was
used to show the true optimal solution.

Juxtaposed with WED, none of the topology-
independent methods could guarantee the generated
decisions would excel at the empirical decisions, with
10%—-20% of the samples being worse than WED. SCAN
was slightly better than the other methods from this
perspective; however, when it comes to the average and
maximum objective value of the 100 pieces of data, a
different result emerged. Although those of each method
were less than that of WED, SCAN performed far better.
The average objective value was 51% less than that of
WED in the 33-bus system and 63% in the 123-bus
system. For the maximum value, SCAN was 60% less in
the 33-bus system and 72% less in the 123-bus system.
SCAN showed its advantages in facing various and
changing scenarios, validating its ability to make timely
decisions. Generally, SCAN performed much better than
empirical decisions in both systems.

Compared with SOCP, the mathematical optimization
was based on accurate topology in the proposed
topology-independent method, SCAN, and was slightly
worse in the 33-bus system, that is, 0.019 larger in

Table 3 The effectiveness of SCAN in overall objective
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average objective value and 0.026 larger in maximum
objective value. For the 123-bus system, although SCAN
improved more from WED in comparison with that in the
33-bus system, there was still a small gap between SCAN
and SOCP. That is, SCAN was 0.037 larger than SOCP
in average objective value and 0.128 larger in maximum
objective value because in the 123-bus system, the
number of controllers was significantly larger than that in
the 33-bus system and the training data set was worse
than that in the 33-bus system.

Focusing on SCAN without Volt-CNN, we found that
without Volt-CNN, the results were similar to CNN.
Instead of finding a way to minimize the objective
function, SCAN without Volt-CNN only imitated the
input data set, like other methods. When it comes to
SCAN without Dis-GAN, the results were much better
than SCAN without Volt-CNN, but still worse than
SCAN.

The decisions generated by SCAN could not guarantee
that it was better than WED in every scenario. Instead,
they kept the objective value below a certain value far
less than that of WEDs. In other words, SCAN made
decisions that kept the voltage deviation and power loss
of the power distribution network at a significantly low
level in all test scenarios. Additionally, compared with
the incomplete SCAN, we found that both Dis-GAN and
Volt-CNN enhance the performance of SCAN while
Volt-CNN had a more effective role.

The VPI is listed in Table 4 and shown in Fig. 12, and
is similar to that shown in Table 3; however, the
maximum objective value of SCAN was larger than that
of other Al-based methods because they were calculated

System Indicator WED SOCP DNN CNN  Semi-GAN  SCAN without Dis-GAN  SCAN without Volt-CNN  SCAN
IEEE 33-bus AOV 0.3687  0.1594  0.3461 0.3273 0.3264 0.2049 0.3354 0.1782
MOV 0.5420  0.1922  0.4452  0.4042 0.4061 0.2670 0.4073 0.2178
NSBWED — 100 67 74 76 88 68 92
IEEE 123-bus AOV 0.4076  0.1139  0.3826  0.3507 0.3520 0.2370 0.3460 0.1508
MOV 0.9868 0.1450 0.8824 0.8434 0.8359 0.5109 0.8132 0.2731
NSBWED — 100 61 82 81 84 78 86
Notes: AOV—Average objective value; MOV—-Maximum objective value; NSBWED—-Numbers of samples better than WED.
Table 4 The effectiveness of SCAN in the norm of voltages
System Indicator WED SOCP DNN CNN Semi-GAN  SCAN without Dis-GAN  SCAN without Volt-CNN  SCAN
IEEE 33-bus AOV 0.1767  0.0098  0.1009  0.0934 0.0934 0.0237 0.1534 0.0115
MOV 0.2634 0.0231 0.1312 0.1120 0.1177 0.0334 0.2216 0.0223
NSBWED - 100 78 80 82 85 76 89
IEEE 123-bus AOV 0.0845 0.0038 0.0599 0.0554 0.0555 0.0534 0.0792 0.0521
MOV 0.4822 0.0084 0.1188 0.1049 0.1108 0.1294 0.4356 0.1449
NSBWED - 100 38 39 40 48 44 50

Notes: AOV-Average objective value; MOV-Maximum objective value; NSBWED-Numbers of samples better than WED.
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on a combined objective function. SCAN had a more
balanced focus on the two objectives and achieved a
much better result in the overall objective. Additionally,
the maximum objective value in the norm of voltages of
SCAN was still much smaller than that of WED, at
approximately 70.0% smaller. SCAN still showed its
ability to keep the voltage norm below a certain value.

As the core modules use Volt-CNN as a voltage calcula-
tor, its effectiveness strongly influenced the performance
of SCAN and whether DSOs could learn the controlled
voltage in advance. Consequently, it was compared with
the result calculated by Matpower to find that after train-
ing for 1500 generations, the Volt-CNN result (Fig. 13)
for each bus deviated at +0.003 p.u., which proved that
Volt-CNN could correctly predict the voltage profile from
scenario vector u and controller vector y. However, when
comparing the difference within consequences of the two
systems, we discovered that the maximum deviation rose
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from 0.011 to 0.027, illustrating that the correctness of
Volt-CNN becomes lower in a bigger system.

6.2 Sensitivity analysis of 4;

Dual parameter A;, which was the weight of objective
value in Egs. (11) and (13), tremendously influenced
aggressiveness and conservativeness of SCAN by
guiding the training. The effectiveness of various SCANs
trained on different A; are compared in Table 5. All the
SCANSs were trained based on the same F' generated by
the Pre-training Network. We found that SCAN
performed best when 4; was 10 or 100, consistent with
the theoretical derivation in Section 5.

When 4; was too high, the objective value will get a
high weight in the loss function, rendering generator F'
overfit and easier to be trapped in a local optimal
solution. Especially, for IEEE 33-bus system, as there
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was no second step to provide additional guidance, it
came to a detrimental result when A; = 1000. When 4; got
lower, the objective value got lower weights in the loss
function, rendering SCAN less susceptible to the
objective value.

6.3 The role of two-step training

For IEEE 33-bus system, we replaced four generations of
step 1 with step 2 in the inner iteration to hold the total
training generations fixed. Compare the result with that
of eight generations of step 1, illustrated in Table 6.
Under most A; values, the results trained using this two-
step method were worse than those by the one-step
method and better than those from WED, proving that
additional guidance hindered the way for F to search for
optimal results; however, for 4; = 1000, this two-step
method was far better than the one-step method,
indicating that the introduction of step 2 can effectively
curb over-fitting by offering additional guidance.
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For IEEE 123-bus system, we replaced four
generations of step 2 with step 1 in the inner iteration and
set 4; to 100 (Table 7). When the one-step training
procedure was used, both the average and maximum
objective values were worse than those from WED. This
was caused by the insufficiency of the training data. For
IEEE 33-bus system, there were 65 parameters
fluctuating and 5000 pieces of data covered the whole
area; however, when it comes to the IEEE 123-bus
system, there were 171 parameters fluctuating, rendering
5000 pieces of data insufficient for SCAN to learn the
decisions on its own. The different results generated by
the one- and two-step training methods indicate that the
introduction of step 2 offered additional guidance and
mitigated the adverse effect originating from the
insufficiency of training data.

To summarize, this step 2 was the insurance for SCAN,
that is, if each parameter was set soundly and training
data were adequate, step 2 thwarted SCAN from getting
the optimal decision. However, in other conditions, step 2

Table S Influence of 4; on SCAN
%
System Indicator WED 1000 100 10 1 01
IEEE 33-bus AOV 0.3687 0.5941 0.1782 0.1897 0.1967 0.2383
MOV 0.5420 0.7136 0.2178 0.2406 0.2498 0.2990
NSBWED - 0 92 89 89 77
IEEE 123-bus AOV 0.4076 0.1651 0.1508 0.1357 0.1860 0.2654
MOV 0.9868 0.3873 0.2731 0.1812 0.5285 0.6822
NSBWED - 79 86 87 74 58
Notes: AOV-Average objective value; MOV-Maximum objective value; NSBWED-Numbers of samples better than WED.
Table 6 Comparison between different training procedures for IEEE 33-bus system
4
Training step Indicator WED 1000 100 10 | o1
Step1:Step2=8:0 AOV 0.3687 0.5941 0.1782 0.1897 0.1967 0.2383
MOV 0.5420 0.7136 0.2178 0.2406 0.2498 0.2990
NSBWED — 92 89 89 77
Step 1 :Step2=4:4 AOV 0.3687 0.3230 0.3222 0.3256 0.3241 0.3295
MOV 0.5420 0.4076 0.4071 0.4034 0.4078 0.4092
NSBWED — 75 75 73 72 70

Notes: AOV-Average objective value; MOV-Maximum objective value; NSBWED-Numbers of samples better than WED.

Table 7 Comparison between different training procedures for IEEE 123-bus system (4; = 100)

Indicator WED Step 1 :Step2=8:0 Step1:Step2=4:4
AOV 0.4076 0.5636 0.1508

MOV 0.9868 1.5998 0.2731
NSBWED - 58 86

Notes: AOV-Average objective value; MOV-Maximum objective value; NSBWED-Numbers of samples better than WED.
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Table 8 Test results considering topology changing
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18-121 and 115-116

97-117 and 115-116

18-121 and 97-117

Indicator

WED SCAN WED SCAN WED SCAN
AOV 0.1305 0.152 0.1746 0.1800 0.1486 0.1578
MOV 0.2282 0.2473 0.4032 0.2550 0.2792 0.2390
NSBWED - 40 34 - 47

Notes: AOV—Average objective value; MOV-Maximum objective value; NSBWED-Numbers of samples better than WED.

offered additional guidance by the MSE part in Lp,
ensuring that SCAN found a better decision instead of the
optimal decision.

6.4 Adaptability to topology changing

Although the topology may not change frequently when
the DSO cannot get an accurate one, we further tested the
adaptability of SCAN on these extended scenarios. A
training data set of the IEEE-123 bus system considering
topology variations was generated. The switchable lines
were randomly open or closed while keeping the
topology radiality of the system. For each combination of
switch status, we generated a test data set containing 100
pieces of data. SCAN was trained as described in Section
6.1 (Table 8). When the topology changing is taken into
consideration, SCAN shows slightly worse results in both
average objective value and numbers of samples better
than WED; however, in the maximum objective value
among the 100 test samples, SCAN shows its ability to
improve it. When the closed switchable lines are 97-117
and 115-116, SCAN reduces the maximum from 0.4032
to 0.2550, meanwhile, for 18-121 and 97-117, the
performance is from 0.2792 to 0.2390.

Although currently SCAN cannot clearly recognize the
topology changing, it can still keep the objective value
consistently below a certain value.

7 Conclusions

This paper proposes a novel end-to-end model called
SCAN to solve the VPI problem from a topology-
independent view. SCAN aimed to solve the VPI
problem in power distribution networks integrated with
MGs, with an unlimited number of scenarios. Several
novel loss functions were proposed to serve SCAN. To
overcome the inadequacy of explicit constraints, Dis-
GAN was introduced to SCAN, forming an explicit
constraint reflecting the hidden constraints. Considering
the strong physical correlation between the variables, the
Volt-CNN was interposed to the SCAN as a voltage
calculator to improve the performance. Several case
studies were applied to the IEEE 33- and 123-bus
systems, testing SCAN on 100 randomly generated
samples. SCAN is over 50% less than WED in both

maximum and average objective value among those
samples, and less than other methods, showing the ability
of SCAN to keep the objective values steadily at a
significantly lower level under various scenarios. SCAN
can also be applied when the topology is changing and
can always provide a solution that significantly improves
the voltage profile in the power distribution network.
Volt-CNN shows a high precision, with a deviation
remaining in +0.003 p.u., which enables DSOs to know
the controlled voltage profile in advance. Additionally,
Volt-CNN brings SCAN a brilliant performance,
resulting in objective indicators over 40% less than those
of SCAN without Volt-CNN. The mechanism of the two-
step training procedure is clarified by the comparison of
results generated by different training procedures.

As an emerging field of research, the end-to-end deep
learning method shows its broad applicability and
excellent performance in power engineering. For further
research, more application scenarios in the context of
power distribution networks will be explored to realize
the one-shot direct control from data to decisions.
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