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Abstract Logistics networks (LNs) are essential for the
transportation and distribution of goods or services from
suppliers to consumers. However, LNs with complex
structures are more vulnerable to disruptions due to natural
disasters and accidents. To address the LN post-disrup-
tion response strategy optimization problem, this study
proposes a novel two-stage stochastic programming model
with robust delivery time constraints. The proposed model
jointly optimizes the new-line-opening and rerouting deci-
sions in the face of uncertain transport demands and trans-
portation times. To enhance the robustness of the response
strategy obtained, the conditional value at risk (CVaR)
criterion is utilized to reduce the operational risk, and
robust constraints based on the scenario-based uncertainty
sets are proposed to guarantee the delivery time require-
ment. An equivalent tractable mixed-integer linear pro-
gramming reformulation is further derived by linearizing
the CVaR objective function and dualizing the infinite
number of robust constraints into finite ones. A case study
based on the practical operations of the JD LN is
conducted to validate the practical significance of the
proposed model. A comparison with the rerouting strategy
and two benchmark models demonstrates the superiority
of the proposed model in terms of operational cost, delivery
time, and loading rate.
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1 Introduction

Logistics networks (LNs) are essential for the transporta-
tion and distribution of goods or services from suppliers
to consumers (Mohammadi et al., 2016; Feng and Ye,
2021). According to the statistics of People’s Daily
(2022), LNs supported the delivery of more than 108
billion express packages in 2021, which were expected to
have covered the express delivery services of all adminis-
trative villages in China. As an example, the JD LN
consists of over 210 distribution centers (DCs), 7800
stations, over 1000 airlines, 300 rail lines, and tens of
thousands of road lines. The JD LN provides a high-quality
service guarantee for the customer satisfaction rate, e.g.,
during the “6-18” grand promotion, more than 200 cities
could be reached in minutes, and 92% of districts and
counties and 84% of villages were able to receive deliveries
on the same day or the next day (JD Logistics Inc., 2021).
However, LNs with complex structures are more vulnera-
ble to disruptions due to natural disasters and accidents
(Wang et al., 2021). For example, at the end of 2019, the
outbreak of COVID-19 posed a great challenge to the
operations of the JD LN. In particular, the lockdown of
Wuhan City, which lasted for more than two months
from January 23 to April 8 in 2020, caused over 1000
routes going through Wuhan City to be blocked, and over
13000 packages per day could not be distributed on time.
System resilience emphasizes the system’s ability to
resist damage in a specific performance state or restore
the system to its original performance state after a down-
grade (Zuo, 2021). Supply chain resilience can be defined
as “the adaptive capability of the supply chain to prepare
for unexpected events, respond to disruptions, and
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recover from them by maintaining continuity of operations
at the desired level of connectedness and control over
structure and function” (Ponomarov and Holcomb, 2009).
Resilience strategies deal with high-impact events
(Huang et al., 2017) and are mainly divided into two
categories. One is the proactive strategies that have been
investigated from various perspectives, such as network
design, supplier selection, and redundancy. The other is
reactive strategies, which are from the view of response
and recovery and have not yet received sufficient attention
(Premkumar et al., 2021). However, the self-adaptability
and self-healing ability of the network in an unexpected
disruption directly affect the core competitiveness of the
network (Gao et al., 2021). Therefore, a cost-effective
response strategy of rerouting and opening new lines in
LNs for each package is vital to guarantee the customer
satisfaction rate and maintain the advantages after disrup-
tions.

To develop effective LN post-disruption response
strategies, the following issues should be carefully inves-
tigated and addressed. First, for each affected package, an
alternative route must be selected to recover the package
delivery. Numerous packages and various candidate
routes for packages complicate the route design. Second,
new lines could be constructed for the post-disruption LN.
Although this addition will increase the number of alter-
native routes, affected packages can be delivered via both
new lines and original unaffected lines to find more
chances of on-time delivery. Third, the routing decisions
for packages are coupled, as the packages using the same
lines will be aggregated and transported by selecting the
optimal combination of vehicles. Thus, the response
strategies should be optimized from the network per-
spective. Fourth, the uncertainty of transport demands
between origin—destination (OD) pairs and transportation
times over lines further complicates the problem. Specifi-
cally, when making the new-line-opening decision, the
transport demands and transportation times are usually
unknown uncertain factors, while the package rerouting
decisions can be made adaptively after this information is
fully revealed.

To address the problem of LN post-disruption response
strategy optimization, this study proposes a novel two-
stage stochastic programming (SP) model with robust
delivery time constraints and conducts a case study based
on the practical operations of the JD LN. The proposed
model has the following salient features. First, the model
considers the uncertainties of both transport demands and
transportation times. To enhance the robustness of the
obtained response strategy, the conditional value at risk
(CVaR) criterion is utilized to reduce the operational risk
due to uncertainty, and robust delivery time constraints
based on the scenario-based uncertainty sets are proposed
to guarantee the delivery timeliness in the face of post-
disruption transportation time fluctuation. Second, in the

first stage, the model determines the optimal new-line-
opening decision, while the uncertain transport demands
and transportation times are not disclosed. Then, the
model is capable of making the optimal rerouting decisions
and loading plans adaptively according to the realization
of the uncertain factors. Third, to solve the proposed
model, we adopt the sample average approximation
approach to handle the random transport demands and
provide an equivalent reformulation for the CVaR objec-
tive function. Furthermore, we equivalently reformulate
the infinite number of robust constraints into a finite
number of linear constraints and provide an equivalent
tractable mixed-integer linear programming (MILP)
reformulation.

The contributions of this study are summarized below.
First, this research proposes a novel two-stage SP model
with robust constraints that jointly optimizes the new-line-
opening and rerouting decisions. The proposed model
utilizes the CVaR criterion and robust constraints to
improve the robustness of the response strategy. Second,
we derive an equivalent tractable MILP reformulation for
the proposed model by linearizing the CVaR objective
function and dualizing the infinite number of robust
constraints into finite ones. Finally, this study conducts a
case study based on the practical operations of the JD LN,
which not only validates the practical significance of the
proposed model but also demonstrates its superiority over
the rerouting strategy and two benchmark models in
terms of operational cost, delivery time, and loading rate.

The remainder of this paper is organized as below. The
literature review is presented in Section 2. The problem
description and the mathematical models are given in
Section 3. In Section 4, a case study is conducted. Finally,
Section 5 provides conclusions and discusses future
research directions.

2 Literature review

Several prevention and response strategies have been
proposed to deal with disruptions from the “pre-disrup-
tion” and “post-disruption” perspectives, respectively
(Medal et al., 2014; Ni et al., 2018; Manupati et al., 2022).
This study considers the response strategies for post-
disruption recovery in LNs. Thus, we only review related
works in this area. Response strategies for different
infrastructure networks, such as transportation networks
(TNs), critical infrastructure networks (CINs), supply
chain networks (SCNs), and LNs, share several common
features. The disruption of TNs can cause passenger anxi-
ety, traffic congestion, and even network disconnection
(Khaled et al., 2015; Liu et al., 2022). Response strate-
gies, such as traffic rerouting, critical blockage identifica-
tion, and clearance, have been applied to restore trans-
portation accessibility (Tuzun Aksu and Ozdamar, 2014;
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Cacchiani et al., 2014). Khaled et al. (2015) maximized
network resilience by optimizing the number of trains,
routes, and blocks for freight rail infrastructures. In addi-
tion, Kasaei and Salman (2016) examined two arc routing
problems for clearing blocked roads, where the first one
minimizes the time to reconnect the road network and the
second one maximizes the total benefit of the on-time
reconnection of network components. Zou and Chen
(2021) developed a bi-level decision-making framework
for resilience-based recovery scheduling for the traffic
environment with mixed autonomous fleets. Yin et al.
(2017) modeled a new train rescheduling problem by
considering backup trains for disruption recovery. Wang
et al. (2022) formulated a mixed integer programming
model to optimize reconfiguration strategies and opera-
tional solutions for traffic power systems coupled via grid-
enabled electric vehicles. To mitigate the impacts of
order backlog and delivery delay due to SCN disruption,
response strategies, such as redundancy suppliers and
transportation rerouting, have also been studied (Wang
et al., 2016; Namdar et al., 2018; Ivanov, 2019). Ivanov
(2021) investigated existing strategies in the context of
the COVID-19 pandemic by using the discrete event
simulation model. Moosavi and Hosseini (2021)
proposed a quantitative resilience assessment based on
simulation and proved the effectiveness of the extra-
inventory preposition and backup supplier strategies.
Typical post-disruption response strategies for the LNs
include selecting backup hubs (Cheng et al., 2018;
Kulkarni et al., 2022), switching shipping modes, and
rerouting (Chen et al., 2016). For example, Peng et al.
(2011) considered an LN design problem with the
response strategy of opening a backup transshipment
facility. Mohammadi et al. (2016) formulated a reliable
hub location model for the disruption of LNs.

To handle uncertain post-disruption factors, such as
recovery time, customer demand, and reusability (Fang
and Sansavini, 2019; Das et al., 2022; Xu et al., 2022;
Alkhaleel et al., 2022b), researchers usually adopt the
two-stage optimization method with different risk
measurement methods, such as the mean-risk (Alkhaleel
et al., 2022a) or the risk-averse and risk-neutral
(Alkhaleel et al., 2022b), where the uncertainties are
characterized in terms of disruption scenarios and risk
levels (Almoghathawi et al., 2019; Esmizadeh and Mellat
Parast, 2021). For example, Khalili et al. (2017)
presented a novel two-stage scenario-based mixed
stochastic-possibilistic programming model for the inte-
grated production and distribution planning problem in
SCNs. To enhance supply chain resilience, Ni et al. (2018)
proposed a two-stage SP model to reduce the cost of lost
customers. Tolooie et al. (2020) probed the disruption
risk of facilities and demand uncertainty and presented a
two-stage stochastic mixed-integer programming model.
Furthermore, Das et al. (2022) established a CVaR-based
two-stage SP model to deal with the uncertainties of

demand, available inventory, and level of reusability.
Chen et al. (2016) developed three optimization models
considering the response strategies of renting other car-
riers’ capacities, reallocating local trucks, and prioritizing
the order of shipments in inter-modal LNs. To deal with
LN disruption, Cheng et al. (2018) adopted a two-stage
robust optimization approach, where location decisions
are first determined and recourse decisions are made after
the disruptions are known. Chen et al. (2022) proposed a
load redistribution mechanism for the restoration of LNs
with two cascading failure scenarios. Wang et al. (2017)
proposed a typical long-term strategic decision problem
on SCN design with consideration to uncertain demands
and deterministic equivalent model with nonanticipativity
constraints; sample average approximation was adopted
to analyze stochastic demands.

The aforementioned literature has enriched the under-
standing of post-disruption response strategies and uncer-
tainty modeling techniques. Although the existing SCN
resilience research on facility/hub location, links restora-
tion, shipping modes selection, and rerouting strategies
share several similarities with the problem in terms of
considering the two-stage decision process and demand
uncertainties (Peng et al., 2011; Mohammadi et al., 2016;
Cheng et al., 2018; Kulkarni et al., 2022), few studies
take the new-line-opening decision as the first-stage deci-
sion and consider the uncertainties of both transport
demands and transportation times. Another focus of this
study is to provide robust response strategies for practical
operations. Table 1 presents a comparison with related
studies in terms of network structures, response strategies,
uncertainties, and optimization models.

Our research fills the research gap in the following
three aspects. First, the response strategies investigated in
the existing research are mostly from the perspective of
nodes, i.e., backup hub selection or new hub opening.
Meanwhile, our study proposes the joint response strate-
gies of opening new lines and rerouting. Specifically, we
propose a two-stage LN redesigning model that simulta-
neously optimizes the new-line-opening and rerouting
decisions under the limited capacities of DCs. Second, to
characterize the uncertain factors, few researchers have
jointly investigated the uncertainties in demands and
transportation times. This study further adopts the CVaR
criterion and robust constraints to hedge against uncertain
transport demands and transportation times, respectively.
Third, this research conducts a case study based on the
real-world operational scenario and data from the JD LN
during the COVID-19 pandemic, which validates the
practical significance of the proposed model.

3 Mathematical model and analysis

This section presents the proposed two-stage SP model
and further provides an equivalent tractable reformulation
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Table 1 Comparison with related studies

Literature Network Response strategies Uncertainties Optimization models
Khaled et al. (2015) N Train design and re-routing Deterministic model

Liu et al. (2022)

Tuzun Aksu and Ozdamar (2014)
Kasaei and Salman (2016)

Zou and Chen (2021)

Passenger transit

Links restoration

Recovery scheduling

Clearing and repairing roads

Bi-level programming
Integer programming
Mixed-integer programming

Bi-level programming

Alkhaleel et al. (2022b) CIN Restoration strategies Repair time, Two-stage SP
transport time

Fang and Sansavini (2019) Multi-model restoration Repair time, resources Two-stage SP

Xu et al. (2022) Restoration Repair time Two-stage SP

Alkhaleel et al. (2022a) Flexible restoration Repair time, Two-stage SP
transport time

Manupati et al. (2022) SCN Replenishment scheme Simulation

Medal et al. (2014) Nearby-reallocation Bi-objective programming

Ni et al. (2018) Supply chain restoration Potential facilities disruptions Two-stage SP

Ivanov (2019) Back-up contractors and capacity transfer Simulation

Namdar et al. (2018) Sourcing strategies Facilities disruptions SP

Wang et al. (2016) Contingent rerouting Simulation

Ivanov (2021) Recovery and coordination Simulation

Moosavi and Hosseini (2021) Inventory prepositioning and supplier backup Simulation

Cheng et al. (2018) Resources reallocation Facilities disruptions Two-stage robust programming

Peng et al. (2011) Backup transshipment facilities Facilities disruptions P-robustness model

Das et al. (2022) Recourse decisions Demand and pallets Two-stage SP

Kulkarni et al. (2022) LN Back-up routes Integer programming

Chen et al. (2016)

Switching shipping modes, resource renting

Mixed-integer programming

and reallocating, and sequencing

Mohammadi et al. (2016)
This paper

Backup transshipment facilities

New-line opening and rerouting

Hub disruptions Nonlinear model

Demand and transport time Two-stage SP with robust constraints

by analyzing the properties of the CVaR criterion and
robust constraints. Subsection 3.1 gives the problem
description of the considered problem. Subsection 3.2
gives a basic deterministic model that neglects the uncer-
tainties of transport demands and transportation times. To
deal with the uncertainties, Subsection 3.3 proposes a two-
stage SP with the CVaR objective function and robust
delivery time constraints. Subsection 3.4 provides an
equivalent tractable MILP reformulation for the proposed
model.

3.1 Problem description

To recover the transport service for affected transport
demands rapidly after a breakdown, the current research
considers a joint response strategy of opening new lines
and rerouting. We consider the following simple LN with
five DCs, i.e., A, B, C, D, and E, and six original lines,
ie., A—»B, A—»C, B—»C, C—D, C—E, and D—E (see
Fig. 1). We suppose that four transport demands are

A

\/

——— rerouting - - - -» opening new line

Fig. 1 Illustration of the response strategy.

delivered by this LN. Table 2 lists the original routes for
the transport demands before the disruption. DC C is
assumed to be disrupted, which makes the original routes
for transport demands A—D, B—D, and B—E unavail-
able. In response to this disruption, the operator can open
a new line B—D and reroute the paths for the affected
transport demands A—D, B—D, and B—E. As listed in
Table 2, after the disruption and opening the new line
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Table 2 Transport demands and routes

Table 3 The selection of different transportation modes

Transport demands Routes before disruption ~ Routes after disruption

A—B A—B A—B
A—D A—C—D A—B—D
B—D B—C—-D B—D
B—E B—C—E B—D—E

B—D, the transport demands B—D can be delivered
directly. Furthermore, this newly opened line can be used
to transit the transport demands A—D and B—E. For
example, the affected transport demand A—D is rerouted
and transported via the new route A—B—D.

When the operator makes the new-lines-opening and
rerouting decisions, the loading plan, i.e., types and the
number of vehicles or volume of less-than-truckload
(LTL) service used on each line, must be taken into
account because the lower-level transportation cost is
mainly affected by the aggregation of transport demands
over different routes. For JD LN, six transportation
modes can be divided into two categories: Full-truckload
(FTL) transportation service and LTL transportation
service. For FTL, five types of vehicles (with lengths of
5.2,7.6,9.6, 14.5, and 17.5 m, respectively) can be used,
while only one type of transportation service corresponds
to LTL. The selection of transportation modes and the
new-line-opening decision should obey the following
standard, as shown in Table 3. For example, when the
length of the line is less than or equal to 500 km and the
freight volume of demands delivered is no more than
100 m3, only the vehicle with a length of 5.2 m can be
used.

This study makes the following assumptions:

(1) The basic deterministic model commonly used by
the practitioner takes the mean of uncertain transport
demands and transportation times as a proxy. The
proposed two-stage SP model explicitly considers these
uncertainties.

(2) Transport demands with the same OD pair can be
delivered by different routes to satisfy capacity
constraints.

(3) To leverage the newly opened lines fully, the newly
opened lines can be used to fulfill demands with different
OD pairs as long as the capacity constraints are satisfied.

3.2 Basic deterministic model

The deterministic LN post-disruption response strategy
optimization model aims to find the optimal new-line-
opening, rerouting, and transportation mode selection
decision to minimize the total setup cost of opening new
lines and transportation cost while satisfying the on-time
delivery requirement. The notations used in the following
models are listed in Table 4.

We consider an LN that includes multiple DCs and
lines. The set of DCs is K, and the transit capacity of DC

Volume (m?) Length (km)
= 500 501-800 801-1500 = 1501 km
<100 52m
100-300 7.6 m LTL
300400 9.6 m 9.6 m LTL
400-600 14.5m 14.5m 145m LTL
= 600 17.5m 17.5m 17.5m 17.5m

k € K after disruption is S;. L is the set of lines that
includes a set of candidate new lines L, and a set of original
lines L, that are still available after the disruption. For
each line [ € L, its length is r,. For each alternative new
line [ € L, the minimum freight volume required to open
[ is Q,, and the fixed cost of opening the new line [ is g,
I and J are the set of transport demands and the set of
alternative routes, respectively. J; is the set of candidate
routes that can be selected by transport demand i € /. The
volume of transport demand i € [ is presented as D,. T; is
the average delivery time required by transport demand
i € I. The transportation time of route j € J is t;. Whether
transport demand i € I can be delivered by route je J is
indicated by a,;. Each route consists of one or several
lines. Whether route je€J passes through line /€ L is
indicated by b;;. Meanwhile, whether route j € J passes
through DC k € K is indicated by c;. V ={0, 1, ..., |[V|} is
the set of transportation modes. v = 0 refers to the LTL
transportation service, and v =1, ..., |V| represents a type
of FTL vehicle. Each transportation mode ve V has a
maximum capacity U,, and the unit transportation cost is
e,. We use w, to denote whether to open the new line
[ € L,. d; denotes the volume of transport demand delivered
on each route j e J. Decision variables x;, and y, denote
the number of vehicles v € V/{0} and the volume of LTL
used on line / € L, respectively.

Following the above notations, the basic deterministic
model takes the following form:

w.d.x.y | [eL veV/ {0} leLy

(Py) min {Z > rex,+ ey + 2, q,w,}
leL

s.t. _Z‘;aljdj=D,-, Viel, (1
je
Saydit; <DT, Viel, @)
je
chjkdj <S8y, Vke K, 3)
e
jez‘}b,jdj > Qw, YleL, 4)
Uw, 2y, YleL,, Q)
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Table 4 Notation list

Sets Description
K={1, ..., |K|} Set of DCs

L={1, .., |L]} Set of all lines; each line connects two adjoint DCs, L = L; ULy

L Set of candidate new lines; each corresponds to one transport demand
L Set of unaffected original lines that are still available after the disruption
I1={1, ..., |I|} Set of transport demands; each represents an OD pair

J={1, ..., [JI} Set of alternative routes; each represents a path between an OD pair

Ji Set of alternative routes for the transport demand i € 1

V={0, 1, ..., |VI} Set of transportation modes; v = 0 represents the LTL transportation mode, and v = 1, ..., |V|represents a type of FTL vehicle
Parameters Description
SreRy The transit capacity of DC k € K

rr€Ry The length of line [ € L

OreRy The minimum volume required to open the new line / € L;

qreRy The fixed cost of opening the new line / € L;

T;eRy The average delivery time requirement of transport demand i € /
D;eR, The freight volume of transport demand i € /

tj€Ry The total transportation time of route j € J

ajj €40, 1} Whether transport demand i € I can choose route j € J; i.e., J; = {j €J:a;j= l}
bij €{0, 1} Whether route j € J passes through line / € /

cjk €10, 1} Whether route j € J passes through DC k € K

eo €R4 The unit cost for transportation mode v =0

ey ERy The fixed cost for using one truck of mode v € V/{0}

U, eR, The maximum capacity of transportation mode v € V

Decision variables

Description

w €10, 1} Whether to open new line [ € L;

djeRy The demand transported on route j € J

Xy €Zy The quantity of vehicle v e V/{0} used on line / € L
yIER: The volume transported by the LTL service on line / € L

w2 X bya;Di+ Y U= X x U +y,VieL,, (6)

JjeJ iel veV/ {0} veV/{0}

2bd; < Y x U, +y, VIeL, (7)
jel vev/ {0}
0<y, <Uy VieL, (8)
WG{O’ l}Ll’ djeR-H xlvex’ }’l€y7 (9)
where X={xeZ":x,=0,Y(,v)eLV,} and Y=

{y €f0, 1}":y,=0, Vi€ Lb}. LV, is the set of line-
vehicle combinations such that vehicle type v cannot be
used on line /. Similarly, L, refers to the set of lines that
cannot use the LTL service. The sets LV, and L, can be
easily constructed from Table 3. Constraint (1) guarantees
that the transport demand i needs to be completely deliv-
ered by its candidate routes. Constraint (2) ensures that
the average delivery time requirement is satisfied for each

transport demand. Constraint (3) ensures that the volume
of transport demands that pass through DC k does not
exceed its transit capacity. Constraint (4) ensures that the
volume of transport demands on each newly opened line
exceeds Q. Constraints (5) and (6) ensure that if the new
line is not opened, the number of used vehicles and the
quantity delivered by the LTL service should be zero.
Constraint (7) enforces that the total transport demands
on line / cannot exceed the maximum total capacity of all
types of vehicles and the LTL service. Constraint (8)
ensures that the quantity delivered by the LTL service is
less than the maximum capacity of the LTL service.

The basic deterministic model is an MILP and thus can
be solved directly by commercial solvers, such as
CPLEX or Gurobi. Although the deterministic model is
used by the practitioner in JD, it neglects the uncertain
transport demands between OD pairs and uncertain trans-
portation times over lines. Thus, in practice, the operator
only uses this model to make long-term new-line-opening
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decisions by replacing the uncertain parameters with their
mean values and resolves this model for the given new-
line-opening decisions when the uncertain parameters are
known. As shown in the following case study, the deter-
ministic model usually leads to over-optimistic new-line-
opening decisions, thus resulting in higher operational
costs.

3.3 Two-stage stochastic programming model

The uncertainty of transport demands between OD pairs
and transportation times over routes complicates the LN
redesign problem. In this subsection, we propose a two-
stage SP model with the CVaR objective function and
robust delivery time constraints.

First, to deal with uncertain transported demands, we
present a two-stage SP model, where f(w, D) denotes the
second-stage transportation cost function for a given w
and demand scenario P. Specifically, the operator needs
to make the new-line-opening decision before the realiza-
tion of uncertain factors, while the number of vehicles,
the volume of LTL service, and the volume of demand
transported on each route can be determined after the
uncertainty is revealed. Moreover, to avoid an over-opti-
mistic new-line-opening decision given by the expected
cost criterion, we further adopt the CVaR criterion, which
considers the expected performance under the worst-case
scenario and thus is more suitable for risk-averse decision-
makers.

For a random loss X, its a-level (@ € (0, 1]) CVaR is
defined as the expected value of X conditioning on
X >VaR, (X), i.e., CVaR, (X)=E[X|X > VaR, (X)], where
VaR, (X) denotes 1—a quantile of X, ie., VaR,(X)=
min{z: Fx(z) > 1 —a}. Compared with VaR, (X), CVaR is
a convex consistent risk measure and can be equivalently
reformulated into the following minimization problem:

i 1
CVaR, (X) = min {z+ aE[X—z]*} , (10)
where [x]*=x if x>0; otherwise, [x]* =0. For the
considered problem, we aim at minimizing the a-level
CVaR of the random transportation cost f(w, D), i.e.,
CVaR,(f(w, D)).

Second, to guarantee the delivery time service level,
which is of vital importance to JD, we adopt the budget
uncertainty set to characterize the uncertain transportation
times and propose a set of robust delivery time
constraints. Specifically, we suppose the set of the uncer-
tain transportation time vector ¢ lies in the following
budget uncertainty set:

T = {z:Ltjétjs U, >, |tj_ﬂj|

jel M

<0, \/jeJ},

where 1; denotes the mean transportation time over route

Jj. Lt; and Ut, are lower and upper bounds for the trans-
portation time over route j, respectively. The budget
parameter o controls the size of the uncertainty set. A
larger value of ¢ leads to a more robust but conservative
solution.

Based on the budget uncertainty set for the transportation
times, we consider the following robust delivery time
constraints for transport demand i, which guarantee the
average delivery time requirement even in the worst-case
scenario:

Yadt; < DT, VteT.
jeJ

After the introduction of the CVaR objective function
and the budget uncertainty set, the proposed two-stage
LN redesign SP model with robust delivery time
constraints takes the following form:

(P) min {CVam(f<w, D))+ ¥ qw,|w € {0, 1}L'},

where the second-stage transportation cost function
f(w, D) is given as:

fw, D) = min{Z 2 heXy+ ), 7’130}’1}

d.xy | jeLveV/ {0} leL

s.t. Zja,-_,dj =D, Viel, (11)
JE
Zja,-_,djtj <DT,VYiel, teT, (12)
J€
chjkdjéSk, Vk e K, (13)
Jje
Z:]b[jdj = Q[W[, Vie L|, (14)
JE
Uw, 2y, Yle L, (15)

w2 X bya;Di+ 3 U= X x,U,+y, VIeL,, (16)

JjeJ iel veV/ {0} veV/ {0}

Sbhyd; < Y xU,+y, VIEL, (17)
JjeJ veV/ {0}

0<y <U,y,ViIeL, (18)

deR,x,eX, yel. (19)

The proposed two-stage SP model differs from the
deterministic model in the following three aspects. First,
the two-stage SP model uses the CVaR criterion to hedge
against operational risk due to uncertainty. Second, we
utilize robust constraints to ensure that for any transporta-
tion time vector in the budget uncertainty set, the required
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average delivery times are satisfied. Third, by adopting a
two-stage optimization framework, the SP model can
make robust new-line-opening decisions by fully consid-
ering the uncertain factors while keeping the rerouting
and loading decisions adaptive to the realization of the
uncertainties. Although the proposed SP model is a
nonlinear mixed-integer program with an infinite number
of constraints, next subsection gives an equivalent
tractable reformulation by exploiting its structural pro-
perties.

3.4 Equivalent tractable reformulation

In this subsection, we provide an equivalent tractable
reformulation for (P). We first analyze the CVaR objective
function for a given first-stage decision w when the
random transport demands have discrete probability
distributions. Proposition 1 shows that the nonlinear
CVaR objective function can be reformulated as a linear
one.

Proposition 1. Suppose that the random transport
demand vector P has a discrete probability distribution
with N scenarios, and each scenario has its probability
Prob(D=D")=p", 3,.xP" = 1. Then, (P) can be refor-
mulated into the following mixed-integer optimization
problem:

, 1
(P) min {Z+ —LPY+ X qzwl}

Q peN leL,

st Y'+z=) Y nex,+ Y ey, YneN, (20)
leLveV/{0} leL
Nad =D, Viel, VneN, 1)
jeJ
Yayd't; <D'T,Viel,t€T,¥neN,  (22)
jeJ ’
Yeud < S, Yk e K, VneN, (23)
jeJ ’
Z bljd;l > Qlwlv Vie Lls Vne N, (24)
jeJ
Usw, >y, Yl € L, ¥n €N, (25)
wi| X Xbya;Di+ X U, |2 X U, +y],
jeJ iel veV/{0} veV/ {0} (26)
YieL,, VYneN,
Shyd'< Y, xiU,+y,VIeL,VneN, (27)
jeJ ’ veV/ {0}
0<y'< Uy, VleL, VneN, (28)

wel0, 1", zeR, y" €R,, d} €R,, X} € X, Y] €Y. (29)

Proof.
From the equivalent definition of CVaR, we have:

CVaR,(f(w, D)) = miRn {z,- + éEp[max{f(w, D) -z, O}]}.

Therefore, the objective function of (P) can be reformu-
lated as :

min {z+ éEP[max{f(w, D)-z, 0}]}

w.z

= min{z+ l 3 p"max{f(w, D)-z, 0}}.

w,z @ peN

Let y" = max{f(w, D")—z, 0}. Thus, (P) can be further
reformulated as:

1
min {z+ - > P+ Y q,w,}

w.zy neN leL,
s.t. "> f(w, D")—z, Vn €N,
W' >0,¥neN,

wel0, 1}", zeR.

From the definition of the second-stage objective
function f, for any scenario n, the -constraint
" = f(w, D")—z is equivalent to the following ones:

Y'+z= Y Y nex,+ Y regy,
leLveV/{0} leL

a;d) =D}, Viel,
2 T i

jeJ

a;d't, < DT, Viel, teT,
Yhat av i

jeJ

chkd’;<Sk7 VkEK,

jeJ

Z b”d;l > Q[W], Vle L] .

jel

Uw, 2y),VleL,,

w| X Xbja;Di+ Y U|> X xU,+y,, Vel

JjeJ iel veV/ {0} veV/{0}

xbdi< Y x U, +y), V€L,

jeJ veV/ {0}

0<y;‘<U0, VZGL’
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dieR, x,eX,y e,

which completes the proof.

To characterize the dependence between the uncertain
transportation times and transport demands, we adopt the
following scenario-based uncertainty set to describe the
transportation times under a specific scenario n:

=y
n J J
ur}, Z _—
jel M

J

T’lz{t":Lz’;@K <5”,Vjel},
where ¢/} denotes the mean transportation time over route
J- Lt and U #; are the lower and upper bounds for the
transportatlon tlme over route j for a given transport
demand scenario n, respectively. The budget parameter 0"
determines the size of the budget set in scenario n. When
the parameters (u}, Lt}, Ut}) are identical for all scenarios,
the transportation time is independent of the transport
demand. Moreover, when the size parameters of the
uncertain sets are zero, i.e., 8" = 0, the extended model is
reduced to the classical two-stage scenario-based SP
model.

Next, we simplify the robust delivery time constraints.
The following proposition shows that an infinite number
of robust constraints can be equivalently reformulated

(RC2) max{z a;dit; = Z dit; - Lty <1; < Ut} 2
mzt

Let (™, z) be the optimal solution of (RC2). We have ;" =y} and z}" = 0 for any j ¢ J;, where J; =

Thus, (RC2) can be further reduced to the following:

(RC3) max { 2 dit; L) <

mzt o\ jedi

<UL Z>

By introducing dual variables 7}, LVi20 (JET)
and A7 > 0 for constraints of (RC3), we obtain the dual
problem of (RC3) as follows, and the strong duality
holds:

min {54+ Xt () —vt) = X Lty + X ULB < DI,
PLB VA jedi jeJ; Jjedi ’
s.t. W +v)) =2, Vjel,

a,»jd;.' = u;’- _V? +ﬁ’;_y;', V]E J,',

o Byt v 20, Vj €,

Thus, the robust delivery time constraints are equal to
the following ones:

SN+ Xy (w—vi) = X Ly + L ULp < DIT,

JeJ; JeJi

tn ﬂ/7zn>/~l

into a finite number of linear constraints by the strong
duality.

Proposition 2. For any i € I, n € N, the robust delivery
time constraints can be equivalently reformulated into the
following linear constraints:

R (=) - S Liyj+ 3 UL < DIT,
JeJi

i (;+v}) = AV € T
m __ n n " n .
ayd; =u;=Vi+B; -y, VjeJ,

Y, Bl v, X >0,V € J.

Proof.
For any iel, ne N, the robust delivery time con-
straints are equivalent to the following constraints:

(RC1) max{z adit; 1" € T"} < D/T..

By introducing an auxiliary variable z} > |tf;—
problem (RC1) can be equivalently reformulated as the
following linear programming problem:

Y RPN vjenx }

JEJ /

{]EJaU=1}

Z?
rNjES, Y= <d" ).
jeli M

n n n\y _ n .
,uj<u_/.+vj)—/1[., VjeJ,
ayd; =u;=Vi+B -y, VjeJ,

Vi Bl i, Vi, A >0, V€ .

From Propositions 1 and 2, (P) can be equivalently
reformulated into a deterministic MILP, which can be
solved directly by commercial solvers, i.e., CPLEX and
Gurobi.

Proposition 3. The two-stage LN redesign stochastic
model (P) is equivalent to the following problem:

(SP-RC)  min {z+ 1 S+ Y q,wl}

Wz d, XY,y Buv,A neN leL,

st SN+ T (w—vi) = X Leys + z Ut < DIT

jeli jel;

Viel, VnEN,
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i (u;+v)) = A1, VjeJ, Viel, ¥neN,
ayd; =u;—Vi+p;—y;, VjeJ, Yiel, VnEN,

Yl Bl i Vi >0,V €, Viel, YneN,
Constraints (20), (21), (23)(29).

4 Case Study

This section conducts a case study based on historical
data from the JD LN. Subsection 4.1 gives the numerical
setting. Subsections 4.2 and 4.3 report the computational
results of comparison with the rerouting strategy and
benchmark models, respectively. Subsection 4.4 conducts
the sensitivity analysis of model parameters.

4.1 Numerical setting

To analyze the effect of Wuhan lockdown that lasted for
more than two months from January 23 to April 8, 2020
on JD LN, we focus on the network around Hubei
province in the Central China area. As shown in Fig. 2, in
the considered area, JD LN has 14 DCs, and the DC
located in Wuhan indexed by 0 is the critical hub node in
this area before the disruption caused by the pandemic.
After the disruption, the remaining 13 OD pairs had 78
transport demands. As a result of the Wuhan lockdown,
40 transport demands among OD pairs that were originally
connected by the DC in Wuhan were affected. The original
routes for the other 38 transport demands not transiting

via the DC in Wuhan were still available after the disrup-
tion. For each affected transport demand, we introduce a
new direct route. Thus, the considered LN has 78 lines
and 284 candidate routes in total.

The transit capacity of each DC k is between 4000 m?3
and 10000 m3. Based on historical data, we generate
transport demand scenarios according to the independent
truncated normal distribution by matching its mean, vari-
ance, and lower bound to historical statistics. In general,
the mean of each transport demand i is between 200 m3
and 800 m3, and the standard deviation of each transport
demand is within 30% of the mean. We generate the
scenario-based uncertainty sets of the uncertain trans-
portation times similarly based on the historical trans-
portation time samples.

The fixed setup cost of opening a new line /€ L, is
2000 yuan because it is mainly made of the standardized
platform construction cost. The unit LTL freight service
cost is 0.35 yuan/m?3, and its maximum service capacity is
10000 m3. The transportation capacity and cost for FTL
vehicles are given in Table 5.

All the computations are performed on a personal
computer with Intel (R) Core (TM) i7-10510U CPU and
16 GB memory. The optimization problems are solved by
Gurobi 9.5.1 solver coded in MATLAB 2021b.

4.2 Comparison with the rerouting strategy

In this subsection, we compare the proposed joint new-
line-opening and rerouting strategy with the rerouting
strategy. Specifically, we use SP-RC to denote the
proposed model that adopts the CVaR objective function
and robust constraints. The optimization model for the

2215

14527

Fig. 2 The daily transport demands of DCs in JD LN before the disruption.
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Table 5 Transportation capacity and cost for FTL vehicles

No. Type Capacity (m?) Cost (yuan/m?3)
1 17.5m 123 30.75

2 14.5m 90 24.30

3 9.6 m 56 16.24

4 7.6 m 40 12.00

5 52m 21 6.51

rerouting strategy corresponds to SP-RC with L, = @. We
report the computational results of both models with
a =0.05 and 6 =0.25 in terms of cost, delay time, and
loading rate in Table 6. First, compared with the rerouting
strategy, although the joint strategy leads to a higher new
line setup cost, it reduces both the average transportation
cost and the total cost by 11.94% and 11.22%, respec-
tively. Thus, the joint response strategy is a more effective
method for recovery from the disruption event than the
single response strategy in terms of reducing the total
operational cost.

Second, in terms of delivery time, the joint response
strategy also outperforms the single response strategy by
reducing the delay time by 13.86%. As transportation
times are proportional to distances of routes, we further
investigate the driving force for this reduction by analyzing
the alternative routes of the proposed model. Figure 3
illustrates the routes for transport demand 13—2 before
and after the pandemic under the joint strategy. Notably,
the original route for transport demand 13—2 is not
available when the DC in Wuhan is disrupted. However,
the proposed joint strategy is capable of providing three
types of candidate routes for transport demand 13—2,
where the type I candidate route is the newly opened
direct line, the type II candidate route consists of both
newly opened and original lines, and the type I1I candidate
route consists only of the original lines. Thus, the joint
response strategy is capable of providing more diverse
alternatives, which are of great value in an uncertain
environment.

Finally, the joint response strategy also outperforms the
single response strategy by increasing the loading rate by
59.18%. Figure 4 illustrates the optimal solution under
the joint response strategy. Specifically, Fig. 4(a) depicts
the six lines with more than 750 m3 freight volume,
where five of them (dashed line) are newly opened lines.

Table 6 The comparison between characteristics of two solutions

——The original route before the pandemic P

2432

21779

2332

797 —a
2958

2577

é 2958
2438

2215

(a) The original route for transport demand 13—2
before the pandemic

- = = Type | candidate route 10" 3650

— —+— Type Il candidate route 1
Type Ill candidate route
2501
1%
271 PBa— —— ;/_/—\/ 5 3265
-~ ——— g
\ ™ o 2659
)i

2230

(b) The candidate routes for transport demand 13—2
after the pandemic under the joint strategy

Fig.3 The routes for transport demand 13—2 before and after
the pandemic.

Figure 4(b) shows that the newly opened line 7—11 is
used by multiple routes. From Fig. 4, we conclude that
the proposed model can jointly optimize the new-line-
opening and rerouting decisions such that the newly
opened lines have a higher loading rate.

4.3 Comparison with other benchmark models

In this subsection, we compare the SP-RC model with the

Characteristics SP-RC with L; =@ SP-RC A (%)
Fixed cost of opening new lines (yuan) 0.00 46000.00 -

Average transportation cost (yuan) 6446668.64 5677243.42 -11.94
Total cost (yuan) 6446668.64 5723243.42 -11.22
Average delay time (h) 2.67 2.30 —13.86
Average loading rate 0.49 0.78 59.18
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10 3650
4

8

84N672
-
S

3

| /

2230

(a) The lines with more than 750 m® freight volume
Fig. 4

Table 7 Comparison among the SP-RC, DM, and SP models

10 3650
1

2230

(b) The routes that use the line 7—11

[lustration of the optimal solution under the joint response strategy.

Performance indices SP-RC DM A (%) SP A (%)
Fixed cost of opening new lines (yuan) 46000.0 40000.0 15.00 42000.0 9.52
Average transportation cost (yuan) 5683362.7 5818490.5 —2.32 5684262.5 —-0.02
CVaR of transportation cost (yuan) 6053884.3 6312730.0 —4.10 6056358.6 —0.04
Total cost (yuan) 5729362.7 5858490.5 -2.20 5726262.5 0.05
Average delay time (h) 2.30 2.36 —2.54 2.32 —0.86
Average delay time of delayed demands (h) 3.57 3.69 -3.25 3.61 -1.11
Average loading rate 0.78 0.74 5.41 0.76 2.63
Total transit times 71.25 75.91 —6.14 73.15 —2.60

two benchmark models. One benchmark is the determin-
istic model (DM) given in Subsection 3.2. Another one is
the two-stage SP model without robust constraints (SP).
Table 7 reports the performance of the three models in
terms of cost, loading rate, and delay time. The relative
improvement A made by the SP-RC model that we have
proposed is also given. First, we observe that the SP-RC
model is inclined to open more new lines and thus leads
to a higher fixed cost. By opening more new lines, the SP-
RC model is able to reduce the total transportation cost
compared with the DM and SP models. In terms of the
total cost, the SP-RC model outperforms the DM model
and is comparable to the SP model. Second, the SP-RC
model is superior to both DM and SP models in terms of
delay time. For example, the SP-RC model reduces the
average delay time of delayed demands of the DM and
SP models by 3.25% and 1.11%, respectively. Another
advantage of the proposed SP-RC model is that it can
improve the loading rate and reduce transit times. As
illustrated in Fig. 4, although the SP-RC model opens
more new lines, the newly opened lines are usually used
by multiple routes and thus have a higher loading rate.
In terms of total transit times, the SP-RC model also
improves the performance of the DM and SP models by
6.14% and 2.60%, respectively.

Next, we compare the computational times of the four
models, i.e., the SP-RC, SP-RC with L, = @, DM, and SP
models. All these models are solved by the Gurobi solver.
The running time limit is 5 hours (i.e., 18000 s), and the
tolerance relative gap is selected as 0.1%. Table 8 reports
the average computational performances of different
models over 10 randomly generated instances. We can
see that both SP-RC and SP models are time consuming
and reach the running time limit, while the SP-RC with
L, = @ model can be solved efficiently in minutes. The
Gurobi solver also takes nearly two hours to obtain a
near-optimal solution for the DM model within 0.1% rela-
tive gap. However, as shown in Table 8, when the first-
stage new-line-opening decisions are given, the second-
stage routing and loading plan decisions for a scenario

Table 8 Computation times of different models

Model Run time (s) Gap (%)
SP-RC 18000 0.660
Second-stage problem for a scenario 199.52 0.090
SP-RCwithL; =@ 1179.63 0.098
DM 6905.88 0.097
SP 18000 0.510
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can be easily optimized. The first-stage new-line-opening
decisions are medium-term response strategies and cover
a span of weeks, and the second-stage decisions are made
when the uncertain scenario is realized. Thus, the
proposed models are practical in providing timely opera-
tional decisions for operators.

4.4  Sensitivity analysis

This subsection reports on the sensitivity analysis of critical
parameters for the proposed SP-RC model.

Effect of fixed cost ¢g. Figure 5(a) illustrates the perfor-
mance of the SP-RC model under different values of the
fixed cost g. Figure 5(a) shows that as the fixed cost
increases, the total cost and transportation cost also
increase in general. This observation is consistent with
the intuition that the operator can always benefit from
reducing the fixed cost of opening new lines.

Effect of the average delivery time requirement 7. A
smaller average delivery time requirement indicates a

shorter delivery time and thus a higher level of customer
service. To calibrate the effect of the average delivery
time requirement, we normalize its value by the mean
delivery time among all candidate routes. Figure 5(b)
shows that, in general, the average delivery time require-
ment has a threshold effect on the cost, which suggests
that the operator is able to select the best delivery time
requirement parameter by conducting the sensitivity
analysis.

Effect of the minimum volume required Q to open
new lines. Figure 5(c) shows the performance of the SP-
RC model under different normalized values of Q. We
observe that setting a higher value of Q always leads to a
higher operational cost. The operator should balance the
practical operation regulations and the operational cost
when selecting the value of Q.

Effect of risk-averse a-level. Figure 5(d) reports the
performance of the SP-RC model under different risk-
averse levels. From Fig. 5(d), we observe that the opera-
tional cost always increases as the value of o increases.
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6.05 A —— " - .
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AA/A/N “— Total cost
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Fig. 5 The impact of parameters on the operational cost.
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As a approaches 0, the CVaR of transportation cost coin-
cides with the average cost. This outcome is consistent
with the definition of CVaR as CVaR,(X) = E[X]. As «
approaches 1, the operational cost increases rapidly.
Figure 5(d) suggests that the operators’ risk preferences
should be carefully calibrated to avoid over-conservative
decisions.

5 Conclusions

This study investigates the joint new-line-opening and
rerouting response strategy for LNs under disruption in
the express industry. This research proposes a novel two-
stage SP model with robust delivery time constraints. In
the first stage, the proposed model aims at finding robust
new-line-opening decisions in the face of uncertain trans-
port demands and transportation times by minimizing the
CVaR criterion and considering the robust delivery time
constraints. In the second stage, the proposed model is
capable of selecting the optimal routes and loading plans
when the uncertainties are fully disclosed. We derive an
equivalent tractable MILP reformulation for the proposed
model by linearizing the CVaR objective function and
dualizing the infinite number of robust constraints into
finite ones. We further conduct a case study based on the
historical data of the JD LN when the pandemic hit
Wuhan. The case study shows that the LN can greatly
benefit from jointly optimizing the new-line-opening and
rerouting decisions in comparison with single rerouting
strategy. Moreover, although the proposed SP-RC model
is inclined to open more new lines, it outperforms both
the DM and SP models in terms of delay time and loading
rate. The operational cost given by the SP-RC model is
superior to that of the DM model and is comparable with
that of the SP model. A sensitivity analysis is conducted
to provide suggestions on parameter calibration for the
LN operators.

The proposed model adopts scenario-based uncertainty
sets to describe the uncertain transportation times and
imposes robust delivery time constraints to guarantee
delivery time requirements. However, the robust
approach may lead to conservative solutions. One way to
reduce the conservativeness of robust optimization is to
consider more distributional information and use the
distributionally robust optimization approach (Zhang
et al., 2022). Another future research direction is to
design a more efficient customized algorithm for the
equivalent MILP reformation by exploiting its structural
properties.
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