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GRAPHIC ABSTRACT

* Hybrid deep-learning model is proposed for
water quality prediction.

* Tree-structured Parzen Estimator is employed
to optimize the neural network.

* Developed model performs well in accuracy
and uncertainty.

e Usage of the proposed model can reduce
carbon emission and energy consumption.
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ABSTRACT

Anaerobic process is regarded as a green and sustainable process due to low carbon emission and
minimal energy consumption in wastewater treatment plants (WWTPs). However, some water quality
metrics are not measurable in real time, thus influencing the judgment of the operators and may
increase energy consumption and carbon emission. One of the solutions is using a soft-sensor
prediction technique. This article introduces a water quality soft-sensor prediction method based on
Bidirectional Gated Recurrent Unit (BiGRU) combined with Gaussian Progress Regression (GPR)
optimized by Tree-structured Parzen Estimator (TPE). TPE automatically optimizes the
hyperparameters of BiGRU, and BiGRU is trained to obtain the point prediction with GPR for the
interval prediction. Then, a case study applying this prediction method for an actual anaerobic process
(2500 m?/d) is carried out. Results show that TPE effectively optimizes the hyperparameters of
BiGRU. For point prediction of COD, and biogas yield, R? values of BiGRU, which are 0.973 and
0.939, respectively, are increased by 1.03%—7.61% and 1.28%—10.33%, compared with those of other
models, and the valid prediction interval can be obtained. Besides, the proposed model is assessed as a
reliable model for anaerobic process through the probability prediction and reliable evaluation. It is
expected to provide high accuracy and reliable water quality prediction to offer basis for operators in
WWTPs to control the reactor and minimize carbon emission and energy consumption.

© Higher Education Press 2023
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treatment plants (WWTPs) have attracted attention.
Various power equipment is used in WWTPs, causing a
large amount of energy consumption (Di Maria and
Micale, 2015). Besides, organic pollutants in wastewater
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are mineralized into CO,, thus increasing carbon emission
and aggravating the greenhouse effect (Hauck et al.,
2016). In WWTPs, energy should be recycled, and carbon
emission should be reduced. Among many wastewater
treatment processes, the anaerobic process has been
recognized as a green and sustainable process due to the
advantages of high efficiency, low carbon emission, low
energy consumption, and considerable bioenergy
reproduction by converting biogas into heat, electricity, or
fuel (Kim et al., 2012; Wei et al., 2020; Heydari et al.,
2021; Senol, 2021).

Although the anaerobic process has many merits in
wastewater treatment, some of the water quality metrics
of this process are not measurable in real time to reflect
the actual water quality due to lack of corresponding
sensor (Newhart et al., 2019; Ching et al., 2021; Darvishi
et al, 2021). Besides, the inner reaction is an
environmentally sensitive process, which may cause
acidification collapse because of misjudgment and poor
control (Han et al., 2021; Wu et al., 2021). Moreover,
poor control of the reaction system leads to poor water
quality, increased carbon emission, and extra usage of the
equipment with increased energy consumption (Wang
et al., 2016). The water quality soft-sensor prediction is
needed by operators in WWTPs to obtain all water quality
metrics at the same time for improved control and
minimize carbon emission and energy consumption. The
soft-sensor technique is an emerging method applied in
industrial process monitoring (Yaginuma et al., 2022).
Traditional data collection in the industry relies on a large
number of sensors, whereas the soft-sensor technique
uses software to predict the uneasily measurable variables
from real-time measurable variables (Kadlec et al., 2009).
Soft-sensor technique can effectively save cost on
equipment procurement and extra space on equipment
installation and avoid the financial loss and serious safety
issues due to possible hardware failure (Jiang et al.,
2021).

In recent years, the machine learning-based soft-sensor
method is increasingly becoming popular. The machine
learning method, such as Support Vector Machine (Zeng
et al., 2006), Random Forest (Szelag et al., 2017), and
Gaussian Process Regression (GPR) (Samuelsson et al.,
2017), uses a data-driven model to predict future data
from historical data. This method is able to deal with data
with high dimension, low stability, and nonlinearity.
However, given the increase in the amount and dimension
of data, high accuracy is difficult to obtain using the
single traditional machine learning method.

Nowadays, deep learning has been rapidly developed to
provide researchers with a new way to deal with proposed
problems. The Recurrent Neural Network (RNN) (Chen
et al,, 2010) is a deep learning model aiming at the
sequential problem and is suitable for predicting water
quality. However, for data with large length, RNN exists
a long-term dependency and easily causes gradient
extinction and gradient explosion, thus limiting its

application. The Long Short-Time Memory (LSTM) (Li
et al., 2021) solves the mentioned defects by adding the
input gates, forget gates, and output gates in RNN. LSTM
has high converged rate and high prediction accuracy, and
its applications have covered many fields. The Gated
Recurrent Unit (GRU) (Li et al., 2021) is the variant of
LSTM that has a simpler gate structure. GRU can reduce
training time and obtain the prediction accuracy close to
LSTM. Moreover, the Bidirectional Gated Recurrent Unit
(BiGRU) (Wang et al., 2021), as an innovation of GRU
by adding a bidirectional recurrent layer, is proven to
overcome the forgetting problem and enhance the
accuracy efficiently.

For water quality monitoring, prediction should provide
the trend and give the scope of change, i.e., interval
prediction, which is useful for the operators to know the
fluctuation of water quality. Besides the point prediction,
some machine learning methods, such as GPR, are skilled
at obtaining the interval prediction to describe the
uncertainty of the prediction result. GPR can achieve
good performance in water quality prediction and produce
high reliable prediction interval (Zhang et al., 2019).

For the traditional neural network constructing process,
manually tuning the hyperparameters, the configurations
of the network, is laborious and time-consuming for
researchers. Automatic hyperparameters optimization
methods, like Tree-structured Parzen Estimator (TPE)
(Nguyen et al., 2020), provide a new way to construct the
neural network efficiently, thus saving remarkable time
for researchers.

In summary, the main contributions of the paper are as
follows:

1) A hybrid model combined BiGRU and GPR, called
BiGRU-GPR, is introduced in this paper to achieve high
accuracy prediction and obtain its uncertain information.

2) An automatic hyperparameter optimization method
called TPE is employed to tune the hyperparameters of
BiGRU to save the neural network constructing time and
avoid the local optimum.

3) Data from a full-scale anaerobic WWTP is employed
to verify the performance of the proposed model. This
study is the first to use BiGRU-GPR and the TPE
optimization method to predict the anaerobic water
quality.

4) The proposed method aims to obtain a high-precision
and reliable model to predict the water quality and
promote the reduction of carbon emission and energy
consumption for anaerobic process.

2 Methodology
2.1 Tree-Structured Parzen Estimator (TPE)

In machine learning, hyperparameters define the model
structure and decide the prediction accuracy and training
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time, such as learning rate, batch size, iteration, and cell
size of hidden layer. Hyperparameters need to be
manually tuned, which is time-consuming and a potential
local optimum dilemma. Automatic optimization provides
a new method to tune the hyperparameters for researchers
(Qiao et al., 2020; Xu et al., 2021). Random Search (RS)
and Grid Search (GS) (Putatunda et al., 2018) are typical
automatic hyperparameter optimization methods that
select the hyperparameters by random combination and
traversal combination, respectively. Using RS and GS can
free researchers from manual tuning. However, large
amounts of computing resources are consumed because of
their randomness and traversal. TPE is an enlightening
automatic hyperparameter optimization method based on
Bayesian Optimization (Nguyen et al., 2020), which can
improve the hyperparameter combination process
compared with RS and GS.

TPE algorithm assumes a set of observations obeying
the Gaussian distribution that takes {x?,y®,i=1,2,...,k},
where x® denotes the hyperparameter set, y” denotes the
corresponding training loss, and k is the number of
iterations. At the initial iterations, RS is employed to

select the hyperparameters in search space. Then,
observations are split into D, and D, as follows:
l(x), y<y
= . 1
pe={ o I3 ()

where /(x) and g(x) respectively denote the probability
density function (PDF) of D, and D,. y* is selected to be a
y-quantile of the observation results, satisfying p(y* > y)
= 9. Therefore, y* can be defined as the splitting point
between D, and D,

An Expected Improvement (EI) function is used as an
objective function as follows:

B = [ 0= P
1 @)
[+ E2a-y)

Then, TPE selects the next hyperparameters x(*D by
maximizing EI. The TPE repeats the above steps until the
max iteration is reached.

2.2 Bidirectional Gated Recurrent Unit (BiGRU)

2.2.1 Gated Recurrent Unit (GRU)

RNN and its variants, i.c., LSTM and GRU, have been
widely used in recent years to predict the nonlinear time
series data. GRU consists of an update gate z, that decides
how much the past information is carried over to the
future and a reset gate r, that determines how much the
previous information is passed into the current memory
content. The formulas involved in GRU are shown as
follows:

rn=ocW.-h_ +W,-x,), 3)
z=0W_.-h_ +W,-x,), 4
h, = tanh(W; - x, + W; - (r, O h,_,)), (5)
hy=(1-z)0h._, +z,0h, (6)

where W, W, and W, represent weight matrices; x,
represents current inputs; 7, is the current memory
content; /, is current outputs; and 4, , is the past outputs.
Besides, o(-) denotes sigmoid function, tanh(-) denotes
hyperbolic tangent function, and O denotes the
Hadamard product. This structure enables GRU to
connect the dependencies in long-term or short-term time
scale. Thus, GRU can solve the time series problems. The
gate structure of GRU is shown in Fig. 1(a).

Comparing LSTM involving input gate, forget gate,
and output gate, GRU only mentions two gates, thus
consuming less time on training and test while
performing similarly (Hochreiter and Schmidhuber,
1997).

2.2.2 Bidirectional Gated Recurrent Unit (BiGRU)

The x, is carried by forward propagation in the proposed
model as a one-way neural network. However, some
connections between the previous and future data for the
actual time series information may be present. BIGRU is
an advanced version aiming at the bidirectional
propagation by adding a bidirectional recurrent layer in
original GRU that can enhance prediction precision and
solve the forget problem (Wang et al., 2021).

2.2.3  Dropout algorithm

Overfitting is a critical and common problem in the
training process of deep neural network. When samples of
the training set are few or the hyperparameters of the
model are many, overfitting may appear quickly.
Specifically, high accuracy in the training set but low
accuracy in the test set may be observed. A method to
avoid overfitting is using the hybrid model to exert the
merits of every model to increase the accuracy through
time-consuming training.

A dropout algorithm can effectively alleviate
overfitting (Pham et al., 2014). The cells of the hidden
layer are endowed with a random probability to be invalid
during the training process. The proposed probability p,
also called the dropout rate, is one of the hyperparameters
of the dropout algorithm. As illustrated in Fig. 1(b), some
of the cells of the hidden layer are removed when
applying the dropout algorithm during the actual training
process (Srivastava et al., 2014). Then, each hidden cell
can create useful information independently without
relying on other cells.

The whole network structure is shown in Fig. 1(c).



4 Front. Environ. Sci. Eng. 2023, 17(6): 67

2

j N\

&
X,

© 606 ®©® ([

Hadamard pointwise one minus sigmoid tanh
product addiction function function
(a)

BiGRU

Output layer

Dropout layer

Hidden layer

Input layer

(c)

Fig. 1 Structure of proposed network and algorithm: (a) Structure of GRU; (b) A full connected network after using dropout

algorithm; (c) The whole structure of BiGRU.

2.3 Gaussian Progress Regression (GPR)

GPR is a non-parametric machine learning approach
based on Bayesian regression (Zhang et al., 2016). It
skills at the regression of data with high-dimension, non-
linear, and small samples. GPR is usually combined with

neural network to obtain corresponding interval
predictions to increase the accuracy and reliability of the
prediction.

The construction process of GPR is as follows. The
kernel function and its hyperparameters are first set to
determine prior distribution. Then, the GPR model is
trained to obtain the optimal hyperparameters by using
the maximum likelihood estimation. The GPR model is
uniquely determined once the training data, kernel
function, and hyperparameters are confirmed. Lastly, the
mean and variance of test data are calculated.

Suppose a training set {x, fx,), =1, 2, ..., m} and a test
set { xu, flxs), /=1, 2, ..., n} split from a time series
dataset, when there is noise ¢ in data, GPR assumes that
the noise obeys the Gaussian distribution whose mean is
equal to 0 and variance is equal to 0.

y=f)+e, &~ N(,07). (7
GPR assumes that observations obey the joint Gaussian
distribution as follows.

y K(X,X)-’ro'iIN K()C,X*)
(y*)NN(O’ [ K(x.,x)  K(x.,x) ])
K, K.
=N (0’ [ K" K. ]) ®)
K,=K+0oly, )

where K is the covariance matrix, i.c., kernel function, *
and ** are the symbols distinguishing different
covariance matrices, and /,, is the N X N unit matrix.

According to the Bayesian regression, the predictive
distribution of y* is calculated as follows:

P(y.ly) = N(5.07), (10)
y=K/K;'y, (11)
o =K.-K'K;'K., (12)

where y and o2 denote the mean and variance of the
probability distribution function of the point prediction
respectively.

Kernel functions include Radial Basis Function (RBF),
Rational Quadratic (RQ), Square Exponential covariance
function (SE) and Mattern function. The formulas are as
follows:

o o
L)’ (13)

KRBF = eXp( - 20—2
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Kwo=|1 sl [>0
e 200 ) "7 (9
K =exp| - ||xi’Xj“2 (15)
SE P sy )
X 2 ‘/2v||xl~,xj VK 2V||xi’x./H 1
Mattern — F(V)( Ji ) "( [ )’ ( 6)

where o, a, [, and v are the hyperparameters of the kernel
function.

The hyperparameters of the kernel function are
optimized using the maximum likelihood estimation. The
formula is shown below:

L(0) = —logN (0,K..(6))
1 1
= EyTK*;'y+ ElogIK**|+glog(2n), (17)
where 0 denotes the hyperparameter to be optimal.
Therefore, for GPR, the point prediction result is ¥, and

the corresponding 95%  prediction interval is
[y-1.960,,5+ 1.960,].

2.4 Proposed model

Given the high point prediction accuracy of BiGRU and
reliable interval prediction result of GPR, a hybrid model
consisting of BiGRU and GPR is constructed in this
study. The constructing process includes three steps.
First, the original structure of the BIGRU model is built.
Second, TPE is employed to optimize the hyperparame-
ters by training BiGRU. Third, TPE selects the best trial
and outputs the first prediction result, i.e., point
prediction result. Then, on the basis of the first prediction
data, GPR is built and outputs the second prediction
results, including interval prediction and probability
prediction. Finally, reliability evaluation is employed to
test whether the proposed model is reliable. The complete
construction process of the proposed model is shown in
Fig. 2.

3 Case study
3.1 Data resources

The experimental dataset from the Internal Circulation
process in a full-scale anaerobic WWTP (2500 m3/d)
located in Guangdong province, China is employed to
train and test the proposed model. The features of the
dataset include pH, alkalinity (ALK, mg/L), organic
loading rate (OLR, kgCOD/(m3-d)), hydraulic retention
time (HRT, h), flow rate (Q,,,, m?/d), and inflow chemical
oxygen demand (COD, . mg/L). Labels include effluent
chemical oxygen demand (COD,y mg/L) and biogas

yield (m3/d).

The pieces of equipment of the automatic monitoring
system include probes (HACH® SC1000, USA) for pH,
biogas yield, and ALK; flowmeters (OMEGA® FL-
6101B, USA) for HRT and @, ; and COD online monitor
(INESA® COD-583, China) for OLR, COD and
COD 4.

inf>

3.2 Data preprocessing

3.2.1 Feature selection

The proposed features with poor correlation between the
labels are unnecessary to the training process and may
cause interference, which may decrease the robustness of
the model (Newhart et al., 2019; Xu et al., 2021). Thus,
the unnecessary variable should be removed. A
correlation analysis is conducted for all variables. The
Spearman correlation coefficient (p) of two variables is
calculated using the following formula:
6> d

Py (18)
where d; denotes the rank difference i-th sample of two
variables, and 7 is the number of samples. The p value
close to 1 or —1 indicates correlation between the two
variables, and p value higher than O represents positive
correlation. After calculating all p values, a correlation
coefficient matrix is generated. The result is shown in
Fig. 3 with a heatmap. The factors affecting COD g and
biogas yield most are COD, ; and OLR, respectively. The
p value between O, - and COD_4 is —0.0016, showing a
very low correlation. Besides, the p between O, . and
HRT is closer to —1, demonstrating that they exist a high
linear correlation and are not independent. Therefore, O, ¢
is suggested as an unnecessary variable for training
process and removed in the latter prediction.

3.2.2 Dataset split

Generally, for small scale dataset, it is split into training
set and test set in a ratio of 8:2. In this study, the dataset
includes 150 samples and is split into 120 (80%) samples
for training and 30 (20%) samples for test. The plots for
the dataset are shown in Fig. S1.

3.2.3 Normalization

Given the huge differences in magnitude between
different variables, a normalization process is needed to
eliminate the dimensional effects and increase the
coverage rate before training the model. In this study, a
typical normalization method is employed to normalize
the training data to [0,1]:

, _ x—min(x)

* T max(x)—min(x)’

(19)
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Fig.2 Flowchart of construction process of proposed model. The blue arrows represent the construction process, and the red arrows
represent dataset combination. X denotes the features, ¥ denotes the labels. The superscript “tr” and “te” respectively denote training
set and test set. The subscript “1”” and “2” respectively denote the first and the second.

where x is original value of any feature; max(x) and
min(x) denote the max and min values of the correspon-
ding features, respectively; and x' is the normalized value.

3.3 Evaluation metrics

3.3.1 Evaluation metrics of point prediction

1) Coefficient of determination (R?)

R? characterizes the deviation degree between
predictions and observations. It ranges from 0 to 1, and it
value close to 1 indicates high point prediction accuracy.
The formula is as follows:

2@,- -y
an()’i _)_’)2

where J; is the i-th observation, y; is the i-th observation,
y is the mean of observations, and n is the number of
samples.

2) Root mean square error (RMSE)

RMSE is defined as the root of the mean of squared
error between predictions and observations. RMSE close
to 0 indicates high degree of congruence between
predictions and observations.

R (20)
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3) Mean absolute percentage error (MAPE)

MAPE characterizes the mean deviation degree
between predictions and observations. It is a perfect
prediction model with MAPE equal to 0, and a poor
model with MAPE higher than 100%.

100% an‘ﬁ-—yi‘
neAgh ’
4) Test time (TT)

Since the GRU has a simpler structure than LSTM but
can obtain a similar prediction accuracy, TT is chosen to
evaluate the time consumed of GRU. TT evaluation
begins with the start of TPE and ends with the test
process of BiGRU.

MAPE =

(22)

3.3.2 Evaluation metrics of interval prediction

1) Coverage percentage (CP)

CP is defined as the percentage of the observation that
falls within the prediction interval and describes the
accuracy of the interval prediction. The formula is as
follows:

CP =n;/n, (23)
where n; denotes the amount of the observations that fall
within tﬂe interval.

2) Mean width percentage (MWP)

MWP reflects the mean width of the prediction interval.
A low MWP means high reliability of the interval
prediction. The formula is as follows:

MWP = Z yupper,i ~ Yiower,i , (24)

Vi

where y,oo..; and yy,.,; denote the upper and lower
bounds of the i-th example, respectively.

3) MC value

The interval prediction cannot be evaluated only
according to CP or MWP. On the one hand, a high MWP
certainly obtains a high CP value, but such interval lacks
reliability and fails to offer effective uncertain
information for the prediction. On the other hand, an
excessively low MWP may cause a low CP (Zhang et al.,
2019). Therefore, MC is employed to evaluate the
interval prediction synthetically. Its definition is given as
follows:

i=1

MC = MWP/CP. (25)

3.3.3 Evaluation metrics of probability prediction

Continuous ranked probability score (CRPS) is a widely
used probability prediction function. It evaluates the
difference in distribution between prediction and
observation. A low CRPS presents small differences
between the above distributions (Ferro, 2014). Its
formulas are as follows:

IR ..
cm@:ZZ;LWWQQ—H@r%H®m (26)

Fo)= [ peodx, en
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H@i—y) = {
where F (y;) denotes cumulative distribution function of
prediction, and H($; —y;) is a step function.

3.3.4 Evaluation metrics of reliability

Probability Integral Transform (PIT) means that any
continuous random variable is transformed into a uniform
distribution. Its application in this study is estimating the
robust reliability of the model (Jupp and Kume, 2020). If
PIT values follow a uniform U(0, 1) distribution, the
prediction of the proposed model is accurate (Safari et al.,
2020). Furthermore, a Kolmogorov significance band is
used to provide a formal evaluation of the uniformity
(Laio and Tamea, 2007). The Kolmogorov significance
band is an area between two straight lines parallel to the
diagonal and g(a)/+n away from it, where g(a) is a
coefficient determined by the significance level a, and n
is the samples of features. In this study, a = 5% is used.

3.4 Study environment

The models in this study are based on the TensorFlow in
Python, which contain a large amount of standard
libraries of neural networks. Deep learning needs huge
computing resources, and the TensorFlow provides a
platform to invoke the NVIDIA GPU to accelerate the
calculation by using parallel computing. Thus, the

. Eng. 2023, 17(6): 67

proposed models are run by the NVIDIA GPU. The
configures of study environment are shown in Table S1.

4 Results and discussion

4.1 Automatic hyperparameter optimization

In this study, five hyperparameters of BiGRU, including
cell size of hidden layer, dropout rate, learning rate,
iteration, and batch size, are set to be optimized. The
search space of the mentioned hyperparameters is shown
in Table S2.

For comparison, RS is employed to optimize the same
model with the same search space. The optimization trials
are set to 50 for two algorithms. The optimization effect
is evaluated by training accuracy in each trial and the
highest R? of all trials.

Figs. 4(a)—4(e) show the selection of hyperparameters
in each trial of TPE and RS on the BiGRU training
process. Besides, R?, the corresponding training accuracy,
is illustrated in Fig. 4(f). As mentioned in Section 2.1,
TPE uses RS to select the hyperparameters and split the
search space into D, and D, in accordance with training
accuracy. Thus, it can be seen in Fig. 4 that the
hyperparameter selection of TPE over the first 20 trials
are similar to those of RS and the R? is approximated.
After the initialization progress, the training accuracy of
RS is still unstable, while TPE quickly increases and
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Fig. 4 Comparison over 50 trials by TPE and RS: (a)—(e) Hyperparameters selection; (f) Training accuracy. Grey area is the initial

iterations. Red denotes TPE and blue denotes RS.
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maintains a high level. It is because the enlightening
search strategy of TPE has already reacted and the
hyperparameter search focuses on D,, whereas RS still
uses the random strategy to select the hyperparameters.
The accuracy metrics are given in Table 1. Compared
with RS, TPE obtains 0.975, 0.954, and 0.000297 for the
higher max R2, average R?, and lower variance of RZ,
respectively. Besides, a t-test using the two-tail and two-
sample tests of heteroscedasticity is employed to test
whether the R? values of TPE and RS are significantly
different. As shown in Table 1, p-value is 0.0127, smaller
than 0.05, reflecting a significant difference for the R2
between TPE and RS. In conclusion, TPE obtains a high
and stable effect in hyperparameters optimization.

4.2 Point prediction result

The cell size of input layer and output layer are
respectively set to five and two. The input layer is
corresponding to five features and output layer is
corresponding to two labels. For the optimizer of the
neural network, compared with the typical gradient
descent method, the adaptive moment estimation
(ADAM) sets the self-adaptive learning rate by
calculating the first-moment estimation and the second-
moment estimation, rather than the steady learning rate.
Thus, ADAM is chosen to be the optimizer of BiGRU.
The activation function is set to RELU because it can

BiRNN and BiLSTM are employed for comparison,
whose dataset, hyperparameters to be optimized, and
search space are the same as those of BiGRU.

Fig. 5 and Table 2 show the point prediction results and
metrics of COD,; and biogas yield among BiGRU,
BiRNN, and BiLSTM. For COD,g, the R?, RMSE, and
MAPE of BiGRU are 0.973, 24.94 mg/L, and 2.38%,
respectively, showing the best performance among the
three algorithms. Besides, for biogas yield, the RZ,
RMSE, and MAPE of BiGRU are 0.939, 169.32 m?/d,
and 4.66%, respectively, presenting the lowest loss of the
three models. It is because BiGRU can effectively avoid
the long-term dependency, gradient explosion, and
gradient extinction. Given that RNN has the simplest
structure of the three models, its TT is the lowest. BIGRU
saves 11% and 12% test time than BiLSTM because of
the simpler structure. Therefore, BiGRU is certainly less
time-consuming than BiLSTM for similar prediction
accuracy. For point prediction, BiGRU has evident

I+ BiGRU-GPR —@— BiLSTM-GPR _—#— BiRNN-GPR —#— observation

i i g 0 5 10 15 20 25 30
maintain the convergence rate in a stationary state and Period
avoid the gradient extinction or gradient explosion (a)
problem in tanh and sigmoid functions. Finally, mean 4500 EDGRUGI 8- mioTVOIR A BRNNGIR = obsnaion |
squared error (MSE) is selected as the loss function of the 5
model. & 3500
RNNs, including RNN, LSTM, GRU, and their vari- 2
ants, are designed to solve time series problems. Thus, £ 2500
1500
Table 1 Comparison of R? over the last 30 trials between TPE and ! L . : ; .
RS 0 5 10 15 20 25 30
Period
gg:ﬂn;ézsanon Max R? Average R?> Variance of R? p value of the ¢-test (b)
TPE 0.975 0.954 0.000297 ) o
RS 0.970 0.935 0.000732 0.0127 Fig.5 Point prediction results of three models. (a) COD.g
: : : (b) Biogas.
Table 2 Metrics of three models.
Point prediction Interval prediction Probability prediction
Feature Model Test time (s)
R? RMSE*  MAPE (%) CP MWP MC CRPS
BiGRU-GPR 0.973 24.94 2.38 0.93 0.12 0.13 0.0329 2093
COD,;  BILSTM-GPR 0.963 30.31 2.84 0.97 0.15 0.15 0.0412 2356
BiRNN-GPR 0.899 48.54 5.22 1 0.24 0.24 0.0504 1769
BiGRU-GPR 0.939 169.32 4.66 0.9 0.24 0.27 0.0988 1953
Biogas BIiLSTM-GPR 0.927 184.89 5.26 0.97 0.31 0.31 0.110 2238
BiRNN-GPR 0.842 27537 8.06 0.93 0.39 0.42 0.186 1641

Notes: *, The unit for RMSE of COD,; and biogas production is mg/L and m3/d, respectively.
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dominance among the three comparison models in COD
and biogas yield prediction.

4.3 Interval prediction result

In this study, GPR is employed to obtain the prediction
interval and calculate the metrics mentioned above. In
GPR, different kernel functions can be selected (Kang
et al., 2019). For flexibility, RBF is chosen because it is
suitable for high-dimension and nonlinear data (Ozcan
et al., 2016). BiGRU, BiLSTM, and BiRNN are com-
bined with GPR for comparison. The interval prediction
results of COD_; and biogas yield between BiGRU,
BiRNN, and BiLSTM are given in Fig. 6 and Table 2. For
CP, BILSTM-GPR simultaneously obtains 0.97, which is
the highest value in COD_; and biogas yield predictions.
However, for MWP, BiGRU-GPR has narrower width of
COD,_4+ and biogas yield prediction of 0.12 and 0.24,
respectively. For the synthetical metric MC, BiIGRU-GPR
is 0.12 and 0.27, respectively, indicating that BiGRU-
GPR achieves the best performance in interval prediction.
This is because interval prediction with good performance
is based on point prediction with high accuracy. The
prediction interval becomes narrower and cover
observation values when point prediction obtains high
accuracy, thus the MC value will be higher. Therefore,
the proposed BiGRU-GPR model is remarkably suitable
for COD, and biogas yield prediction.

4.4 Probability prediction result

In probability prediction, the GPR model is the same as

[ BiGru-GPR T

_ | BILSTM-GPR || BiRNN-GPR _—M— Observation

0 5 10 15 20 25 30

Period
(2)
5000 F [COBiGRU-GPR T __ T BiLSTM-GPR__|__| BiRNN-GPR__—Ml— Observation
S 4000 |
E
% 3000 +
<
&n
=)
m 2000
1000 ¢ 1 1/ 1 1 1 1
0 5 10 15 20 25 30
Period

(b)

Fig. 6 Interval prediction results of three models. (a) COD.g
(b) Biogas.

that in interval prediction. The probability prediction aims
to evaluate the distribution differences between prediction
and observation. Similarly, BILSTM-GPR and BiRNN-
GPR are employed for comparison with BiGRU-GPR.
The probability prediction result is shown in Table 2.
BiGRU-GPR obtains the lowest CRPS for COD,
prediction by 0.0329 and biogas yield prediction by
0.0988. This finding is because BIGRU-GPR obtains the
best performance in point prediction and interval
prediction. Thus, its distributions of two predictions of
BiGRU-GPR are approximated with the distributions of
two observations.

4.5 Reliability evaluation of BIGRU-GPR

Through the above three evaluations, BIGRU-GPR is the
best model for COD, and biogas yield predictions. Then,
a reliability test only for BiGRU-GPR is processed to
ensure that the results are persuasive. In this test, PIT
values are calculated to evaluate the reliability of the
model. As shown in Fig. 7, PIT values are drawn in the
plots. The points in the plots are similarly arranged in
straight lines and fall into the Kolmogorov 5%
significance band for COD_ and biogas yield. This result
demonstrates that PIT wvalues are distributed quite
uniformly and that the probability distributions are not
too high or low and not too wide or narrow. Thus, the
prediction of the proposed model is convincing and
reliable.

4.6 Significance of the proposed model

The proposed soft-sensor model has obtained R? of 0.973
and 0.939 of point prediction. Also, the model provides a
valid prediction interval, reflecting the fluctuation range
of water quality. In addition, the model is assessed as a
convinced model through probability prediction and
reliability evaluation. The proposed model has performed
well and can completely meet the demand of water
quality prediction.

For full-scale wastewater treatment applications, the
proposed model overcomes the shortcomings that some
water quality metrics are unmeasurable online, thus
achieving the sync output of all metrics. Besides, the
neural network is used to evade the calculation of
complex mechanism of anaerobic process and can
provide a reliable basis for operators to control the reactor
system well and avoid abnormal water quality, extra
power consumption, increased carbon emission, and
collapse of reaction system due to misjudgment and
misoperation.

The proposed model is suitable for water quality
prediction and is also skilled at solving the time series
problems. A quantitative relationship also exists between
water quality and carbon emission, which can be
calculated in real time. Besides, energy consumption,
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Fig. 7 Reliability evaluation of BiIGRU-GPR. The red area denotes Kolmogorov 5% significance band, red diagonal line is the
theoretical uniform distribution and the points are PIT values. (a) COD,; (b) Biogas.

including electricity and heat, in WWTPs can be
measured or calculated in real time. Carbon emission and
energy consumption data are also time series. An intuitive
and precise basis for operators can be provided if the data
of carbon emission and energy consumption are available,
and the two can be directly predicted by the proposed
model.

5 Conclusions

Water quality prediction based on deep learning, a new
and developing technology for WWTPs, can precisely
forecast the operation status and alleviate the adverse
effect when manual management errors occur. A new
water quality prediction method, BIGRU-GPR based on
TPE optimization, is introduced in this article. In this
method, TPE effectively avoids the time-consuming
process of manual hyperparameter optimization and
achieves good performance. BiGRU is adopted to obtain
point prediction, and GPR obtains the uncertainty
information and prediction interval. Nine evaluation
metrics, including R%, RMSE, MAPE, TT, CP, MWP,
MC, CRPS, and PIT, are employed to verify the model.
Research indicates the following results. 1) BiGRU has
the point prediction result with high accuracy under the
automatic hyperparameter optimization of TPE. 2) GPR
calculates the PDF of point prediction and proves that
BiGRU-GPR model has predominance in interval
prediction and probability prediction in three comparison
models. 3) BiGRU has good robustness because its PIT
value distributes uniformly. 4) The soft-sensor model
provides a reliable basis for the operator in WWTPs to
control the water quality precisely for reducing carbon
emission and energy consumption.
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Abbreviations

WWTPs  Wastewater Treatment Plants
SVM Support Vector Machine

RF Random Forest

GPR Gaussian Process Regression

ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Time Memory

GRU Gated Recurrent Unit

BiGRU  Bidirectional Gated Recurrent Unit
TPE Tree-structured Parzen Estimator
RS Random Search

GS Grid Search

RBF Radial Basis Function

SE Square Exponential Covariance function
RQ Rational Quadratic
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ALK Alkalinity

OLR Organic Loading Rate

HRT Hydraulic Retention Time

COD Chemical Oxygen Demand

MSE Mean Square Error

RMSE Root Mean Square Error

MAPE Mean Absolute Percentage Error
CP Coverage Percentage

MWP Mean Width Percentage

CRPS Continuous Ranked Probability Score
CDF Cumulative Distribution Function
PDF Probability Density Function

PIT Probability Integral Transform
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