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ABSTRACT This paper presents a combined method based on optimized neural networks and optimization algorithms
to solve structural optimization problems. The main idea is to utilize an optimized artificial neural network (OANN) as a
surrogate model to reduce the number of computations for structural analysis. First, the OANN is trained appropriately.
Subsequently, the main optimization problem is solved using the OANN and a population-based algorithm. The
algorithms considered in this step are the arithmetic optimization algorithm (AOA) and genetic algorithm (GA). Finally,
the abovementioned problem is solved using the optimal point obtained from the previous step and the pattern search
(PS) algorithm. To evaluate the performance of the proposed method, two numerical examples are considered. In the first
example, the performance of two algorithms, OANN + AOA + PS and OANN + GA + PS, is investigated. Using the GA
reduces the elapsed time by approximately 50% compared with using the AOA. Results show that both the OANN + GA +
PS and OANN + AOA + PS algorithms perform well in solving structural optimization problems and achieve the same
optimal design. However, the OANN + GA + PS algorithm requires significantly fewer function evaluations to achieve
the same accuracy as the OANN + AOA + PS algorithm.

KEYWORDS optimization, surrogate models, artificial neural network, SAP2000, genetic algorithm

1 Introduction typically focus on the optimization of actual structures
modeled using these software packages. Because the
problem-solving process using these software packages is
time-consuming, the use of optimization algorithms,
which are typically processed using multiple calls of the
objective function, poses significant challenges in solving
real optimization problems. For example, the finite
element analysis of a tie-arch bridge, which comprises
259 members, requires 60 s, but its optimization process
requires approximately 133 h [15].

Hence, machine learning (ML) has been developed in

Optimization achieves the best results for a system while
satisfying the constraints imposed [1]. Optimization
methods have been used in various engineering fields
[2-11], and several techniques have been proposed to
solve optimization problems. Some algorithms require an
initial population, such as the arithmetic optimization
algorithm (AOA) [12] and genetic algorithms (GA) [13],
whereas others perform optimization based on an initial
point, such as the pattern search (PS) algorithm [14]. The
former typically results in better solutions than the latter.

However, initial population-based techniques incur higher
computational costs than initial point-based techniques.
Commercial software, such as Abaqus, ANSYS,
COMSOL, and SAP2000, are employed to solve most
engineering problems. They have been developed for
decades and used as reliable solutions. Researchers
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recent years. Using ML-based surrogate models to predict
the behavior of structures reduces the number of finite
element analyses significantly and hence the overall
computational time [16].

These models can learn the problem environment based
on experiences obtained from problem solving. Different
types of surrogate models exist, such as neural networks,
kriging, support vector machines, and decision trees,


https://doi.org/10.1007/s11709-022-0899-9

Reza JAVANMARDI & Behrouz AHMADI-NEDUSHAN. OANN to optimize time-consuming problems

which can be used to solve various problems. Among the
surrogate models, neural networks offer three distinct
advantages, which have garnered the interest of resear-
chers. First, neural networks can learn any complex,
nonlinear environment. Second, they do not require any
initial assumptions regarding the data distribution. Third,
they can accommodate incomplete and lost data [17].

Surrogate models have been used to assist the
metaheuristic algorithms in several studies [3,18-21]. In
this study, a three-step approach is used for optimization.
First, an optimized neural network is calculated.
Subsequently, the main optimization problem is solved
using the surrogate model and a population-based
algorithm. The algorithms considered in this step are the
AOA and GA. Finally, the abovementioned problem is
solved using the optimal point obtained from the previous
step and the PS algorithm based on the initial point. In
this step, the optimal point obtained from the previous
step is used as the start point. Despite all the improve-
ments mentioned, these models are approximations of the
actual model; therefore, their output cannot be used with
certainty as the final output of the problem. Additionally,
a surrogate model with a fixed topology was used in the
aforementioned studies, which may cause an overfitting
of the surrogate model.

One of the most significant issues in learning neural
networks is the overfitting of learning data, where the
neural network no longer improves its ability to solve the
problem at a certain time during the learning period.
However, it learns the random regularities in the training
patterns [22-26]. Notably, determining the network size
for a specific application is difficult. If the number of
parameters in the network is much smaller than the total
number of points in the learning set, then overfitting will
not or is less likely to occur [27].

Herein, a three-step hybrid algorithm is proposed to
address the time-consuming nature of optimization
problems. The main objective of this method is to exploit
all the advantages of optimization algorithms, commer-
cial software, and surrogate models to solve the problem.
First, a surrogate model is proposed based on optimized
multilayer neural networks to minimize the risk of
overfitting. Second, the optimization problem is solved
using this model and a population-based algorithm. Third,
the problem is solved using an actual model (i.e., using
SAP2000 results) and an algorithm based on the initial
point. In this step, the PS algorithm defined in the
MATLAB optimization toolbox is employed; the PS
algorithm uses the optimal point provided in Step 2 as the
starting point.

2 Metamodels

The metamodels used were based on an approximate
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mathematical model of a detailed simulation model. This
model predicts the output data (objective response) from
the input data (design variables) in the entire design
space, which is more efficient than the process of detailed
simulation models [21]. The following three aspects are
prioritized in the metamodel construction process: a)
obtaining the initial input dataset points inside the design
space; b) selecting the metamodel type to construct the
approximate mathematical model; c) selecting the fitting
model. These steps can be performed using various
approaches [28]. Several mathematical formulations are
available for constructing metamodels with different
characteristics [28,29]. Although the performances of
these metamodels have been compared [30-32], the most
appropriate metamodel could not be determined because
the comparison was based on different problems. The
most typically used metamodels are polynomial
regression, neural networks, and kriging [28,29].

Several types of surrogate models have been applied in
structural engineering [33]. The use of kriging and
support vector regression for structural engineering
applications has been investigated [34]. The most
typically used methods are polynomial response surfaces
[32,35], polynomial chaos expansions [36], kriging or
Gaussian process models [37], support vector machines
[38], and artificial neural networks [39].

Neural networks are a form of computational method
based on the structure of neurons in the nervous system.
A neural network can detect the design of a database
using learning data. The most typically used neural
network is the “multilayer feedforward neural network”
which includes an input layer, one or more hidden layers,
and an output layer. In this network, neurons are
organized into multiple layers, including the input,
hidden, and output layers. The outputs from the previous
neurons become the inputs of the current neuron after
scaling is performed with the corresponding weights. All
inputs are summed and then transformed using an
activation function [16].

The backpropagation (BP) network is an outstanding
representative of a multilayer feedforward neural network
that uses an error BP algorithm. The error BP algorithm
comprises two stages: forward propagation of the signal
and BP of the error. The learning process of a neural
network is based on a learning set that adjusts the
connection weights between neurons and the biases of
each functional neuron. The neurons of the hidden layer
weigh the sum of the input variables (Eq. (1)), whereas
those of the output layer weighs the sum of the input
variables (Eq. (2)) [40].
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where f and ¢ are the activation functions of the hidden
and output layers, respectively; M and ¢ are the vector
dimensions of the input and output layers, respectively;
w;; and wy, are the weight of the input layer to the hidden
layer and that of the hidden layer to the output layer,
respectively; 6 and @, are the biases of the hidden and
output layers, respectively.

The output error of the entire network is calculated
using the error gradient descent method to adjust the
weights and biases of each layer until the output of the
modified network becomes similar to the expected value.

For a sample p, the error criterion function is defined as
follows [41]:

1 : P P\2
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The total mean square error (mse) criterion function for
learning sample P is estimated as follows [42]:
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where 7/ and O; are target and predicted values,
respectively, L is the number of outputs.

The learning process terminates when the total error
function reaches the desired value or satisfies the desired
requirements [43].

3 SM toolbox

Numerous studies using artificial intelligence and
optimization have been conducted in various engineering
fields, including structural and earthquake engineering. In
these studies, researchers used various programming
methods to investigate structures. Among the methods,
calling the SAP2000 software using MATLAB is one of
the most effective ones. SAP2000 was developed in 1975
by Computers and Structures, Inc., which is a Berkeley
University affiliate, and has been used by engineers in
160 countries [44]. In this study, the SM Toolbox, which
was developed to call the SAP2000 software using
MATLAB, was employed [45].

4 Parallel and serial processing

Parallel programming involves executing one or more
programs simultaneously on multiple processors. In this
method, a problem is segmented into several subproblems
such that they can be solved simultaneously. Subsequen-
tly, each subproblem is converted into a series of parallel
commands that are executed in parallel on processors. In
general, parallel programming involves the use of at least
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two microprocessors to perform a task. Hence, scientists
segment a specific problem into several components
using specific software. Subsequently, each component of
the problem is sent to a dedicated processor. Each
processor then performs a task assigned to the problem
solver, after which the software compiles the results for
the final solution of the initial complex problem [46].
Parallel programming allows problems to be solved in
less time, large and complex problems to be solved
consistently, and several operations to be performed
simultaneously. Furthermore, it allows the use of non-
local resources such as computers on a network, which
can significantly improve the programming capability.

5 GA and PS algorithms

The population-based algorithms considered in this study
were the AOA and GA. In addition, the PS algorithm was
used in the final step of the proposed method.

The GA is one of the first population-based stochastic
algorithms [47] and is inspired by the Darwinian theory
of evolution [48,49]. The GA assesses the suitability of
each chromosome in a population using a user-defined
cost function. This algorithm relies on biologically
inspired natural selection, crossover, and mutation
operators to achieve the optimal solution. The natural
selection operator is the process by which the next
generation of parents are selected. The crossover operator
creates the next generation by combining the parents
transferred from the previous generation. The mutation
operator randomly changes the genes of the chromoso-
mes.

The AOA is a fundamental component in number
theory. It is vital to modern mathematics, along with
geometry, algebra, and analysis. This algorithm is a
population-based metaheuristic algorithm that can solve
optimization problems without the calculation of their
derivatives. The proposed AOA is primarily inspired by
the use of arithmetic operators in solving arithmetic
problems, in particular the addition, subtraction,
multiplication, and division of numbers [12].

The PS algorithm is an effective search method for
solving engineering problems that require a significant
number of function evaluations (NFES) [14]. This
algorithm utilizes direct search for solving optimization
problems, does not require the function gradient, and
aims to obtain favorable results around the current point.
Direct search can be performed to solve problems in
which the objective function is not differentiable or
continuous [27].

6 Double-layer barrel vaults

A skeletal space frame refers to a system of individual
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members connected in three dimensions. It can support
loads at any point or angle relative to the structure surface
and direction. Furthermore, it is suitable for shielding
large surfaces without internal support [50]. Space frames
are widely used in designs that prioritize low weight, such
as those of structural and automotive engineering, space,
microlattice structures, and microelectromechanical sys-
tems [51]. One of the most important advantages of space
frames is their appropriate seismic behavior arising from
their light weight and high degree of static indeterminacy,
which affords adequate stability in local failures.
Additionally, space frames can span relatively large areas
without requiring internal support. Different types of
skeletal space frames are often used in the form of grids,
domes, and barrel vaults. As they can span large areas
without requiring internal support, they are primarily
utilized in constructing sports stadiums, exhibition
centers, halls, swimming pools, shopping malls, and
industrial buildings. The barrel vault, which is a trendy
design, is one of the oldest structures developed in the
nineteenth century using iron bars [52]. In the previous
century, barrel vault structures have been considered as
customized roofs for shielding large areas using steel
structural elements; in fact, they can span lengths

update dataset
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exceeding 100 m [53,54]. The early types of barrel vaults
were single-layer barrel vaults. Compared with single-
layer barrel vaults, double-layer barrel vaults can span
larger areas. These structures are considered highly stable
owing to their rigidity [55].

7 Proposed algorithm

The main components of the proposed algorithm are
illustrated in Fig. 1. First, the algorithm identifies the best
surrogate model and the number of calls required to
achieve this surrogate model. Second, the algorithm
identifies the optimal point using the surrogate model
obtained from the previous step and the GA. Finally, the
optimal point is calculated using the PS algorithm, which
is the most time-consuming function, and the optimal
point obtained in the previous step. The optimal point is
regarded as the starting point for the search.

In Fig. 1, Ds; is the ith data set; C and C,,, are the
neural network quality index and generated dataset,
respectively; d, is the optimal point obtained using the
surrogate model; GA is the optimization algorithm; Ny is
the number of samples required to construct the surrogate
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Fig. 1 Flowchart of proposed algorithm.
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model; Ny is the number of data production processes;
{G} and {LG} are the vectors that contain the principal
constraints of the problem and substituted constraints,
respectively. The final dataset is considered between
vectors {X} and {LG}. Discrete design variables are
considered continuously during the data-creation stage.
After obtaining the surrogate model, the discrete values
are used in the final step.

7.1 Creating and updating dataset

In the first stage, i.e., the dataset-update stage, the Latin
hypercube sampling method is used. The Latin hypercube
method reduces the number of simulations required to
obtain reasonable results. In this method, the range of
possible values of each random input variable is
partitioned into “strata”, and a value from each stratum is
randomly selected as a representative value. Subsequent-
ly, the representative values for each random variable are
combined such that each representative value is
considered once only in the simulation process [56].
Hence, a more uniform distribution of variables in the
design space is ensured. This implies that the obtained
surrogate model affords reliable performance. The
sampling method for the two variables u;, and u,, which
have values between 0 and 1, is shown in Fig. 2.

Because the input variables of the Latin hypercube
sampling method have values between 0 and 1, the
following linear conversion is used to convert these
variables into data input variables:

x;=Ib;+u;(u;b,—1b),i=1,2,...n,, (5)

where u; is a variable whose value is between 0 and 1, x;
is the principal variable, and n, is the total number of
variables. At this stage, the design variables are assumed
to be uniformly distributed variables whose lower and
upper limits change randomly. Subsequently, the finite
element model of the problem is created using the SM
toolbox commands, and the outputs of the problem,

1.0
0.9
0.8
0.7
0.6
05
04
0.3
0.2
0.1

02 03 04 05 06 07 08 09 1.0
U

Latin hypercube sampling (n = 10).
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which are the values of the constraints, are calculated.
Based on the outputs of the SAP2000 software, the
constraints of this problem are formulated as follows:

gX)=R(X)-1<0,i=1,2,...,n,, (6)
where n, is the number of constraints defined in the
problem, and R, (X) is the stress control coefficient or the
capacity of the constituent elements of the structure,
which must be less than or equal to 1. This coefficient
may be expressed as different types, such as the PMM,
major shear, minor shear, major beam—column capacity
ratio, and minor beam—column capacity ratio [57], and
always assumes a value greater than or equal to 1.
Because the SAP2000 software returns a capacity factor
for each load combination, the maximum value of these
factors is used to calculate the constraints. The constraints
of the problem (Eq. (6)) may have values from —1 to +oco,
which complicates the learning process of the neural
network. In this study, the following alternative constraint
was utilized instead of defined constraints:

L;<0,i=1,2,...,n, (7)
where L,; is calculated as
_ g,-, —1 < gi < 1,
Lgf‘{ [+In(g), g > 1. ®)

This function returns the same constraints for values
between —1 and +1 and scales the constraints for values
greater than +1.

7.2 Optimized artificial neural network

The algorithm proposed herein identifies the best
surrogate model based on multilayer neural networks
such that the ratio of the number of effective parameters
in the neural network to the number of dataset members is
in the appropriate range, and the learned network error is
lower than the allowed error. Specifically, the algorithm
uses a two-step approach. In the first step, a dataset of a
specific size is created using the Latin hypercube
sampling method. In the second step, the algorithm
mimics an optimized neural network based on the
existing dataset. If the quality index of the neural network
is less than the desired value, then the algorithm proceeds
to the next step; otherwise, the size of the dataset
increases, and the problem is repeated. To calculate the
quality index, the following constrained optimization
problem is solved using the PS algorithm:

ST
Find ¥° = {xl,ANN’ X2 ANN>» x},ANN}

Minimize {C (%)}

mse

_lgoailong

N

Subjected to: g(¥) = Yups  (9)
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where xaw 1s the design variable representing the
number of layers (Fig. 3), x,any 1S the design variable
representing the number of neurons in each layer, x; any 1S
the design variable representing the type of transfer
function (the range of changes of this variable is shown in
Table 1), C(X) is an objective function (network quality
index), mse is the mean squared normalized error
performance, and mse,, is the allowable mean-squared
normalized error performance of the neural network.

The objective function, i.e., the network quality index,
is the ratio of the number of neural network parameters to
the number of members of the dataset used in the network
learning operations. Thus, by minimizing this function,
the surrogate neural network will contain the appropriate
function (the chance of overfitting is minimized), and the
number of dataset members will be sufficiently high.
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Fig.3 Variables used in the defined neural network.

Table 1 Different types of transmission functions used in the neural
network

function figure

1: logsig(n) =

2: tansig(n) = ———— —
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where N, is the number of parameters used in the neural
network, and N, the number of dataset members used.
The number of parameters used in the neural network is
equal to the number of members in the coefficient
matrices and the number of elements in the bias vectors.
Each layer of a multilayer neural network contains an
S X R coefficient matrix an S X 1 bias vector, where S is
the number of output parameters in the layer, and R is the
number of input parameters. Therefore, the ith layer of a
neural network exhibits the following relationship:

Np;=S(1+R), 11

where Np; denotes the number of parameters in the ith
layer. As mentioned, the number of parameters used in
the neural network in this study is obtained using the
following equation:

Np = X2, ANN ((x],ANN - 1)(x2,ANN + 1) +N;+N, + 1) +NE’12)

where N, is the number of input variables, N, the number
of output variables, x, sy the number of hidden layers,
Xyann the number of neurons in each hidden layer, and
Xsann  the type of transfer function (Table 1).
Subsequently, the following equation is used to calculate
the mse:

Iy L .
mS€=N;(€i) = N;(ti_ai) > (13)
where ¢; is the output value in the dataset, and ¢; is the
corresponding output of the neural network.

7.3 Calculation of starting search point

In this step, the surrogate optimization problem is solved
using the optimal neural network obtained in the previous
step and the GA. The response obtained in this step is
used as the starting point for the next step.

Find d,
Minimize{C (d,)}

Subjected to: S,;(dy) <0, i=1,2,...,1, dioy < dy < dy,

(14)

where S ,;(d,) is the constraint replaced by the optimized
neural network; d,,, and d,, are vectors containing the
lower and wupper limits of the design variables,
respectively.
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7.4 Calculation of optimal point

In this step, the original optimization problem is solved
using the PS algorithm. The response obtained in this step
is regarded as the final optimal point.

Find d
Minimize {C (d)}

Subjectedto: g;(d) <0, i=1,2,...,n,, dip, <d < d,,
(15)

where g; (d) is the main constraint of the problem.
7.5 Main pseudocodes of proposed algorithm

In this section, two main pseudocodes used in the
proposed algorithm are presented: Listing 1 presents the
pseudocode for generating and updating the dataset and
optimizing the neural network; Listing 2 presents the
pseudocode of the objective function used to optimize the
neural network of the proposed method.

1 for ii=1:Nls

2 Ut=lhsdesign(Ns,Nd)

3 for jj=1:Ns

4 [x,g]=Constraint(u);

5 T(:,end+1)=g;

6 I(:,end+1)=x;

7 end;

8 [T1]=ScalingTargets(T);

9 func=@(X)MyNet(X,I,T1,...);

10 [XBest,C,...]=patternsearch(func,...);

11 if C<=Cmax

12 break;

13 end

14 end

Listing 1. Pseudocode for generating and updating the
dataset and optimizing the neural network.

In line 1, Nls represents the number of steps required to
increase the dataset size. In line 2, the lhsdesign function
generates a random sample using Latin hypercube
sampling. The output of this function is matrix Ut. This
matrix is composed of u vectors with values between 0
and 1. Ns and Nd represent the number of design
variables and dataset records each time the dataset size is
increased, respectively. In line 4, the constraint function
calculates the constraints of the problem and converts
vector u into the vector x. In lines 5 and 6, matrices I and
T store the simulation results obtained from the Latin
hypercube sampling method. In line &, the function
ScalingTargets is used. The output of this function is
matrix T1, whose values are scaled based on Eq. (8). In
line 9, the MyNet function handle is stored in the func
variable. The input of this function is the vector of the
neural network variables and the variables associated
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with the dataset. In line 10, the PS function returns the
optimization results to determine the optimal neural
network. In lines 11-14, the stopping condition of the
first step of the proposed algorithm is implemented.

1 function [ C [=MyNet(X,1,T,...)

2 D=round(X(1));

3 W=round(X(2));

4 Ttf=round(X(3));

5 Ni=size(1,1);

6 No=size(T,1);

7 Np=W*((D—1)*(W+1)+Ni+No+1)+No;

8 Ns=size(1,2);

9 [TF]=GetTF(Itf);

10 HL=ones(1,D);

11 HL=W*HL;

12 net = feedforwardnet(HL,...);

13 net.trainParam.goal=Prf;

14 tr=net.divideParam.trainRatio;

15 Ntr=tr*Ns;

16 for ii=1:numel(HL)

17 net.layers{ii}.transferFen=TF;

18 end
19 net = train(net,I,T,'useParallel','yes");
20'Y = net(l);

21 prf = perform(net,T,Y);
22 g=(prf/Prf)—1;

23 C=Np/Ntr;

24 C=C*(1+r*max(0,g));
25 function [ TF |=GetTF(Itf)
26 TF=‘logsig’;

27 switch Itf

28 case 1

29 TF=‘logsig’;

30 case 2

31 TF="tansig’;

32 case 3

33 TF=‘radbas’;

34 end

35end

Listing 2. Pseudocode of objective function used in
neural network optimization.

In the pseudocode of the function above, X is the vector
of variables associated with the neural network; I and T
are the matrices pertaining to the dataset, respectively; C
is the quality index of the network. In lines 2—4, D is the
depth of the network (number of hidden layers), W the
width of the network (number of neurons in each layer),
and Itf a parameter specifying the transfer function type.
In lines 6-8, Ni is the number of input variables, No the
number of outputs, and Np the number of neural network
parameters. In line 9, the transfer function type is
specified using the subfunction defined in lines 25 to 35.
In lines 10-11, HL is the vector that specifies the hidden
layers of the neural network. In line 13, Prf denotes the
target performance of the network. In line 14, tr is the
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percentage that determines the number of members in the
dataset used in the training process. In line 15, Ntr
denotes the number of records used in the training
process. The for loop in lines 1618 defines the transfer
functions in the layers. In line 19, the training operation is
performed using parallel processing. The value of the
network quality index is calculated in lines 2024, where
prf denotes the network performance, and r the penalty
factor.

8 Numerical examples

Two examples are presented in this section. In the first
example, a 10-member truss is considered. The purpose
of this example is to compare the performances of the
OANN + AOA + PS and OANN + GA + PS algorithms.
In the second example, a double-layer barrel with the
scale of a real structure is investigated using a more
appropriate algorithm.

In both problems, the frame elements were modeled as
truss elements. In the second example, shell elements
were used to model the roof-shielding elements. In both
examples, the deformations were assumed to be
insignificant and reflect those of linear elastic materials.
Static loading was considered as well.

The approach presented herein this article is universal
and thus applicable to any type of structure. For
modeling, the SM toolbox commands were used to call
the SAP2000 software [45].

8.1 Examplel: 10-member, two-dimensional (2D) truss

In this example, the optimization of a 2D truss (Figs. 4
and 5) is presented. This example was presented in
previous publications [58—60] and has been modified for
the present study. Specifically, circular sections were
used in the design of the structural members. The AISC
360-10 standard was employed to design the steel
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members. The following design load combinations were
considered:

1) 1.4DL,

2)1.2DL+1.6LL. (16)

Therefore, the 10-member truss problem is a problem
affected by dead and live loads with circular cross
sections and was used to evaluate the performance of the
proposed algorithm. The characteristics of the constants
and the design variables are listed in Table 2. The
members of this structure featured circular cross sections
specified in two groups, G, and G,. The cross-sectional
dimensions of these groups (thickness and diameter) were
considered as design variables.

Based on the outputs of the SAP2000 software, the
constraints of this problem are formulated as follows:

g (X)=R (X)-1<0, (17)

& X) =R, (X)-1<0, (18)

where R,(X) and R,(X) are the maximum controlled
stress coefficients or the capacities of the structural
elements in groups G, and G,, respectively, which must
be less than or equal to 1. The objective function is
assumed to be equal to the weight of the truss and is
calculated as follows:

W,=ny (28 +H+2VS?+ H?) (D to, + Do te.),  (19)

where W, is the weight of the structure.
The change ranges of the design variables associated
with the neural network are as follows:

Xl,ANN € {192a3} s (20)

X, mn €{1,3,...,+00},

21

Fig. 4

10-member, 2D truss.
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Xsann € {1,2,3}. (22)

This example was solved using the OANN+GA+PS
and OANN+AOA+PS algorithms, and C,,, was assumed
to be 0.2. In both examples, the same settings were used
in the optimal neural network design section, as listed in
Table 3.

The performance and regression of the optimized
neural network are shown in Figs. 6—10. The architecture
of optimal neural network is depicted in Fig. 11.

Table 4 lists the optimal parameters used in the neural
network.

] !
i v

\_/

Fig. 5 Parameters D, 1.
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As shown in Table 4, the surrogate model can achieve a
quality index of 0.176 via 300 function calls and using
one hidden layer, including four neurons and a logsig
transfer function.

8.1.1 OANN + GA +PS
Table 5 lists the parameters used in the GA.

Crossoverscattered creates a random binary vector and
selects the genes whose vector is 1 from the first parent,
and the genes whose vector is 0 from the second parent,
and then combines the genes to form a child.
Mutationgaussian adds a random number obtained from a
Gaussian distribution with a mean of 0 for each entry of
the parent vector [27].

Figure 12 shows the convergence diagram (semi-
logarithmic) for the first step (OANN + GA), and Fig. 13
illustrates the final step (OANN + GA + PS) of the
algorithm.

Table 6 lists the optimal parameters obtained using the
OANN + GA + PS algorithm.

As shown in Table 6, the optimal point is obtained with
a slight change in the initial point, indicating the proper

Table 2 Design constants and variables used for solving 2D truss problem

items remarks type value

E modulus of elasticity of steel constant 210 x 10> N/mm?
Fy steel yield stress constant 355 N/mm?

Y specific gravity of steel constant 7850 kg f'm >
FipL dead load applied to the structure constant 18 kN
Firo live load applied to the structure constant 10 kN
FapL dead load applied to the structure constant 18 kN
Frro live load applied to the structure constant 10 kN
F3pL dead load applied to the structure constant 18 kKN
F31L live load applied to the structure constant 10 kN

S dimensional parameter constant 3000 mm

H dimensional parameter constant 3000 mm

di (DGI) circular cross-section diameter, group 1 design variable 20:0.1: 150 mm
d (tG] ) circular cross-section thickness, group 1 design variable 2:0.1:10 mm
d3 (DGz) circular cross-section diameter, group 2 design variable 20:0.1: 150 mm
dy (th) circular cross-section thickness, group 2 design variable 2:0.1:10 mm
Table 3 Parameters of the neural networks

items remarks values
trainfcn the algorithm used in network learning Levenberg—Marquardt backpropagation
dividefen a function that determines the manner by which the members are divided random
trainratio the ratio of the number of dataset members used to learn the network to the total members of the dataset 0.7

valratio the ratio of the number of dataset members used to validate the network to the total dataset members 0.15

testratio  the ratio of the number of dataset members used to test the network to the total members of the dataset 0.15
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best validation performance is 0.0031442 at epoch 18

10° 4
—— train
~ validation
w— test

10! . best

10°

2
g
107
107
10° . : , .
0 5 10 15 20

24 epochs

Fig. 6 Error vs. epoch for the training, validation, and test
performances of the optimized neural network for 10-member
truss.

training: R = 0.99932

0.99target — 0.0076

output ~

target

Fig. 7 Regression of learning data in optimized neural network
for 2D, 10-member truss.

validation: R =0.99915

O data
fit
¥=T

45+
4.0
3:5
307
25¢
20+
1.5
1.0

. j@/g@

target — 0.0026

output ~

1 2 3 4
target

Fig. 8 Regression of validation data in optimized neural
network for 2D, 10-member truss.

test: R =0.99856

output ~= target — 0.0071

target

Fig. 9 Regression of test data in optimized neural network for
2D, 10-member truss.

all: R =0.99917

output ~= target — 0.0061

0 1 2 3 4 5
target

Fig. 10 Regression of all data in optimized neural network for
2D, 10-member truss.

performance of the first two parts of the algorithm
(OANN + GA).

8.1.2 OANN + AOA + PS

Table 7 lists the parameters used in the AOA.

Figures 14 and 15 show the convergence diagrams in
the first (OANN + AOA) and final (OANN + AOA + PS)
stages, respectively.

Table 8 presents the optimal parameters obtained using
the OANN + AOA + PS algorithm.

As shown in Table 8, the optimal point is obtained with
a slight change in the initial point, indicating the proper
performance of the first two parts of the algorithm
(OANN + AOA).
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Fig. 11 Neural network optimized to solve problem of 2D, 10-member truss.

Table 4 Optimal parameters used in neural network for solving 10-member truss

item remark value
Nst number of records required to create dataset 300
XoAaNN optimal variables associated with the neural network [1,4,1]
C quality index of surrogate model 0.176
Table 5 Parameters used in the GA
item remark value
populationsize specifies the number of individuals in each generation [27] 50
crossoverfcn the function used by the algorithm to create crossover children [27] crossoverscattered
crossoverfraction the fraction of the population in the next generation, not including elite children, 0.8
that the crossover function creates [27]
elitecount a positive integer specifying the number of individuals in the current generation guaranteed to survive 0.05 x PopulationSize

in the next generation [27]

mutationfcn

a function that yields mutation children [27]

mutationgaussian

best: 1243.06 mean: 1243.06

+ Dbest fitness
- mean fitness

fitness value
—- = = = =
= = S (=) o
2 2 2 = 2

—
(=3
=

0 10 20 30 40 50 60 70
generation

Fig. 12 Convergence diagram (semi-logarithmic) of first stage
(OANN + GA) for 10-member truss.

8.1.3 Convergence and runtime

The first example was solved using an Intel® Core (TM)
15-6200U CPU@?2.3 GHz processor with two physical
and four logic cores.

The elapsed times for the different stages of the
proposed methodology are listed in Table 9. As shown,
the elapsed time for modeling and calculating the outputs
to create a dataset of 300 records is 1110 s, and the
elapsed times to identify the initial search point by the
AOA + PS and GA + PS algorithms are 374 and 186 s,
respectively. Notably, using the GA algorithm reduced

best function value: 1259.97

10°

function value

iteration
=
% total function evaluations: 49
6 o * . * . . ¢
85
2 4 o
2
§ 3
T; 2
21—+ : : : : ,
g0 1 2 3 4 5 6 7 8 9 10
S iteration
=]
2

Fig. 13 Convergence diagram (semi-logarithmic) of second
stage (OANN + GA + PS) for 10-member truss.

the elapsed time by approximately 50% as compared with
using the AOA.

The total elapsed times for solving the problem using
the OANN + GA + PS and OANN + AOA + PS
algorithms were 1371 and 1784 s, respectively. To
demonstrate the efficiency of the ANN as a surrogate, the
problem was solved without using the optimized ANN as
a surrogate model, i.e., using the final two components of
the proposed method for the main time-consuming
function. In this case, the elapsed times were 60360 and
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Table 6 Optimal parameters obtained using OANN + GA + PS

algorithm
item remark value
dy starting point [83,2,64,2]
dopt final point (optimal design) [86,2,63,2]
Wiopt (V) optimal weight of the structure 1.26x 103 (N)
Table 7 Parameters used in AOA
items remark value
solution no. number of search solutions 20
m_iter maximum number of iterations 1000
BFV: 1344.53, NFE: 20020
1900 f T i
1800
o 1700
=
<
-
81600 |
1500
1400 |
0 200 400 600 800 1000

iteration

Fig. 14 Convergence diagram (semi-logarithmic) of first step
(OANN + AOA).

9975 s for the AOA + PS and GA + PS algorithms,
respectively. The optimized algorithm proved to be
extremely effective as it reduced the elapsed times by up
to 34 and 7 times for the AOA + PS and GA + PS
algorithms, respectively.

The algorithms were executed 10 times to reduce the
probability of premature convergence, and the best results
are reported. Based on the results, both the OANN + GA
+ PS and OANN + AOA + PS algorithms performed well
in solving the optimal design problem. Notably, both
algorithms achieved the same optimal design. However,
in the final stage, the NFES for the OANN + GA + PS
and OANN + AOA + PS algorithms was 50 and 72,
respectively. Notably, the OANN + GA + PS algorithm
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best function value: 1259.97
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Fig. 15 Convergence diagram (semi-logarithmic) of second
stage (OANN + AOA + PS).

Table 8 Optimal parameters obtained using OANN + AOA + PS
algorithm

item remark value

do search starting point [85,2,74,2]
dopt the optimal [86,2,63,2]
Wiopt (N) optimal weight of the structure 1.26 x 103 (N)

required a significantly lower NFES to achieve the same
accuracy as the OANN + AOA + PS algorithm.

In the first phase of the search, the convergence
diagram of the GA (Fig. 12) of first stage (OANN + GA)
for 10-member truss.) shows that the GA achieved the
optimal design in generation 24, and that the curves
remained the same up to generation 69, thereby allowing
the algorithm to obtain the optimal point. In the second
phase of the search using the PS algorithm, the
convergence plot is completely flat from the iteration 2
which indicates the optimal point is obtained with a slight
change in the initial point. Because the GA and PS
algorithms use different principles to obtain the optimal
point and because both algorithms achieve the same
optimal design, one can assume that premature
convergence was avoided, and that a global optimum or
nearly optimum design was achieved.

Table 9 Comparison of elapsed times for different stages of proposed methodology

method

component(s)
preparation of dataset identify the initial identify the optimal total elapsed
and OANN training search point point time
OANN + AOA +PS 1110 374 300 1784
AOA + PS (includes only time-consuming process) - 60060 300 60360
GA + AOA +PS 1110 186 75 1371
GA + PS (includes only time-consuming process) - 9900 75 9975
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8.2 Example 2: 832-member, double-layer barrel vaults

In this example, a parametric code is developed to create
a finite element model using the SM toolbox. The finite
element model was created automatically by determining
the input parameters, whereas the weight of the structure
and considered constraints were calculated. The main
parameters include the structural dimensions, number of
spans in the Y-direction, number of panels in the X- and
Y-directions, thickness between the top and bottom
layers, dead and snow loads, specifications of steels used
in building sections, and dimensions of the sections. As
mentioned previously, this program uses several
subroutines in modeling. Table 10 summarizes the
performance of this subroutine.

Table 10 Subroutines created to form the finite element model

subprogram task Fig. 17 Upper and lower layers.
B.L.M to model the bottom layer of the roof

T.LM to model the upper layer of the roof

BM to model diagonal members between two roof layers

RM to create roof elements

Figures 16—18 show the submodels developed after the
implementation of these subroutines. Figure 19 shows the
final structure of a numerical example as a result of the
abovementioned subroutines.

The objective function is assumed to be equal to the
truss weight and is calculated using the following
equation:

Fig. 18 Roof elements.

N,

‘/Vt XY Z DitiLia (23)

i=1

where W, is the structural weight, v is the specific weight
of steel, D, is the cross-sectional diameter of each
element, 7, is the thickness of each element, L; is the
length of each element, and N, is the number of structural

Fig. 19 Final structure.

W3 W,/3 W, /3
elements.
The code generated by the SM Toolbox automatically UL pe
categorized the members of the roof layers into side and U‘é N A UL,

middle groups. The categorization was performed such
that the number of members in the side and middle
groups was almost equal (Fig. 20). The design constants
and variables used in the optimization problem are shown
in Table 11.

The change ranges of the design variables associated
with the neural network are as follows:

Fig. 20 Categorization of the structural elements.
where C,,.x = 0.4.

Xiann €1{1,2,3}, (24) The constraints of this problem, based on the outputs of
the SAP2000 software, are formulated as follows:
XZ,ANN 6{1’2"“,-"-00}9 (25) gl (X):R] (X)_l <O, (27)

X5 €{1,2,3}, (26) & X) =R, (X)-1<0, (28)
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items remarks type values
E modulus of elasticity of steel constant 210 x 10° N/mm?>
Fy steel yield stress constant 335 N/mm?
Y specific gravity of steel constant 7850 kg-f/m3
SL amount of snow load constant 1000 N/mm?
DL amount of dead load constant 2500 N/mm®
Wy area dimension in the direction of the x-axis constant 40000 mm
Wy area dimension in the direction of the y-axis constant 60000 mm
Npx number of panels in x-direction constant 7
Npy number of panels in y-direction, in one span constant 4
Ny number of spans in y-direction constant 3
Kr effective buckling length coefficient in the elements used in the roof of the structure constant 1
dy (Hroof) roof thickness design variable 1000 : 50 : 4000 mm
dy (f) height of the highest point of the parabolic roof design variable 3000 : 50 : 6000 mm
ds (Dyr1) diameter of the sections used in the upper layer of the roof, group 1 design variable 50:5:250 mm
dg(tuL1) thickness of the sections used in the upper layer of the roof, group 1 design variable 3:1:5mm
ds (Dyrs) diameter of the sections used in the upper layer of the roof, group 2 design variable 50:5:250 mm
de (tuL2) thickness of the sections used in the upper layer of the roof, group 2 design variable 3:1:5mm
d7 (DgRr1) diameter of the sections used in the braces, group 1 design variable 50:5:250 mm
ds (tgr1) thickness of the sections used in the braces, group 1 design variable 3:1:5mm
do (DgRr2) diameter of the sections used in the braces, group 2 design variable 50:5:250 mm
dio (tBr2) thickness of the sections used in the braces, group 2 design variable 3:1:5mm
dy1 (Drpy) diameter of the sections used in the lower layer of the roof, group 1 design variable 50:5:250 mm
dia(try) thickness of the sections used in the lower layer of the roof, group 1 design variable 3:1:5mm
dy3(Dyro) diameter of the sections used in the lower layer of the roof, group 2 design variable 50:5:250 mm
dig (1) thickness of the sections used in the lower layer of the roof, group 2 design variable 3:1:5mm

& X) =R (X)-1<0, (29)

8:X) =R,(X)-1<0, (30)

8s(X) =Rs(X)-1<0, @31

8s(X) = Rs(X) -1 <0, (32)

where R, (X) and R,(X) represent the maximum stress
control coefficients or capacity for the frame elements in
the side and middle members of the lower layer of the
barrel vault, respectively (Fig.20); R;(X) and R,(X)
represent the maximum stress control coefficients or
capacity for the frame elements in the side and middle
members of the brace members, respectively (Fig. 20);
Rs(X) and R4 (X) represent the maximum stress control
coefficients or capacity for the frame elements in the side
and middle members of the upper layer of the barrel
vault, respectively (Fig. 20). The parameters defining the
geometry of the structure are shown in Figs. 21 and 22.

Fig. 21 Parameters Npx, Npy, Wx,and Wy.

AISC360-05 in the SAP2000 software was used to
design the steel members. The parameters used in the
neural network are presented in Table 12. Figures 23-27
show the performance and regression of the optimized
neural network. The architecture of optimal neural
network is depicted in Fig. 28.

As shown in Table 12, the surrogate model achieved a
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hidden 1 hidden 2

393

hidden 3

Fig. 28 Optimized neural network for double-layer barrel vault.

quality index of 0.394 using 1850 function calls, three
hidden layers including 11 neurons, and a logsig
transmission function.

Figures 29 and 30 show the convergence diagrams
(semi-logarithmic) for a double-layer barrel vault in the
first (OANN + GA) and second (OANN + GA + PS)
stages, respectively.

The optimal parameters obtained using the OANN +
GA + PS algorithm are shown in Table 13.

The results show that the proposed algorithm can

best: 841812 mean: 841812
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310
s
-
8
£
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Fig.29 Convergence diagram (semi-logarithmic) of double-
layer barrel vault in first stage (OANN + GA).
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Fig. 30 Convergence diagram (semi-logarithmic) of double-
layer barrel vault in second stage (OANN + GA + PS).

Table 13 Optimal parameters obtained using OANN + GA + PS
algorithm

item remark value

dy search starting point [2350,5900,220,4,245,...,
4,220,4,115,3,235,5,150,4]

dopt the optimal [2050,5500,205,5,230,...,
4,225,4,60,5,235,5,145,4]

Wiopt (N)  optimal weight of the structure 8.5602 % 10°

achieve the optimal response 2352 times (1850 + 502) by
calling the time consuming function.

9 Conclusions

Herein, a combined method based on optimized neural
networks and optimization algorithms was presented to
solve optimization problems involving time-consuming
functions. The main structure of this method comprises
three steps: In the first step, an optimized neural network
is calculated. Subsequently, the main optimization
problem is solved using the surrogate model and a
population-based algorithm. The algorithms considered in
this step are the AOA and GA. In the final step, the
abovementioned problem is solved using the optimal
point obtained from the previous step and the PS
algorithm. In this step, the optimal point obtained from
the previous step is used as the initial point. As such, the
main time-consuming function need not be called
throughout the optimization process to perform the
optimization, and the problem is solved using fewer calls.
A surrogate function is introduced for the main problem
constraints to improve the efficiency of the optimized
neural network. Using the GA reduced the elapsed time
by almost 50% compared with using the AOA.

Furthermore, the optimized algorithm proved to be
extremely effective as it reduced the elapsed times by up
to 34 and 7 times for the AOA + PS and GA + PS
algorithms, respectively. The results showed that both the
OANN + GA + PS and OANN + AOA + PS algorithms
performed well in solving the optimal design problem,
and that both algorithms achieved the same optimal
design. However, in the final stage, the NFES for the
OANN + GA + PS and OANN + AOA + PS algorithms
was 50 and 72, respectively. Notably, the OANN + GA +
PS algorithm required significantly fewer function
evaluations to achieve the same accuracy as the OANN +
AOA + PS algorithm.
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