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ABSTRACT In this study, the mechanical properties of the composite plate were considered Gaussian random fields
and their effects on the buckling load and corresponding mode shapes were studied by developing a semi-analytical non-
intrusive approach. The random fields were decomposed by the Karhunen—Loéve method. The strains were defined
based on the assumptions of the first-order and higher-order shear-deformation theories. Stochastic equations of motion
were extracted using Euler—Lagrange equations. The probabilistic response space was obtained by employing the non-
intrusive polynomial chaos method. Finally, the effect of spatially varying stochastic properties on the critical load of the
plate and the irregularity of buckling mode shapes and their sequences were studied for the first time. Our findings
showed that different shear deformation plate theories could significantly influence the reliability of thicker plates under
compressive loading. It is suggested that a linear relationship exists between the mechanical properties’ variation
coefficient and critical loads’ variation coefficient. Also, in modeling the plate properties as random fields, a significant
stochastic irregularity is obtained in buckling mode shapes, which is crucial in practical applications.

KEYWORDS uncertain composite plate, stochastic assume mode method, Karhunen—Loéve theorem, polynomial chaos
approach, plate buckling, irregularity in buckling mode shapes

1 Introduction (such as fiber angle and ply thickness), as well as the
exposure of composite structures to scattered thermal and

Due to their outstanding mechanical and physical mechanical loads have posed a fundamental and

properties, composite materials have been increasingly
applied in various industry sectors. The high specific
strength, high stiffness, excellent fatigue behavior, and
corrosion resistance of composite materials have
increased their utilization in weight-critical applications,
such as aerospace structures [1,2]. Specific fabrication
techniques (layering, curing process, etc.) and the uncer-
tainty in service life caused by environmental conditions
have led to a considerable statistical dispersion in the
properties of composite materials compared to their
metallic counterparts [3,4]. The wide scattering observed
in the mechanical properties and geometrical parameters
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unavoidable challenge to the analysis of their structural
reliability [5]. Recently, attention to the stochastic nature
of engineering structures and associated uncertainty
assessment has become an essential topic in the research
community.

Several methods regarding the uncertainty assessment
and quantification of composite materials, including the
Finite Element Method (FEM) [6], Monte Carlo (MC)
[7], Perturbation method [8,9], and Polynomial Chaos
(PC) [10], have been proposed and applied in numerous
engineering problems. These methods can generally be
divided into sampling- and non-sampling-based appro-
aches. In sampling-based methods, the problem must be
run from the beginning for each new input value [11,12].
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For example, the MC method is a straightforward
sampling-based approach for low-scale models [7]. On
the other hand, in non-sampling-based techniques, such
as the PC method, the problem is solved for a limited
number of inputs, and a polynomial is subsequently fitted
to the probabilistic response space. The obtained PC
expansion is run for each new value rather than the entire
model, significantly reducing the computational cost com-
pared to sampling-based approaches [13]. The advantage
of non-sampling methods is noteworthy, especially for
large-scale mathematical models where sampling-based
strategies do not have the appropriate computational
performance.

Several studies have investigated the buckling of
composite plates, in which the experimental buckling
load is generally different from the predicted value. The
primary justification for this discrepancy is related to the
imperfections observed in the geometry and properties of
the modeled structures [14—17]. Although geometrical
uncertainty is not usually discussed for flat plates,
scattered mechanical properties have been frequently
observed in experimental tests and identified as an
effective critical parameter in buckling [18-20]. Nguyen
et al. [21] reported non-uniform mechanical properties
across a composite plate spatially varying with a
completely stochastic nature that affects the buckling
loading. Despite these observations, the buckling
phenomenon is commonly simulated, assuming uniform
and deterministic mechanical properties throughout the
plate [22]. Few studies have considered the stochastic
nature of composites, focusing on the mechanical
behavior (linear and nonlinear), boundary conditions, or
the uncertainty modeling type [23-27].

Previous studies have considered the effect of random
but uniform fluctuations of mechanical properties on the
buckling behavior of composite plates [19,20,28,29].
Recent developments in neural network-based appro-
aches, manifold methods, and NURBS-based methods
enhance the performance of classic approaches in plate
stability and dynamics [30-36]. Different practical
stochastic frameworks and sensitivity analyses can be
found in literature and applied in stochastic polymer
composites simulations [37—46].

Experimental observations, however, indicate a probabi-
listic spatial distribution of geometrical and mechanical
properties in any composite component. Therefore, this
study considers the elastic properties of composite plates
based on the mean values with spatial uncertainty and
randomly oriented imperfections to investigate their
effects on the buckling loads and corresponding mode
shapes. Studying the stochastic bulking mode shapes is
crucial for practical buckling tests and is addressed for
the first time in the present work. For this purpose, all
plate properties are modeled as a Gaussian random fields
using the exponential kernel, which is commonly used in
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reliability analysis and validated using experimental
results [47,48]. The probabilistic response space was
modeled using the PC method to investigate and quantify
uncertainty in buckling load and corresponding mode
shapes. Applying the assumed stochastic modes (SAM)
and Polynomial Chaos method introduces a new semi-
analytical, non-intrusive approach, which is computation-
ally efficient with a reduced size of the mathematical
model for composite plates under compressive loading.

2 Materials and methods

2.1 Problem statement

The present study analyzes the buckling behavior of a
square composite plate (Fig. 1) with non-deterministic
properties under compression loading. The mechanical
properties, modeled as Gaussian random fields (not
random variables), consist of orthotropic tensile and shear
moduli, as identified in Ref. [49]. The sources of
uncertainty in the mechanical properties include spatially
variable fiber volume fraction and fiber orientation, along
with the randomness from non-ideal cure processes. An
exponential autocorrelation function was considered for
the random fields. Note that the significant and minor
Poisson’s ratios were assumed to be constant based on
their minimal effect on buckling behavior. The stochastic
field discretization was performed by utilizing the
Karhunen—Loéve (K-L) method theory. In addition, the
stochastic equations of motion were derived by
employing the Euler—Lagrange method using the SAM
and the assumption of First Order or Higher Order Shear
Deformation Theories, FSDT and HSDT, respectively.
The statistical properties of the critical load were obtained
using the elastic and geometric stiffness matrix and
through the non-intrusive polynomial chaos (Pc)
approach.

Two boundary conditions were considered, including
all simply supported or clamped edges. The uncertainty
propagation in critical loads was studied, while the plate
was subjected to a uniaxial or biaxial compressive load
by employing different plate deformation theories.
Furthermore, the effects of uncertainty propagation,
corresponding to the plate’s properties, on the uncertainty
of critical loads and buckling mode shapes were assessed.

2.2 Constitutive equations

First, stochastic properties were defined. The random
field’s autocovariance intended for spatially variable and
stochastic properties was considered with an exponential
kernel, which is commonly used in structural reliability
problems [49]. The exponential kernels corresponding to
random properties were extracted through Egs. (1)—(3)
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Fig. 1 Schematic of the composite plate with simply supported boundary conditions under: (a) uniaxial; (b) biaxial loading; and clamped

boundary conditions subjected to: (c) uniaxial; (d) biaxial loading.

[49]. Three autocovariance were required according to the
assumptions of Eq. (4).

Ci, = o3, exp(=I(x—x)/L| =1y =y)/LD), (1
Ca, = g, exp(—|(x—x) /LI =1y =y)/LD, ()
Ca,, = 0g, exp(—|(x—x)/LI= 1= y)/LD), (3)

viE, v E,|

1 =vipvy I =vipvy

, G, =Gys. (4)

where C is kernel intended for auto-correlation function;
[, and [, are correlation length in x and y direction,
respectively; o is the standard deviation of the desired
properties.

For defining autocovariance related to stochastic
properties, the K—L expansion was used to discretize the
continuous random field of stochastic properties. For
example, the random field of the tensile modulus in the
fiber direction and on the ranges defined for x and y in
Eq. (5) is obtained as Eq. (6) through K—L expansion and
based on the product of eigenvalues and eigenfunctions,
as well as standard random variables [50].

L T

En(xy,Q) =Ey+05, Y NLLEH@HG).  (©)

Equations (7)—(9) were used to obtain eigenvalues (1)
and eigenvectors (¢,(x)) in the K-L expansion for the
problem with exponential autocovariance related to Eqgs.
(1)—~(3), depending on the correlation length of the

autocovariance function in different directions. This
process has been described in detail in Ref. [50].
c—w;tan(w,d) =0, i:odd, c=1/1,,1/L, e
w; +ctan(w;d) =0, i:even, d=a,
L= - ®)
z T (,L)§+C2’ z — txir Yy
v C?S((;’"V))/z , for i: odd,
_ a+ sm(Zw;a Wi —
$,(v) = sin(w;v) . V=X,).
. , for i: even,
Va —sinQw;a)/2w;
©)

The number of terms in the K-L expansion (n) was
determined using the criteria of Eq. (10), where 7 is
usually considered to be 90% [51]. Based on Eq. (10), a
shorter correlation length increases the number of K—L
expansion terms in Eq. (6) to satisfy this criterion.
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L (10)

The displacement field was defined to derive the
stochastic motion equations, which were performed
through the FSDT and HSDT (Eq. (11)) using the displace-
ment of the middle points of the plate in different
directions.

u(xs y’ ‘Q) = Uy + Z¢x - CIZ3(¢x + WO,x)a
V(x,y,2) = vy +2¢, — €12 ($, + wWy,),
w(x,y, Q) = wy,

(11)

where u,, vy, and w, are the displacements of the plate
midpoints in the directions of x, y, z, respectively, as
shown in Fig. 1. Q is a stochastic vector of standard
random variables. Through linear definitions of strain and
assuming small displacements, linear strains can be
extracted according to Egs. (12)—(18) [52], where & and y
are in-plane and out-of-plane strains. Superscripted index
zero was defined for the strains caused by the
displacement of the middle plate, and superscripted
indices 1 and 3 are for the strains caused by rotation.

©) (1) ©)

8,\'}( 8.‘()( 8)()( 8)()(
P B 2 P G Pl S T)

Exy ©) (1) 3)

& &y &y &y

©) ©)
! Yy Yy
{%z}: o (T7Y ot (13)
)/xz yXZ ,)/XZ
0 0 0
(60 29 9 ={un. vo, wy+w.). (19)
M ) ]
{ sxx gyy gxy } - { ¢x,x ¢y,y ¢x,y + ¢y,x } ’ (15 )
3 B L0
{gxx gy,v gx,v }
=—c ot Wou by tWon b4+ 200 ), (16)
0 0
(70 Y9} ={wn+e. w4}, a7
2 2

{’y;’z) ygcz) } = _Cz { WO,,\' + ¢x WO’}' + ¢y } k] (18)

where ¢, and ¢, are constants that are equal to zero for
FSDT and ¢, = 4/(3h*) and ¢, = 3¢, for HSDT. Assuming
that the structure has a linear elastic behavior, the strain
energy caused by the elastic stresses is defined using
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Eq. (19) through the sum of the potential energies of the
different layers of the plate. N.layer is for the number of
layers. The shear correction factor (K,) for FSDT and
HSDT is 5/6 and 1, respectively. Potential energy caused
by work of external compressive force (U;) was extracted
according to Eq. (20), where N, and N, compressive
loads are as shown in Fig. 1 and d;; was defined as
Eq. (21). The on-axis spatially variable and stochastic
stiffness matrix elements were defined based on Eq. (22).
Also, the constitutive equation of a composite layer (layer
k) can be defined as Egs. (23) and (24), where it is
necessary to extract the stiffness matrix under rotation for
each layer depending on the angle of fiber to the principal
coordinate direction.

N.layer

1
Up = Z 5 f(axxgx,x + O’y\“"‘yy + O-xygxy
i=1 Vv

+ Kso-yzgyz + Ksa-ngxz)id‘/’ (19)
1
Ui=3 | Ve 4N )dxdy, (20)
A
dij = u,;u‘j + Vﬁ,‘vn/‘ + W,,-Wyj, (2 1)

_ E(x,y,Q) _ VinEn(x,y,Q) _ vaEn(x,y,Q)
" L-vpvy TEr 1 -vivy L=vpvy ’
Ex(x,y,Q)
n = 122—y, Oss = G1a(x,¥,0),
— V2V
Ou = Gn(x,y,Q), Oss = Gi3(x,,), (22)
O xx ¢ Qll QIZ Q16 ‘ Exx
Tyy = QZI sz Q26 Eyy [ (23)
Oy ), Qi O Des Exy
k = = &, o
Oy yz
1 el S S
oc), Qs Os] |7V

2.3  Motion equations

Based on the definitions of strain energy, the principle of
minimum potential energy was employed to obtain
motion equations of the structure under compressive
loading (Eq. (25)), where g(6) is the stochastic degree of
freedom in the global coordinate. The SAM, commonly
used in dynamic problems, was employed to discretize
the equations into generalized coordinates using Eq. (25)
[47]. As beam functions, suitable admissible modes for
simply supported and clamped boundary conditions are
respectively given in Egs. (26) and (27).
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7= (Up+Uy),
j—;(q(Q)) =0, i=1,..n 23)
(2, x,) = ZZ Un(@sin( 2 x)cos ("),
(. x,y) = iZN:V (@cos(“x)sin(ZEy),
Wo(Q, x,y) = ZM;ZN;WW(Q) sm( 1 )sin(#y), (26)
b Q1) = ﬁ:ixm(g) cos( 1 )sin(#y),
$(Q.x,y) = ZM: ZN: V(@ psin( “F x)cos( T )
T,(x) (cosh/l— —cos 2 )—y, (s h ot ’lzx),
-2
(€2, x,y) = Zﬁi U, (L, (0)IL, (),
Vo€, x,y) = Z_;Z_; Vo ()L, (0)IL,(x),
wo(€2, x,y) = Z_IZI W, ()T, (0)IL, (x),
P Quxy) = zzx,m(mrm(x)m(x), @7

m=1 n=1

where U,., Vi, Wu X and Y,, are generalized
coordinates and € is the probabilistic vector of standard
random variables.

Using Eq. (25) and by placing stochastic properties
(Eq. (22)) (after rotation, for rotated layers) and the assu-
med displacement field (Eq. (11)) in the energy Eqgs. (19)
and (20), the motion Equations can be extracted as
Eq. (28).

{I_(e + 2 K. &+ (N,

i=1

)[K +ZK 5]} 1(Q) =0,

(28)

where K, and K are the average of the geometric and
elastic stiffness matrices, respectively. ¢ is the
probabilistic standard variable corresponding to each
stochastic property in the expansion of Eq. (6). Equation
(28) is also defined for predefined stochastic properties
with arbitrary (predefined) standard deviation and can
easily be converted into an eigenvalue problem. In
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addition, the statistical properties of the eigenvalue (i.e.,
the critical load of the plate) can be extracted by
generating random numbers for random variables based
on the sampling-based approach (MC method) or the non-
sampling-based approach (Pc approach). Here, the non-
intrusive Pc approach was used to obtain the probability
space of critical buckling loads.

2.4 Non-intrusive polynomial chaos approach

PC expansion is used for defining random fields and
random variables. The second-order variable X : @ - R
was considered, which can be described as possibly
infinite variables of &,(0), &,(6), &(0), ... The indepen-
dent variables were gathered into Q(6) = (£,(0),&,(6),
&(0),...) and the variables, including stochastic
eigenvalues and eigenvectors, can be obtained in the form
of X = X(Q), N, = N(Q). Equation (29) was utilized for
defining stochastic eigenvectors related to Eq. (28),
where the set of orthonormal polynomials is defined as
{o,¥1,85,...}, which is a principle for L,(®,P). Also,
deterministic coefficients x,, x;, x,, ... introduce X vectors.
It can be obtained as Eqs. (29) and (30), if (&) =1
based on orthonormal characteristic (¥,,,¥.,)y = O
Consequently, the variance of X is defined as Eq. (31). A
similar definition is used for the definition of stochastic
eigenvalues.

400

X© =) xu, (), (29)
n=0
px = E{XY =D 5o ) = X, (30)
n=0
oy =E(X*)~E{X)' = E{[Z xnwn@)] } =) 5 6D

Since all numerical calculations require parameteriza-
tion of the random variable X with a limited number of v,,
of independent random variables, X can be defined as Eq.
(32) if £€=(&1,65,...56,). v, and ppc are the result of
random modeling and a compromise between accuracy
and efficiency, respectively.

VpC

X™(@) = ) X8,

n=0

(32)

where ppc, v, = +oo. The PC polynomial sequence is
selected so that low-order approximations remain
constant to increase PC values. The expansion was
extended to a second-order equation X : D X ® — R and
a set of random variables was placed in interval of
X(u,0) € L,(®, P). u is a parameterizing variable that can
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vary by changing the PC expansion’s definite coefficients
(Egs. (33) and (34)). The need to change the model is
eliminated using the non-intrusive method and by
considering the desired model as a black box. Therefore,
the estimated expansion coefficients were achieved using
a sparse-grid-based method. Here, a form of the non-
intrusive method with linear regression was used so that
random variables were considered as a finite number of
V4 and accordingly, the coefficients were obtained using
x=(P"W) "PTX. Then, the final equation was extracted
as Eq. (35), which can be applied to find the basis (x;) of
stochastic space of eigenvalue (critical load) and
corresponding eigenvectors (buckling mode shapes) in v,
design points instead of a full run based on the MC
simulation.

+o0

X(@,8) = ) % (), (33)
X €)= ) X, (), (34)
Yol&) v E) | | [ XD
: : R (35)
l,l/() (gvgq ) vac (gvgq ) )C' X (I/l, fvgq )
Vpe N— ——
¥ — X

2.5 Verification of equations

To verify the equations and codes, the plate buckling
problem was solved in two scenarios, with deterministic
and stochastic properties. Then, the obtained results were
compared with previous studies.

2.6 Deterministic properties

The square composite with simple supported stacking
sequence [6,—0] and lamina properties, according to
Table 1 was analyzed under uniaxial loading. The
normalized buckling critical load was defined according
to A, = A,a*/E,h*. The comparison of our results with
previous studies showed a high level of agreement,
verifying our equations and codes for plates with
deterministic properties (Table 2).

2.7 Stochastic properties

The square composite plate with simply supported
boundary condition, stacking sequence [0,90], and lamina
properties (Table 1) was analyzed so that the modulus of
elasticity in the direction of the fiber was considered as a
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random variable. The obtained results for different
coefficients of variation were compared with previous
studies (Fig. 2). A 5th order PC was used in non-intrusive
simulations. As shown in Fig. 1, the accuracy of the
present method was optimal and better than the methods
defined based on the perturbation method. In addition,
our results showed a high level of agreement with
previous studies defined based on the MC method.

3 Results and discussion

3.1 Effects of different shear deformation plate theories on
the uncertainty propagation of critical loads

In the first step, the uncertainty propagation in the critical
buckling load was studied by applying different shear

Table 1 Material properties of composite lamina [53]

property quantity
En/Exn 40
Gi2/Exn =Gi3/Ex 0.6
G3/Ep 0.5
12 0.25

Table 2 The normalized buckling load comparison

a/h ® FSDT[53] HSDT[53] RPT[54] present- present-
FSDT HSDT
4 30 7.545 9.3391 9.3518 7.545 9.3391
45 6.7858 8.2377 8.3963 6.7858  8.2377
10 30 16.6132 17.1269 17.2795 16.6132 17.1269
45 17.5522 18.1544 18.1544  17.5522 18.1544
100 30 20.4944 20.5017 20.504 20.4944  20.5017
45  21.6576 21.6661 21.6663  21.6576 21.6661
0.12 T - . .
0.11+F |— SA-Monte Carlo [28]
- —- FEM-Perturbation [55]
0.10 1 present-SAM-5th order PC
0.09 | -
~ 008}
< -
N 0.07F -
Q ///
© 0.06f
0.05 | A
0.04
003t
0.02L—— . L L . L L
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

COV (E,)

Fig.2 Comparison of buckling load variation coefficient
obtained from our study with previous studies of plates with
random properties.
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deformation plate theories in uniaxial and biaxial loading
scenarios for two plates with symmetric [0,90,0] and
antisymmetric  [45,—45] stacking sequences. The
properties of the plate, including the modulus in the
direction of the fiber and perpendicular to the fiber, as
well as the shear modulus, were considered Gaussian
random fields. The sides to thickness ratio was consi-
dered variable to evaluate the critical load sensitivity of
the induction of shear stresses in the cross-section of the
plate. Figure 3 shows the PDF of the critical buckling
load in different loading scenarios and the ratios of
different sides to thickness for the plate with all edges
simply supported as boundary conditions.

As shown in Fig. 3, the probability distribution of the
critical load was Gaussian. As the thickness of the plate
increased, the sensitivity of the effect of shear stresses on
the critical load increased. Also, a significant difference
was observed between the results of the FSDT and HSDT
theories, in particular at higher thicknesses. In higher
thickness plates, the HSDT theory is preferred over the
FSDT for simulating the shear flow in the plate section
due to the higher accuracy. It is due to shear locking and
inaccurate approximation of shear loads that FSDT
makes. Overall, the critical load of antisymmetric plates
is more sensitive to shear load accuracy due to
asymmetric shear distribution, which is why the HSDT

0.14 T : . .
—+— a/h=10-FSDT
0.12 ¢ —+-alh=10-HSDT |1
alh =20-FSDT
0.10 ——~-a/h=20-HSDT |1
P —*— a/h=50-FSDT
0.081 alh =50-HSDT | |
LS .
&~ 006}
0.04 +
0.02 +
0.00 st i ... WO
10 15 20 25 30 35 40 45 50 55 60
uniaxial normalized critical load
(@)
0.18 r T
—+— a/h=10-FSDT
0161 —+-alh=10-HSDT |
o014l alh =20-FSDT |]
§ ——-al/h=20-HSDT
012l —*— alh=50-FSDT ||
: alh=50-HSDT
i, 0.10 ]
Q
&~ 0081
0.06 |
0.04
0.02
0.00 e e
10 35

uniaxial normalized critial load

©

185

theory was used for analysis in the present study. In
addition, the observed increase in the critical buckling
load accompanied by a decrease in thickness is due to the
process of buckling load normalization.

3.2 Effects of boundary conditions on the uncertainty
propagation in the plate buckling loads

The symmetrical and antisymmetric plates defined in the
previous section were examined under different boundary
conditions. The graphs corresponding to the changes in
the normalized critical load standard deviation were
compared to the increase in the random field variation
coefficient under uniaxial and biaxial loads, as shown in
Fig. 4. Our results showed that the standard deviation
sensitivity of critical load to the uncertainty propagation
in the properties with clamped boundary conditions was
higher than the standard deviation sensitivity of plates
with simply supported boundary conditions. Figure 5
illustrates the results of variation coefficient sensitivity of
critical buckling load to variation coefficient of the
properties in the Gaussian random field for different
thicknesses, different loading scenarios, and different
boundary conditions. As seen in Fig. 5, the critical load
variation coefficient in uniaxial and biaxial loading
conditions, as well as different boundary conditions and

0.30

—+— a/h=10-FSDT

025} —+-a/h=10-HSDT |
alh=20-FSDT
——-a/h=20-HSDT

020 —*— a/h=50-FSDT |
alh=50-HSDT

Iz,
Q 0.15¢
[y
0.10
0.05
0.00
5 25
biaxial normalized critical load
(b)
0.35 ; ; .
—+— alh=10-FSDT
0.30 —+-a/h=10-HSDT |1
alh =20-FSDT
0.25F ——-alh=20-HSDT |{
—*— a/h=50-FSDT
. 020 al/h=50-HSDT ||
Q
& 0151
0.10 -
0.05
0.00 S somomemman
16 18
biaxial normalized critical load
(d)

Fig.3 PDF corresponding to the normalized buckling load of square plates for symmetric (a) uniaxial loading and (b) biaxial loading;

for antisymmetric (c) uniaxial loading and (d) biaxial loading.
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Fig. 4 Uncertainty propagation in normalized buckling load: (a) uniaxial loading; (b) biaxial loading.
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Fig. 5 Variation coefficient of critical buckling load for plates with different boundary conditions: (a) simply supported; (b) clamped.
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Table 3 Deterministic and four stochastic samples of the three first buckling mode shapes.

boundary condition mode number deterministic

stochastic

sample 1

sample 2 sample 3 sample 4

SSSS 1

CCcccC 1

different thicknesses resulted in a similar, yet unique
graph. This graph can be used as the main graph or
reference graph to calculate the buckling reliability of
plates under compressive loading.

3.3 Investigating the buckling mode shapes

Due to the composite plates’ spatially varying properties
and the random variations, it is of special importance to
study the buckling mode shapes in practical buckling
tests. For example, the arrangement of strain gauges in
plate buckling tests varies depending on the expected
mode shape. Therefore, the deterministic mode shape and
four stochastic samples of mode shapes for the first three

buckling modes are shown in Table 3 for symmetric
composite plates with different boundary conditions,
regardless of their occurrence likelihood and with
assuming the Gaussian random properties introduced in
the previous sections.

As seen in Table 3, the occurrence sequence of the
buckling modes was completely irregular and stochastic,
which has commonly been observed in practical tests that
are well developed as buckling of imperfect plates. This
can be due to the creation of areas with variable and
random stiffness in the plate that affect the buckling
mode shapes. The PDF of higher-order modes was
studied to investigate the phenomenon and the occurrence
likelihood of these modes and quantify the uncertainty in
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Fig. 6 Probability density function (PDF) for three critical buckling values in the symmetric plate with (a) simply supported and (b)

clamped boundary conditions.

the sequence of buckling modes. Therefore, the PDF
corresponding to the three first critical buckling loads for
the plate with symmetric stacking sequence and a/h = 50
under uniaxial loading was extracted. As shown in Fig. 6,
there was a chance of probabilistic event interference for
modes 2 and 1, as well as for modes 2 and 3. In addition,
the occurrence likelihood of the buckling mode shape
corresponding to mode 2 is greater than mode 1, which is
lower for modes 1 and 3. Therefore, the sequence of
buckling modes is completely random according to
spatially variable and stochastic properties (Fig. 6).

Moreover, it is necessary to consider the non-uniform
distribution of composite properties in the plate coordi-
nates as the statistical scattering is strongly observed in
the critical load value and in the corresponding buckling
mode shapes. This can be crucial in the buckling tests of
composite plates, where it cannot be predicted by
ignoring the spatial variable of properties in the plate
coordinates. With that said, simulating the properties of
composites as a random field and not a random variable is
crucial in calculating the reliability of composite plates
under buckling failure modes.

4 Conclusions

This work investigated the buckling of composite plates
with symmetrical and antisymmetric stacking sequences,
different boundary conditions, and different loading scena-
rios. The elastic properties of the plate were considered as
a Gaussian random field. The motion equation was
obtained using FSDT and HSDT theories, as well as
energy equations. Then, the buckling eigenvalue problem
was extracted by employing the stochastic assume mode
method. The equations in random space were solved
using the non-intrusive Pc approach.

Our results showed that the high-ordered shear deforma-
tion theory offers better accuracy in probabilistic space,

especially for thicker plates. This is a key issue in
calculating the reliability of plates under buckling loading
because the PDF tends to shift to larger values, as
commonly observed in plates with anti-symmetrical
stacking sequences.

Furthermore, the uncertainty propagation in the critical
load was investigated for plates with simply supported
and clamped boundary conditions. The results showed
that the standard deviation of critical load variation for
plates with clamped supported boundary conditions is
greater than those of similar plates with simply supported
boundary conditions. The stability of the obtained graphs
corresponding to the critical load variation coefficient
relative to the variation coefficient of properties indicates
that these graphs can be used to calculate the reliability of
similar plates under buckling loading. Finally, the
irregularity of the mode shapes and the sequence of the
buckling modes were discussed. The geometrical
irregularity and stochastic sequences observed in the
modes were justified by applying PDF for higher-order
modes. The spatially varying stochastic properties
significantly affect the critical buckling load and should
be considered in practical buckling tests due to the effect
on the plate reliability in buckling failure mode.
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