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ABSTRACT An analytical model is proposed to estimate the discontinuous mechanical behavior of an existing shield
tunnel above a new tunnel. The existing shield tunnel is regarded as a Timoshenko beam with longitudinal joints. The
opening and relative dislocation of the longitudinal joints can be calculated using Dirac delta functions. Compared with
other approaches, our method yields results that are consistent with centrifugation test data. The effects of the stiffness
reduction at the longitudinal joints (o and S), the shearing stiffness of the Timoshenko beam GA, and different additional
pressure profiles on the responses of the shield tunnel are investigated. The results indicate that our proposed method is
suitable for simulating the discontinuous mechanical behaviors of existing shield tunnels with longitudinal joints. The
deformation and internal forces decrease as @, B, and GA increase. The bending moment and shear force are
discontinuous despite slight discontinuities in the deflection, opening, and dislocation. The deflection curve is consistent
with the additional pressure profile. Extensive opening, dislocation, and internal forces are induced at the location of
mutation pressures. In addition, the joints allow rigid structures to behave flexibly in general, as well as allow flexible
structures to exhibit locally rigid characteristics. Owing to the discontinuous characteristics, the internal forces and their
abrupt changes at vulnerable sections must be monitored to ensure the structural safety of existing shield tunnels.

KEYWORDS tunnel-soil interaction, discontinuous analysis, longitudinal joints, existing shield tunnel, Timoshenko
beam, Dirac delta function

1 Introduction capture the correct stress—strain behavior of a tunnel and
soil in TSI problems. Empirical analyses, accompanied

Over the last three decades, underground spaces have by numerical simulations, are typically performed to

developed rapidly worldwide. A significant number of
tunnels have been constructed, which inevitably cross
existing underground structures such as tunnels, pipe-
lines, and subway stations. Thus, tunnel-soil interaction
(TSI) is vital for guaranteeing the safety and service-
ability of existing structures. The mechanical behaviors of
existing tunnels have been investigated extensively owing
to the construction of new tunnels via experiments and
numerical simulations [1-8], empirical methods [9—12],
and analytical methods [13-17]. Centrifuge tests can

Article history: Received Jul 31, 2022; Accepted Sep 20, 2022

analyze specific engineering applications. The analytical
method is a general and convenient method for analyzing
TSI problems. Additionally, many influencing factors
have been investigated, such as ground condition
[18-20], structure configuration [12], crossing angle [21],
crossing type [22,23], potential soil gap formation [24],
and weak joints [25,26].

Weak joints include movement joints, construction
joints of the composite-lining tunnel, and longitudinal and
circumferential joints of the shield tunnel [27-29]. Liu
et al. [30] investigated the bending deflection, rotation,
and shearing dislocations of movement joints in a
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composite-lining tunnel. Six deformation modes were
included in the composite-lining tunnel based on the
location of the movement joints. Wu et al. [31,32]
analyzed the longitudinal behaviors of an existing shield
tunnel by considering shear dislocation at the longitudinal
joints. Two deformation modes of segmental rings are
presented: an opening between the segmental rings
(Fig. 1(a)) and dislocation between the segmental rings
(Fig. 1(b)). The third deformation mode combines both
the opening and dislocation modes, as shown in Fig. 1(c).
The joint opening and dislocation result in problems such
as groundwater leakage [33-35], concrete cracks [36,37],
track distortion, and separation between a ballast-less bed
and the lining, which may jeopardize the safety of a
tunnel during its operation [38]. Artificial intelligence
technology, such as image processing and machine
learning [39,40], is used extensively in geotechnical
engineering for recognizing, analyzing, and processing
hazards. The differential deformation at the joints of
shield tunnels during their construction and operation has
garnered significant attention.

In terms of analytical methods, the beam—spring model
[41] and longitudinal continuous model [42] are typically
used to investigate TSI problems involving longitudinal
joints. In the beam—spring model, the standard structural
segment is regarded as a beam and the weak joints as
elastic springs to model the moment, axial, and shear
forces. The longitudinal continuous model considers the
existing shield tunnel as a homogenous continuous beam
with stiffness reduction at weak joints, in which the
stiffness of the tunnel is obtained by an equivalent

(b)

combination mode
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Fig. 1 Deformation modes of segmental rings: (a) opening
mode; (b) dislocation mode; (c) combination mode.

method. Previous studies have primarily considered the
existing shield tunnel as an Euler—Bernoulli beam or a
Timoshenko beam. The TSI problem is solved using
conventional elastic foundation models.

Various combinations of beam and foundation models
were applied to simulate the mechanical behaviors of an
existing shield tunnel above a new tunnel. Some
analytical models fail to capture either the joint opening
or joint dislocation. Moreover, the longitudinal conti-
nuous model disregards weak joints and uses the
equivalent stiffness, unlike the beam—spring model. The
beam—spring model cannot be easily used to solve TSI
problems as it requires complicated calculations. In
addition, the aforementioned models assume that the
existing shield tunnel behaves continuously during
deformation; thus, the discontinuous deformation and
internal forces of the existing shield tunnel cannot be
predicted accurately.

Previously, a composite-lining tunnel modeled using
Euler—Bernoulli beams with movement joints were
investigated [30]. Six deformation modes were summa-
rized based on the relative location and quantity of
movement joints. Using the findings obtained, we
estimate the discontinuous mechanical behaviors of an
existing shield tunnel with a series of longitudinal joints
in this study. The segment rings are modeled using
Timoshenko beams instead of Euler—Bernoulli beams.
The usage conditions of these two beam models are
discussed and confirm that a rigid (flexible) tunnel
generates flexible (rigid) deformation owing to the
longitudinal joints (movement joints).

Herein, we propose an analytical method that uses a
Timoshenko beam with Dirac delta functions on the
Winkler foundation, abbreviated as the TDW method.
Using the Dirac delta functions, the mathematical model
can predict the discontinuous deformation and internal
forces at the longitudinal joints, at which bending and
shearing stiffness reductions are considered. Our pro-
posed method is validated based on comparison with
measured data and previous approaches. The effects of
the stiffness reduction coefficients @ and B at the
longitudinal joints, the shear stiffness GA4, and the addi-
tional pressure profiles on the responses of an existing
shield tunnel are investigated. Finally, the deformation
characteristics of a Timoshenko beam in modeling a
shield tunnel with longitudinal joints vs. those of an
Euler—Bernoulli beam in modeling a composite-lining
tunnel with movement joints are compared and discussed.

2 Mathematical model of longitudinal
joints

A novel mathematical model is proposed to analyze the
deformation modes at the longitudinal joints of an
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existing shield tunnel, as shown in Fig. 1. We applied two
virtual pressures, e,(x) and e,(x), at the longitudinal joints
to obtain the joint opening and dislocation. The virtual
pressures are represented by the first-order derivative
6'(x — x;) and second-order derivative 6"(x — x;) of the
Dirac delta function. The expressions for virtual pressures
e,(x) and e,(x) are detailed in this section.

2.1 Derivative equations of Dirac delta function

The derivative equations of the Dirac delta function,
0'(x — x;) and ¢"(x — x;), are used to establish the
mathematical model. The two expressions can be
obtained using the second- and third-order derivatives of
the Heaviside step function H(x — xj). Figure 2 shows a
graphical representation of the Heaviside step function
H(x — x;), where x; is the joint location:

0, X <X,
Hx-x;)=105, x=x (1)
1, x> X,

The derivative equations for the Dirac delta function
are as follows.

§(x—x,) = lim S 2~ %)
/ Ax—0 (Ax)”
_ lim{H[x— (x;—2h)]|-2H(x—x;) + H[x—(x; + 2h)]}
h—0 4h?
_{0, (x <x;—2h) or (x > x;+2h)
T\ @), (xj-2h<x<xj)or(x;<x<x;+2h) (2)
§'(x—x;)= lim A"HG-x)
U v TN
. {H [x—(x;=3h)]-3H[x—(x;—h)]
=lim
h—0 8h?
. 3H[x—(x;+h)]|-H[x—(x;+ 3h)]}
8h?

0, (x <x;—3h)or (x> x;+3h)
={1/@8h), (x;—3h<x<x;—h)or(x;+h<x<x;+3h)
1/(4n%), (x;—h<x<x;+h)
(3)

where /& denotes an arbitrary infinitesimal value. When
h—0, function ¢,(x — x;) can degenerate to 5(x — x;).
Figure 3 shows the mathematical models of the
longitudinal joints. Functions &'(x — xj) and 6"(x — xj)
were utilized to model the shearing dislocation and
bending opening of the longitudinal joints, respectively.

2.2 Virtual pressures at longitudinal joints

As shown in Fig. 3, virtual pressures e,(x) and e,(x) at the
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Fig. 2 Graphical representations of Heaviside step function
H(x —x)).

joints are applied and expressed by functions 6'(x — xj)
and 6"(x — x;) to model the bending opening and shearing
dislocation of the joints, respectively. Virtual pressure
e,(x) can be expressed as e (x) = C,0'(x — xj), which
is analogous to two equal concentrated forces 2F),
and one opposite concentrated force F| exerting at the
joints. Similarly, virtual pressure e,(x) can be expressed
as ey(x) = C,6"(x — x;), which is analogous to a pair of
couples M, applying at the joints, where C, and C, are
constants.

Concentrated forces F; and M, can be obtained using
Egs. (4) and (5), respectively.

G

F1=Q|=@-2h, (4)

8h? 4h? 5

c )
M2:F2'2hzﬂ.

Based on material mechanics theory, the internal forces
induce the relative rotation angle A6 and relative
dislocation A, which are expressed as follows.

_ Ql _ C,
AS= =2 2h= 0, (6)
M
AH:—2-2h:&, (7
El El

where GA is the shear stiffness, and E/ is the bending
stiffness.

The virtual pressures at the longitudinal joints can be
rewritten using the relative rotation angle, relative
dislocation, and derivative equations of the Dirac delta
function.

e,(x) = GA(AO) (x — x;), )

e,(x) = EINGS” (x — x;). 9)
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3 Tunnel-soil interaction model with
longitudinal joints

The existing shield tunnel comprises precast reinforced
concrete segments connected by longitudinal and
circumferential joints. Each ring of the existing shield
tunnel resembles a short and thick beam, which can be
modeled as a Timoshenko beam. Meanwhile, an
Euler—Bernoulli beam is suitable for modeling a slender
beam that reflects only flexure deformation under a
bending moment. Joint dislocations under shear forces,
which are widely observed, cannot be investigated.
Therefore, some scholars [32,43] have indicated that
using the Timoshenko beam for solving TSI problems in
shield tunnels can provide accurate results.

3.1 Timoshenko beam with Dirac delta functions on
Winkler foundation

The existing shield tunnel with longitudinal joints was
modeled as a TDW model to precisely calculate the
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discontinuous deformation. Figure 4 shows the TDW
model. The results were obtained using the £/ and GA of
the rings, as well as the reduced stiffness of the
longitudinal joints instead of the equivalent stiffness of
the Timoshenko beam.

According to previous studies [23,32], the governing
equation for the TDW model is expressed as follows.

1 d’g(x)
CGA de®

d4w(x)
dx*

k d*w(x)
" GA dx

q(x)
EI

_()_

(10)

where k is the coefficient of the subgrade reaction, g(x)
the additional pressure acting on the beam, and w(x) the
beam deflection.

The bending moment and shear force of the rings can
be obtained as follows.

dw & q
Mx)=-El|— - —w+—
@ ( 2 GAW+GA)’
: (11)
o) £l dw k dw 1 dg
x)=-FEl|l————+——].
x GAdx GAdx

virtual pressures e,(x) and e,(x) F b joint Lo —x)
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Fig.3 Mathematical model of longitudinal joints.
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To represent the reduced stiffness of the longitudinal
joints, we assumed that the shearing stiffness and bending
stiffness of the longitudinal joints were aGA and SBEI,
respectively, where a and S are the coefficients of the
stiffness reduction. The internal forces of the longitudinal
joints are expressed as follows.

dw  k q
— ——wt+—],
dx* GA GA

1 dg
GAdx)

My(x)) = —ﬁEl(
& (12)

w
Q%) = ‘“E’(T “GAw

If @ =B =1, then the existing tunnels are without joints.
Without considering the longitudinal joints, the stiffness
along the existing tunnels was homogeneous. Thus,
Mj(xj) = M(xj), and Qj(xj) = Q(xj). In particular, the
longitudinal joints represent hinge joints if « =8 = 0.

As shown in Fig. 3, virtual pressures e,(x) and e,(x)
proposed in Section 2 were applied at the longitudinal
Joints to obtain the virtual internal forces (M(x;) and
O.(x))). The internal forces of the rings, i.c., M(x;) and
O(x)) at x = x;, must reduce M(x;) and Q(x;) such that the
internal forces of the longitudinal joints, i.e., M(x;) and
Qj(xj), can be obtained.

Mj(xj) = M(xj) - Me(xj)s
Qj(x_j) = Q(x_j) - Qc(xj)-

Substituting Eqgs. (11) and (12) into Eq. (13), M(x;) and
Qe(xj) can be obtained as follows.

(13)

dw  k q
M.(x) = —(1-pEI Y - Ly L
) =-U-p (dx2 GAW+GA)’
dw  kdw 1 dg (14
y=—(-aEl|SY - 2, - %)
Qulx;) = ~(1-a) (dx3 GAdx ' GA dx)

Based on Egs. (6) and (7), the reduced internal forces
can be rewritten as follows.

EIA
M.(x) = ——,
2h (1)
_ GAAS
Qe(x) = ——-

By referring to Eqgs. (14) and (15), the relative rotation
angle A¢; and relative dislocation Ad; can be expressed as

NG, = —2/1(1—/3)(61—W—i 9 )

w4 —
dx? GA GA
EI (&w k dw 1 d (16)
AS; = -2h(1 —a)— ____+__q .
: GA\dx¥® GAdx GAdx

Subsequently, virtual pressures e(x) and e,(x) can be
written as

e (x;) =2h(1-a)EId' (x—x;)
_(d3w(x_,-) B i dw(x;) . L dq(x.,v))

dx? GA dx GA dx 17
ex(x;) =2h(1 -B)EIS"(x - x;) (a7
dzw(xj) k f](xj)
( e —aw(xj)+ GA )

3.2 Solution to calculation model

Substituting virtual pressures e;(x) and e,(x) into the
governing differential equation (Eq. (10)) yields

d'w(x) k Iwx) k 1

0 GA e PR TEUO @ e
1 d*q(x) N d’e,(x;) N d’ey(x))
GA\ dx dx? dx> )’

(18)

where e,(x;) and e,(x;) are constants at x = x;. The second
derivatives of e(x;) and e,(x;) are both zero. Therefore,
Eq. (18) can be rewritten as follows.

dw) _ k dww ko
dx* GA dx2? EIW X
= %(Q(x)+e1(x,-)+e2(xj))_ G%% (19)

Although the closed solution to Eq. (19) is difficult to
obtain, the results can be calculated using the finite-
difference method. The shield tunnel contains n + 5
elements, each of which exhibits a length / of 24. Using
Egs. (2) and (3), the finite differential form of the
governing equation can be obtained. Subsequently, we
can rewrite the governing equation in the matrix-vector
form as follows.

(IM\] = [M,] + [M;] = [E\ ] = [Ex ] + [ER] + [ExD{w}
=([P\]1+[QE DO} + [QE 0o} = [P {05} — {04} 20

Matrices [M,], [M,], [Ms], [E|], [E},]), [E,], and [E,,]
are displacement stiffness matrices; {w} is the displace-
ment vector; {0}, {O,}, and {Q,} are the modified
additional stress vectors; {Q,} is the supplement vector;
[P,] and [P,] are the stress matrices due to {Q,} and
{05}, respectively; [OF,] and [QF,] are defined as the
modified additional stress stiffness matrices owing to
virtual pressure e;(x) and e,(x), respectively. The detailed
equations, matrices, and vectors are listed in Appendix B.

The discontinuous deflection of the existing shield
tunnel {w} can be solved using Eq. (18). Based on Egs.
(11) and (12), the discontinuous internal forces of the
existing shield tunnel can be obtained as follows.
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d? k 1
_EI[ w(x) __w(x)+G—Aq(x)], (x;txj)

Yo d2  GA
B dwx)  k 1 _
—BEI[ i —G—Aw<x>+G—Aq<x>], (x=x))
(21)
Fwx)  k dw(x) 1 dg(x)
0= _El[ d¥* GA dx GA dx ]’ (x # X))
_aEl[d3w(x)_idw(x)+qu(x)]. (x=x)
dx3 GA dx GA dx
(22)

Subsequently, based on Eq. (16), the relative rotation
angle and dislocation at the longitudinal joints can be
obtained as follows.

1 dzw(xj)_i Q(xj)
Af; = -I(1 /3)( = AV GA),
_ EI (Fw(x) &k dw(x) 1 dg(x)
A(5"__1(1_Q)G_A( ¢ GA dx GA )
(23)

Wu et al. [32] established a geometric relationship
between the relative rotation angle and opening of
longitudinal joints, as follows.

A:Aej(2+2tan¢/), (24)

2 2
where D is the diameter of the existing shield tunnel, and
Y is the neutral-axis angle.

3.3 Calculation parameters

3.3.1 Tunneling-induced subsurface settlements

The additional pressure exerting on the existing shield
tunnel g(x) was obtained based on the tunneling-induced
subsurface settlement s(x). The subsurface settlement
trough can be described using a Gaussian distribution
curve [44].

2
s(x) = Smax exp (_x_) )

2i2
. nr’V, (25)
max mi 9
i=K(z-2),

where s, . is the maximum subsurface settlement, which
primarily depends on the new tunneling-induced volume
loss 7} and new tunnel radius 7; i represents the settlement
trough width, which is related to the trough width
parameter K; z, and z are the buried depths of the new

tunnel axis and subsurface, respectively.

Several studies [21,45] have considered the trough
width parameter K at different buried depths. Mair et al.
[46] proposed the following solution for K, which is
widely used.

0.325+0.175(1 —z/z))

1-z/z,

(26)

3.3.2 Coefficient of subgrade reaction

Many scholars [47] have attempted to obtain an accurate
coefficient of the subgrade reaction using different
solutions. The parameters in the solutions primarily
include the soil elastic modulus £, soil Poisson’s ratio y,
and the diameter of the existing shield D. The following
solution proposed by Yu et al. [48] is typically used in
studies pertaining to TSIs.

308 EJED

n 1—-w2\N EI’

2.18, when z,/D < 0.5, (27)
]7 =

1+m, WhenzO/D>0.5.

4 \Verification and comparison

Data comparable to those pertaining to the discontinuous
deflection of an existing shield tunnel above a new tunnel
are rare. Therefore, we verified our proposed method
using the experimental data of a jointed pipeline obtained
from centrifuge tests conducted by Vorster [49]. A model
pipeline constructed using aluminum alloy with an outer
diameter of 15.875 mm and a thickness of 1.22 mm was
used under a 75g acceleration in the centrifuge tests. The
prototype pipeline with nine joints featured an outer
diameter of 1.19 m and a thickness of 0.09 m, and was
buried at a depth of 4.165 m. A prototype new tunnel
with a diameter of 4.5 m and an overburden depth of
11.25 m was excavated directly beneath the middle joint.
The 0.3% and 2.0% volume loss ratios of the new tunnel
were controlled in Tests 1 and 2, respectively. The elastic
modulus and Poisson’s ratio of the soil were assumed to
be 10 MPa and 0.3, respectively, since Leighton Buzzard
Fraction E silica sand was used in the tests. The relevant
parameters can be calculated using Egs. (25), (26), and
(27). Based on the parameters published by Vorster [49]
and Lin and Huang [50], the geometrical dimensions and
physical parameters of the prototype are listed in Table 1.
Notably, the coefficients of stiffness reduction, @ and 3,
were set to zero to perform a comparison with the results.
Figures 5 and 6 show the experimental data and
corresponding results, respectively, which were used to
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Table 1 Geometrical dimensions and physical parameters for verification and comparison [49,50]
pipeline tunnel soil
D(m) L(m) E(GPa) [I(m) A@m’) GI0'Nm’) z(m) Rym) Z(m) V, (%) E,MPa) u i
Test 1 Test 1
1.19 48.06 70 0.0474 0.3 2.9944 4.165 2.25 11.25 0.3 2 10 0.3 43
validate and compare our method with the previous 2 —
. . B measured deflection (7, = 0.3%)
methods. The equivalent method does not consider the 1 our proposed method
discontinuity of the joints; thus, the pipe deflection curve _ s :;glgj;’,lg (50]
is smooth in the longitudinal direction. The elastic E 01+ o zhangetal B et
K K o g \ equivalent method .
continuous method [51] provides acceptable predictions g _q] .
within a specific region. The methods proposed by Lin 3
and Huang [50] and Liu et al. [30] can be used to estimate E 21
the joints’ rotation and dislocation. The results obtained 2 3
by Liu et al. [30] are more similar to the experimental =
data than those obtained by Lin and Huang [50]. The 4 _
method proposed by Liu et al. [30] uses different 5 vy
stiffnesses of the standard segment and joint instead of =25 =20 =15 -10 =5 0 5 10 15 20 25
pipe length (m)

the equivalent stiffness. A specific case in which the
joints are hinged (@ =8 = 0) can be analyzed as well.

The analytical results yielded by our method were
consistent with the centrifuge data. Discontinuity was
evident at the joints. One of the most important
advantages of our method is that it allows us to use the
stiffness of the ring and longitudinal joints separately, and
not the equivalent stiffness. Differential governing equa-
tions with Dirac delta functions that model longitudinal
joints have definite physical meanings, and the results can
be obtained easily without complicated calculations.

Compared with the method proposed by Liu et al. [30],
our method yielded a slightly larger deflection. The
reasons for the error are as follows: (1) the calculated
deformation was underestimated when the Euler—
Bernoulli beam was used; (2) the jointed pipeline in the
centrifuge tests is suitable for slender beams such as the
Euler—Bernoulli beam, whereas the Timoshenko beam
applied in our method is suitable for modeling the shield
tunnel [32]; (3) the stiffness at the joints was assumed to
be zero in our method. However, some stiffness may
remain at the joint in the centrifuge tests, thus affecting
the results. In general, our proposed method is applicable
for predicting discontinuous deformations.

5 Parametric analyses

In our method, the deflection, rotation, and dislocation
results primarily relied on the stiffness reduction of the
longitudinal joints. The GA of the Timoshenko beam is an
important parameter that differs from that of the
Euler—Bernoulli beam. Different additional pressure
profiles generated different deformation modes in the
shield tunnel. Thus, we considered the effects of the

Fig.5 Verification and comparison of our proposed method
based on Test 1.

= m  measured deflection (V,= 2%)
104 our proposed method
- -~ Liuetal [30]
54 —-—-- Lin and Huang [50]
—eemee Zhang et al. [51]
01— - equivalent method

pipe deflection (mm)

=30 T T T T T T T T
=25 =20 -15 =10 =5 O 35
pipe length (m)

20 25

Fig. 6 Verification and comparison of our proposed method
based on Test 2.

aforementioned parameters on the discontinuous mecha-
nical behavior of an existing shield tunnel. Table 2 lists
the calculation parameters used to obtain the disconti-
nuous deformation and internal forces. The overall length
of the shield tunnel L was set to 100 m, and the width of
each segmental ring /. was 1 m.

5.1 Coefficient of shearing stiffness reduction «

The same parameters listed in Table 2, except for « and g,
were used to investigate the effects of the coefficient of
shearing stiffness reduction . We assumed a to be 0,
0.01, 0.1, 0.5, and 1. Considering only the effect of «,
zero relative rotations were generated at the longitudinal
joints because 8 was set to 1. Our approach incorporates
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the general method when a and §8 are set to 1, where the
Timoshenko beam and the Winkler model are used
without considering the longitudinal joints.

Figure 7 shows the deflection of an existing shield
tunnel and the dislocation of the longitudinal joints. As «
increased, the deflection and dislocation decreased. The
deflection curve was smooth, and the width of the curve
expanded gradually. The dislocation curve represents
discontinuity when « is sufficiently small. The
discontinuity of the dislocation was not evident as «
increased. When « = 1, zero dislocations were generated
at the longitudinal joints.

Table 2 Input parameters for factor analyses

parameter unit value
@ - 0.01
B - 0.01
D m 6

L m 100
/ m 0.1
I3 m 1
EI GPa'm* 30
GA GPa'm* 30
k MPa/m 30

Front. Struct. Civ. Eng. 2023, 17(1): 37-52

Figure 8 shows the internal forces of an existing shield
tunnel. Both the bending moment and shear force
indicated significant levels of discontinuity. The increase
in @ decreased the internal forces because the discon-
tinuous internal forces at the longitudinal joints decreased
gradually. Meanwhile, the shear forces of the rings
increased. When « increased to 1, the bending moment
and shear force were continuous and smooth, which were
similar to the results yielded by the conventional method.

5.2 Coefficient of bending stiffness reduction

The effects of 8 on the deflection and relative rotation of
the longitudinal joints are shown in Fig.9. The
dislocations of the joints were zero because @ was set to
1. The deflection and rotation were slightly discontinuous
when 8 was zero. The deflection and rotation decreased
as B increased. The resultant curves became increasingly
wider. When B = 1, the relative rotations at the
longitudinal joints were zero.

Figure 10 shows the internal forces of an existing shield
tunnel. The bending moment and shear force increased as
B increased (and @ = 1). Although the bending moment
curve was smooth, the bending moment was zero at the
longitudinal joints when 8 = 0. Owing to the shear force
discontinuity at the longitudinal joints, the shear force
curve was serrated in some regions. When 8 = 1, the

0
= =1 g
g
< 2 ]
2 Timoshenko—Winkler
g 31 - a=0 -
&= _
3 ---a=0.01
=44 —=-a=0.1 1
------- =05
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Fig. 7 Discontinuous deformation considering shearing stiffness reduction at longitudinal joints: (a) deflection of an existing shield tunnel;

(b) relative dislocation of the longitudinal joints.
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bending moment and shear force remained constant, i.e.,
without considering the longitudinal joints.

5.3 GA of Timoshenko beam

GA is an essential parameter that defines Timoshenko
beams. To investigate the effect of G4 on the deformation
and internal force, we assumed that @« = 8= 0.01, and set
GA to 5, 10, and 30 GPa, and infinite. Figure 11 shows
the results of deflections, rotations, and dislocations. As
GA increased, the deformation and discontinuity decre-
ased. When GA approached infinity, the Timoshenko
beam degenerated to the Euler—Bernoulli beam. In this
case, the deflection, rotation, and dislocation were
continuous and indicated the minimum values. Shearing
dislocations did not occur at the longitudinal joints.

Figure 12 shows the bending moment and shear force
of an existing shield tunnel. The internal forces of the
existing shield tunnel showed a significant level of

discontinuity. As GA increased, the internal forces
decreased gradually.

5.4 Additional pressure profile

The additional pressure profile, which is typically
assumed to be a Gaussian function in analytical methods,
was obtained based on the tunneling-induced subsurface
settlement. However, different pressure distributions can
result in different deformation mechanisms. In this
section, we assume that the subsurface settlement can be
regarded as a rectangle, an isosceles trapezoid, or a right
triangle. For the rectangular settlement, the subsurface
settlement measures 5 mm and is located between —10.5
to 10.5 m. For the isosceles trapezoidal settlement, the
maximum settlement measures 5 mm and is located
between —10.5 to 10.5 m; furthermore, it reduces linearly
to zero between —20.5 and 20.5 m. A right triangle, which
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measures 0 mm at —20.5 m and 5 mm at 20.5 m, is
applied to investigate the effects of asymmetric pressures.

Figure 13 shows the deformation of an existing shield
tunnel based on different pressure profiles. The deflection
curves were similar to those of the additional pressure
profile. Extreme rotation and dislocation of the
longitudinal joints occurred on both sides of the rectangle
and on the right-angle side of the right triangle. Similar to
the case at both sides of the isosceles trapezoid, the
smoothed pressures resulted in slight rotation and
dislocation. Figure 14 shows the bending moment and
shear force. At the location where mutation pressures
occurred, the internal forces changed rapidly, which was
similar to the characteristics of rotation and dislocation.
The discontinuities in the bending moment and shear
force were evident.

0 10 20 30 40 50

rings (m)

(©)

Discontinuous deformation considering shearing stiffness GA4: (a) deflection; (b) relative rotations; (c) relative dislocations.

6 Discussion

Figure 15 illustrates the Timoshenko beam for the shield
tunnel vs. the Euler—Bernoulli beam for the composite-
lining tunnel. The Euler-Bernoulli beam primarily
considers flexural deformation under a bending moment
and is widely used to model slender beams. The
Timoshenko beam is improved based on the
Euler—Bernoulli beam by accounting for shearing
deformation under shear force. A short and thick beam is
typically regarded as a Timoshenko beam. However,
these two beams are used indiscriminately to solve the
TSI problem.

Euler—Bernoulli beams are suitable for simulating
composite-lining tunnels, which are typically several
meters wide and several hundred meters long (slender
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beams). Meanwhile, Timoshenko beams are suitable for
modelling shield tunnels because they are connected with
several rings. Each ring typically measures 6 m high and
2 m wide (short thick beam). When considering the
movement and longitudinal joints, an unsuitable beam
model may cause the existing tunnel to deform
unsatisfactorily, thus resulting in undesirable internal
forces.

The findings of this study and those reported in the
literature [26] show that the deformation of composite-
lining tunnels exhibit significant discontinuities owing to
the presence of movement joints. The number and
relative location of movement joints determine the
deformation mechanism. Meanwhile, the deformation of
the shield tunnel was slightly discontinuous owing to the
longitudinal joints, whereas the internal forces were
extremely discontinuous. Interestingly, the flexible struc-
tures (slender beams) exhibited locally rigid characte-
ristics owing to the movement joints. Several rigid rings
(short thick beams) connected by longitudinal joints
exhibited flexible characteristics.

This indicates that the structural deformation and
discontinuity in vulnerable sections of undercrossing
composite-lining tunnels should be monitored more
closely. Whereas the internal forces and their disconti-
nuity for undercrossing shield tunnels should be paid
more attention to. This enables an effective monitoring of
potential abrupt changes in the mechanical response of an

0 10
x (m)

(b)

Discontinuous internal forces considering shearing stiffness GA4: (a) bending moment; (b) shear force.

existing tunnel and ensure its structural and operational
safety.

In addition, our approach predicts the responses of an
existing shield tunnel in the longitudinal direction by
considering the longitudinal joints but not the circumfe-
rential joints. In the future, we plan to investigate the
mechanical behavior of the cross-section of an existing
shield tunnel with circumferential joints.

7 Conclusions

An analytical method abbreviated TDW was developed in
this study to predict the discontinuous mechanical
behaviors of an existing shield tunnel with longitudinal
joints. Centrifuge tests were performed to validate the
proposed method. The findings obtained were as follows.

1) A mathematical model based on the Dirac delta
function was proposed in this study. Compared with
conventional methods, our method can provide a more
accurate estimation of opening and dislocation at
longitudinal joints and the discontinuous internal forces
of an existing shield tunnel.

2) As a, B, and G4 increased, the deflection, rotation,
and dislocation decreased and indicated slight disconti-
nuities. Meanwhile, discontinuities were particularly
evident in the bending moment and shear force. Our
method can incorporated the general method, which uses
the Euler—Bernoulli beam (GA = o) or does not consider
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Fig. 13 Discontinuous deformation considering additional pressure profiles: (a) deflection; (b) relative rotations; (c) relative dislocations.

longitudinal joints (@ =8 =1).

3) Different additional pressure profiles resulted in
different deformation mechanisms. The deflection and
pressure profiles of the existing shield tunnel were the
same. However, its rotation, dislocation, and internal
forces changed significantly at the location of mutation
pressure.

4) Because of the movement or longitudinal joints,
slender beams used to model flexible structures
(composite-lining tunnel) showed locally rigid characteris-
tics. Moreover, short thick beams used to model several
rigid rings (shield tunnels) exhibited flexible
characteristics.

5) The Timoshenko beam is suitable for simulating
existing shield tunnels with longitudinal joints. The
deformation of shield tunnels was slightly discontinuous,

whereas the internal forces were extremely discontinuous.
During the construction of shield tunnels, the internal
forces and abrupt changes in the weaker sections must be
prioritized.
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