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ABSTRACT The objective of the current study is to propose an expert system framework based on a supervised
machine learning technique (MLT) to predict the seismic performance of low- to mid-rise frame structures considering
soil-structure interaction (SSI). The methodology of the framework is based on examining different MLTs to obtain the
highest possible accuracy for prediction. Within the MLT, a sensitivity analysis was conducted on the main SSI
parameters to select the most effective input parameters. Multiple limit state criteria were used for the seismic evaluation
within the process. A new global seismic assessment ratio was introduced that considers both serviceability and strength
aspects by utilizing three different engineering demand parameters (EDPs). The proposed framework is novel because it
enables the designer to seismically assess the structure, while simultaneously considering different EDPs and multiple
limit states. Moreover, the framework provides recommendations for building component design based on the newly
introduced global seismic assessment ratio, which considers different levels of seismic hazards. The proposed framework
was validated through comparison using non-linear time history (NLTH) analysis. The results show that the proposed
framework provides more accurate results than conventional methods. Finally, the generalization potential of the
proposed framework was tested by investigating two different types of structural irregularities, namely, stiffness and
mass irregularities. The results from the framework were in good agreement with the NLTH analysis results for the
selected case studies, and peak ground acceleration (PGA) was found to be the most influential input parameter in the
assessment process for the case study models investigated. The proposed framework shows high generalization potential
for low- to mid-rise structures.
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1 Introduction engineering [5]. Falcone et al. [6] noted that soft-

computing techniques, such as neural networks, are

Major earthquakes, such as the Mexico City (magnitude,
Mw = 8.1, 1985) and Puebla (Mw = 7.1, 2017) earth-
quakes, highlighted the complex problem of soil-structure
interaction (SSI) in urban areas [1] as well as the lack of
comprehensive seismic performance assessment proce-
dures. The multi-objective nature of the engineering
design process for next-generation performance-based
seismic design (PBSD) (e.g., [2,3]) requires multi-level
seismic design criteria (e.g., operational, fully opera-
tional, life safety, etc.). To reduce the huge computational
demand of PBSD, more soft computing application
studies are needed in structural [4] and earthquake
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emerging trends in seismic engineering, and more studies
are needed in this research area. There has been little
advancement in the development of an expert system
related to the seismic evaluation of buildings [7] since
early studies were conducted in 2005 (e.g., [8,9]).
Therefore, it is essential to move research in this area
forward by proposing expert system frameworks and new
soft computing techniques related to seismic performance
evaluation.

The inclusion of SSI in the analysis of structures resting
on soft soils is important for the seismic assessment of
structures. Buildings resting on soft soils may experience
higher seismic demands if SSI is considered compared
with fixed-base buildings [10]. van Nguyen et al. [11]
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showed that SSI has a significant impact on the responses
of nuclear reactors subjected to seismic excitations. Dao
and Ryan [12] showed that SSI can amplify story drifts
and accelerations in buildings isolated by friction
bearings when the model is subjected to seismic shaking.
Fatahi et al. [13] found that SSI can change the perfor-
mance level of structures from life-safe to near-collapse.

Many studies have investigated the seismic demands of
structures considering SSI using conventional methods.
For example, Tang and Zang [14] investigated the effect
of SSI on typical slender shear wall buildings by
considering uncertainties using the maximum interstory
drift (MIDR) as the main EDP. Fatahi et al. [13] and Reza
Tabatabaiefar et al. [15] used the same EDP to investigate
the effect of the SSI on moment-resisting building frames
with different soil deposits. Recent studies, whether
experimental or numerical, have relied primarily on using
one EDP for seismic evaluation, such as MIDR (e.g.,
[16,17]) and base shear (e.g., [18]). However, these
studies did not consider that multiple EDPs are required
for serviceability and safety simultaneously.

Recent studies have highlighted the capability of soft
computing to predict structural response, and some of
these studies included SSI. For example, Khatibinia et al.
[19] used a wavelet weighted least squares support vector
machine to assess seismic reliability of RC structures
including SSI. Farfani et al. [20] used data-based methods
to produce additional experimental data for the seismic
analysis of soil-pile-structure (SPS) systems. Mirhosseini
[21] used support vector regression (SVR) to predict the
seismic response of building systems considering the SSI
effects. Sharma et al. [10] developed an ANN to predict
the natural period of RC building frames supported on
pile foundations for various soil types. Other studies have
attempted to predict building response without conside-
ring SSI using different machine learning techniques
(MLTs), such as supervised and unsupervised learning
algorithms (e.g., [22]), ANN (e.g., [23-27]), and convolu-
tional neural networks (e.g., [28]). These studies
attempted to introduce soft computing techniques as an
alternative to conventional methods for predicting buil-
ding response; however, they did not provide a compre-
hensive framework for the seismic assessment of
structures.

Conventional inelastic design procedures excluding SSI
are deemed inadequate for guaranteeing the structural
safety of building frames resting on soft soil deposits
[13]. Other studies have shown that conventional methods
that consider SSI in estimating structural responses (e.g.,
[2]) are conservative in many cases [29] or unsafe (or
uneconomic) in other cases [30,31]. In addition, these
methods are suitable only for regular structures. Most
studies are highly concerned with structural safety (i.e.,
story drift [32]), and few studies (e.g., [33]) consider
serviceability, which is found to be crucial for important
facilities such as hospitals and data centers [34]. Floor
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acceleration is commonly used as a representative enginee-
ring demand parameter (EDP) for serviceability [35].

Another important aspect that is commonly overlooked,
especially in retrofitting and optimization studies, is the
increase in the seismic base shear demands on the
foundation due to global retrofitting (e.g., attachment of
energy dissipating devices) [36—39]. This necessitates the
inclusion of base shear (V) as an additional EDP during
the early design stage or seismic assessment process. In
addition, next-generation PBSD [2] requires multiple
EDPs (e.g., story-drift, floor acceleration) to make the
seismic fragility groups required for the assessment and
performance-based design of buildings. Moreover, recent
seismic evaluation and retrofit standards (e.g., [40])
require consideration of different limit states (e.g.,
immediate occupancy, life safety, collapse prevention) in
the seismic assessment process. Another important aspect
that must be included in conventional seismic assessment
procedures are seismic-enhancement predictions (or
retrofitting), required to meet a given seismic performan-
ce level.

Soft computing techniques are gaining momentum for
solving complicated engineering problems, such as crack
propagation prediction [41], damage assessment in FGM
composite plates [42], fast tracking for structured light
measurement [43], damage identification in plate
structures [44], and structural damage detection [45]. This
makes soft computing techniques appealing tools for
solving complicated seismic engineering problems conside-
ring SSL.

Based on the previous discussion, it can be concluded
that there is a great need for a comprehensive expert
system for seismic performance assessment that considers
different input variables related to the structure, SSI, and
earthquake events. The main motivation of the current
research is attributed to the lack of an automated seismic
assessment framework that considers different EDPs, as
well as multiple limit state criteria (such as life safety and
collapse prevention limit states) considering SSI.
Moreover, there is a need for a global assessment index
that provides the building engineer with an easy and
simple metric to judge the performance of any component
in the building at different hazard levels (such as design-
level earthquakes and maximum-considered earthquakes).
This is considered a highly needed design approach
recommended by modern seismic guidelines and codes
(e.g., [2,40]), and more research is needed to fill this gap,
especially for studies considering SSI.

In the current study, an expert system framework is
developed based on supervised MLTs and is used for
predicting the seismic performance of low- to mid-rise
frame building structures considering SSI. The proposed
framework considers both safety (maximum interstory
drift ratio, D, and base shear, V) and serviceability (floor
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acceleration, A4) in the seismic performance assessment.
The framework can be adjusted to the important input
parameters for which the EDPs are sensitive. A new
global seismic assessment ratio is introduced that
accounts for the combined effect of three different EDPs
(D, A, and V). In addition, the proposed framework
allows the designer to assign different weight factors to
the preferred EDPs to reflect the importance of a
particular EDP for a specific limit state or building
condition. Conventional methods considering SSI (e.g.,
[29]) are used for comparison, and an NLTH analysis is
used to verify the proposed framework results. The
proposed procedure provides an expert opinion regarding
the structural seismic performance considering the
variability in the SSI, structural characteristics, and
ground motion input.
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2 Proposed framework

As shown in Fig. 1, the proposed expert system
framework consists of three main parts: dataset
preparation and processing, MLT selection, and seismic
performance evaluation. The main input for the
framework is related to the structure, earthquake, and SSI
information. The output is the seismic performance
classification of the structure and the required seismic
retrofit. The framework can be summarized as follows.

Steps related to data-set preparation and processing.

1) A dataset related to framed structural systems (three
to ten stories) was prepared. Structural models are
selected such that they represent the common prototype
building structures under investigation. Earthquake
records and response spectra were prepared considering

the flowchart of the proposed framework
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Flowchart of the proposed framework.
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the variability of earthquake characteristics. The main SSI
variables affecting the seismic response were selected,
and a reasonable range based on previous studies was
used for each variable. In the current study, the soil
elastic modulus, E, and Poisson’s ratio, u, were
considered representative of the other soil model
variables, such as the shear modulus, G, and shear
velocity, V, to reduce the input space of the framework.

2) Non-linear time history analyses (NLTHAs) were
conducted by considering the soil continuum around the
foundation and earthquake records. An algorithm coded
in OpenSees [46] and MATLAB [47] environments was
used to conduct NLTHAS and obtain D, 4, and V.

3) The dataset input vector was [number of stories,
earthquake response spectrum, and SSI parameters] and
the output vector was [D, 4, V]. Data processing, such as
outlier detection and removal, data normalization, and
input space reduction was conducted on the original data
to enhance the performance of the MLT in the next step.

Steps related to MLT selection.

4) Different MLTs were investigated (e.g., ANN, SVM,
fine tree, and bagged tree) to achieve the highest accuracy
required. Subsequently, the optimum hyperparameters of
the selected MLT were fine-tuned, and the best optimiza-
tion algorithm was used for training. For example, if an
ANN is selected, different back-propagation optimization
algorithms to update the weight and bias values are
investigated (e.g., Levenberg—Marquardt (LM), Bayesian
regularization (BR), and Scaled Conjugate Gradient
(SCQG)) to obtain the optimum performance in terms of
accuracy and time. The procedure assumes that ANN
provides the highest accuracy compared with other
MLTs.

5) To avoid overfitting, the dataset was divided into
training (70%), validation (15%), and testing (15%).
Different ANN architectures, including the number of
layers and neurons in each layer, were checked for the
best performance.

6) Mean square error (MSE) and linear correlation
factor (R) were used to assess the performance of the
selected MLT. The minimum acceptance criterion was
used to maintain the required accuracy of the selected
MLT. If this criterion was exceeded, a sensitivity analysis
was conducted to check the most important input
variables and increase their representation in the original
dataset. This process was repeated until the prescribed
acceptance criteria were met. To maintain the highest
accuracy, each EDP was predicted using an individual
MLT. The minimum acceptance criteria were arbitrarily
chosen to maintain the preferred level of accuracy
required by the designer. Because the minimum criteria is
highly related to the availability of a huge dataset, it can
be relaxed if the available dataset is not numerous.

Steps related to seismic performance evaluation.

7) At least two different levels of seismic hazard should
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be defined (e.g., 10% and 2% probability of exceedance
in 50 years), which can be mapped onto the design basis
earthquake (DBE) and maximum considered earthquake
(MCE). Earthquake records based on these hazard levels
can be used to obtain DAV values.

8) The limit states (e.g., immediate occupancy (I10), life
safety (LS), and collapse prevention (CP)) for each EDP
should be defined. The weight of each EDP should be
defined by considering the importance of the EDP on the
seismic response of the structure.

9) A global seismic assessment ratio (G) is calculated
as follows:

Davg Aavg Vavg

G=1-\F,—+F +F
( leim A141im VVvlim

)< 1.0, (1)

where D,,,, A, and V,, are the averages of D, 4, and V,
respectively, obtained from the set of earthquakes
corresponding to each hazard level; Dy, Ay, and Vy, are
the limits corresponding to each EDP for a specific limit

. Davg Aavg ‘/avo
state. Each EDP ratio | — & —— & —— | should be less

lim A lim
than 1.0. Fy, F,, and Fy are the weight factors of D, 4,
and V, respectively. These weight factors should range
between 0 and 1.0 (values near 1.0 have more impact on
the seismic response evaluation) according to the
designer’s preference, and the following condition should
be satisfied.

Fd+FA+FV:1'O' (2)

10) Finally, a seismic performance classification based
on the G value was established. In the current study, the
assumed classes good, moderate, poor, and not acceptable
were mapped to G values of (1.0 > G > 0.75), (0.75 >
G > 0.45), (045> G > 0.2), and (0.2 > G), respectively.

3 Modeling of soil structure and ground
motions

In this section, the case study structures, SSI modeling,
and ground motion records are presented for analysis.

3.1 Building model

Because the effect of the building height on the structural
natural period is more important than its width [10],
different frame models in terms of the number of floors
were used for the dataset input. The structural models
were selected such that they represent common prototype
frame buildings with three bays (span and story height are
shown in Fig. 2). Similar archetype models have been
used in FEMA-P695 [48]. The plan and elevation of one
of the models are shown in the Fig. 2. For analysis, the
use of a 2D frame is permitted because no torsional
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Fig. 2 Configuration of the analysis model frames: (a) plan view; (b) 3-story frame elevation with SST Model.

behavior is expected in the building [40]. The building
was designed for a dead load of 4.1 kN/m* and a live load
of 2.5 kN/m”. Table 1 lists the section properties of the
steel elements (nominal yield strength of 345 MPa) used
for the training models. Three-, five-, and nine-story
models were used for training. The columns and beams of
the structures were modeled as beam-column elements
using the element library built in the OpenSees software
[46]. The connections between the columns and beams
were modeled using a zero-length element. There are

different methods for crack modeling [49-55], in which
the modified Ibarra—Krawinkler deterioration model [56]
was used for modeling the non-linear force-deformation
relationship of the zero-elements.

3.2 Soil-structure interaction model
SSI modeling can be broadly categorized into two types.

The first approach, which is more accurate, is the direct
approach, in which the soil continuum around the
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foundation is modeled using the finite-element method
(FEM). The second approach, which is less accurate, is
referred to as the simplified approach, in which the
surrounding soil is modeled with a series of springs and
dashpots. The first approach was used in this study. The
width of the soil domain was thrice the width of the
building, and the depth was equal to the height of the
building. Isoperimetric four-node quadrilateral finite
elements with two degrees of freedom per node were
used to model the soil region, considering the plain strain
conditions. Joints at the soil-structure interface were
modeled to have the same degree of freedom. The
radiation damping of the soil was considered by Lysmer—
Kuhlemeyer dashpots [57]. A typical soil damping ratio
of 5% was used [58]. To represent the soil parameters in
the MLT training phase, a range of elastic moduli (£) and
Poisson’s ratios (y) were used. For the elastic modulus E,
the range was 478-210000 kN/m?* divided into three
divisions. For 7y, the range was 0.2 to 0.45, divided into
four divisions [59].

3.3 Ground motions

The ground motions are represented by the peak ground
accelerations (PGA4s) and frequency contents (i.e.,
response spectrum), which capture the main characte-
ristics of the ground motion excitations [60]. Training the
MLT using the response spectra of earthquake events

Table 1 Section properties and element details of model structures

item model standard section
beams 3 and 5-story W33 x 118
9-story W12 x 53
columns 3-story (1-3 story) W14 x 257
5-story (1-2 story) W14 x 311
(2-5 story) W14 x 257
9-story (1-2 story) W18 x 130

(3—5 story) W14 x 90
(67 story) W14 x 61
(89 story) W14 x 48

Table 2 Parameters of input earthquake records
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enhances the performance of the entire framework
because nonlinear response prediction is highly affected
by the frequency contents of the earthquake [61]. To
introduce variability in the input ground motions used in
the current study, 100 different real ground excitation
events from the PEER [62] database were used. The
ranges of the input parameters are listed in Table 2. The
variations in these seismic excitations include PGA,
magnitude (Mw), source-fault mechanism, site-to-source
distance, shear velocity (V,), and the lowest useable
frequency. More earthquake events are represented in the
range of 0.3g to 0.6g as it is the practical range for the
seismic design of buildings. Figure 3(a) shows the
response spectra of the 100 input earthquakes, and
Fig. 3(b) shows a histogram of the PGA ranges used. This
selection guarantees the diversity of the input earthquakes
over the expected range of occurrence.

To test the proposed framework’s potential for seismic
assessment, different seismic hazard levels were used,
and the results were compared with widely accepted
conventional methods and the NLTH analysis method;
the latter is considered the reference method. The records
used for these hazards were not used in training the MLT.
Two seismic hazard levels of 10% and 2% probability of
exceedance in 50 years (shortened 10/50 and 2/50,
respectively) were used. These levels are equivalent to
life safety and collapse prevention structural performan-
ce, respectively, for risk category II buildings to achieve a
basic performance objective equivalent to new building
standards [40]. The structural models were assumed to be
located in California (LA-USA), with latitude and
longitude coordinates of 34.0° and —118.2°, respectively.
Figure 4 shows the response spectra of the 11 earthquake
records and their arithmetic mean, along with the target
response spectrum for each seismic hazard level. The 22
earthquake records (Table 3) were obtained from the
PEER NGA Database [62].

4 Results and discussion

In this section, we discuss the performance and accuracy

item limit/ EQ name ~ PGA(g) magnitude (Mw)  sourcetosite . (m/s) lowestuseable source-fault
distance (km) ) frequency (Hz) mechanism
limits of parameters upper 1.800 7.62 218.13 1428 3.750 normal; reverse: reverse
oblique; strike slip
lower 0.017 4.20 0.56 169.8 0.025
earthquake samples” “NW Calif-03” 0.301 5.80 53.73 219.3 0.500 strike slip
“Cent. Calif-01” 0.340 5.30 25.81 198.7 0.375 strike slip
“Parkfield” 0.370 6.19 63.34 493.5 0.625 strike slip
“San Fernando” 0.579 6.61 22.77 316.4 0.100 reverse
“San Fernando” 0.644 6.61 35.54 529.0 0.250 reverse

*Note: EQ records will be used for the 4th model.
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of the proposed framework. Subsequently, the framework
was validated using NLTH analyses and compared with
conventional methods. The generalization potential of the
framework was examined, and the global assessment ratio
was estimated for all models. Finally, the results are
discussed, showing the superiority of the proposed
framework over conventional methods.

4.1 Enhancing the performance of the selected machine
learning technique

The sensitivity of the EDPs to the input parameters was
investigated to enhance the performance of the selected
MLT. Based on the sensitivity analysis results, increasing
the data input related to a particular input parameter may
increase accuracy. A sensitivity analysis was conducted
by calculating the mean () and standard deviation (o) of
the input parameter values. Then, 100 variations of the
input parameter were induced within the range of (u=+ o),
and the corresponding outputs were calculated using the
MLT. The standard deviation (0) of the output was
calculated. A high standard deviation (o) of the output
parameter indicated a high sensitivity to the

78,1.03] (1.03,1.28] (1.28,1.54] (1.54,1.79]
PGA

®)

Input earthquakes used for the framework: (a) response spectra of 100 input earthquakes; (b) histogram of the PGA.

corresponding input parameter [20]. For example, in the
case of the 3-story model, the sensitivity analysis showed
that the three EDPs are most sensitive to PGA, as shown
in Fig. 5. This requires an increase in the number of EQs
used in the input dataset within a particular range. In the
current study, the number of EQs increased with greater
diversity in the PGA values in the range of 0.3g to 0.6g. It
was found that the required accuracy criteria were
satisfied after increasing the PGA input data in this range.

Another technique to enhance the accuracy of MLT can
be achieved by removing unnecessary input parameters to
reduce the input space. For example, SSI input
parameters can be removed if they have a marginal effect
on output results. The structure-to-soil stiffness ratio can
be checked to determine the significance of SSI on
seismic responses [63]:

77 > 0L 3)

where /£ is the effective height of the structure, which is
two-thirds of the building height; V, is the average
effective overburden-corrected shear wave velocity of the
soil profile below the site; and T is the fixed-base period
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Fig. 4 Response spectra of the 11 earthquakes and the target spectrum for seismic hazards with probability of exceedance in 50 years of:

(a) 10%; (b) 2%.

of the building in the direction under consideration.
Values of h/(V,T) exceeding 0.1 indicate that the SSI
effects are likely to be significant, which is the case for
the models used in the current study.

To improve the prediction potential of MLT, data
normalization is used to map the data to a uniform scale,
especially if the data have widely different scales. A min-
max linear transformation technique was used to scale all
values within a range of 0-1. The following normaliza-
tion equation was used [64]:

Voew = (M) (max2 —min2) + min2,  (4)
max1 —minl

where y.., and y,s are the new and old wvalues,
respectively; minl and max1 are the minimum and
maximum values of the original data range, respectively;
and min2 and max2 are the minimum and maximum
values of the new data range, respectively. Figure 6
shows the normalized V' of the 3-story frame for 1200
samples. The same was generated for outputs D and 4 (a
total of 3600 outputs for each model).
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Table 3 List of the earthquake records used in the nonlinear dynamic analyses

?;05%3';2;}5’ of exceedance  sequence number earthquake name PGA(g) magnitude faulttype source distance (km) scale factor
10% 1 “Imperial Valley-02” 0.59 6.95 strike slip 6.09 2.09
2 “Kern County” 0.61 7.36 reverse 38.42 3.82
3 “Northern Calif-03” 0.38 6.5 strike slip 26.72 233
4 “Parkfield” 1.26 6.19 strike slip 9.58 2.76
5 “Parkfield” 1.57 6.19 strike slip 15.96 4.34
6 “Borrego Mtn” 0.52 6.63 strike slip 45.12 391
7 “San Fernando” 0.60 6.61 reverse 22.77 2.57
8 “San Fernando” 0.75 6.61 reverse 22.23 4.96
9 “San Fernando” 0.57 6.61 reverse 24.16 4.98
10 “Managua Nicaragua-1” 0.89 6.24 strike slip 3.51 2.38
11 “Managua Nicaragua-2” 0.77 52 strike slip 433 2.94
2% 12 “Imperial Valley-02” 1.009 6.95 strike slip 6.09 3.5903
13 “Kern County” 1.043 7.36 reverse 38.42 6.5615
14 “Northern Calif-03” 0.655 6.5 strike slip 26.72 4.0082
15 “Parkfield” 2.107 6.19 strike slip 9.58 4.7448
16 “Borrego Mtn” 0.890 6.63 strike slip 45.12 6.7084
17 “San Fernando” 0.993 6.61 reverse 22.77 4.4173
18 “San Fernando” 1.289 6.61 reverse 22.23 8.5081
19 “San Fernando” 1.586 6.61 reverse 0 1.2998
20 “San Fernando” 0.958 6.61 reverse 24.16 8.5419
21 “Managua Nicaragua-1” 1.522 6.24 strike slip 3.51 4.0902
22 “Managua Nicaragua-2” 1.329 52 strike slip 433 5.0514
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Fig.5 Sensitivity of EDPs to PG4, elastic modulus (E,), and Poisson’s ratios (n,): (a) V; (b) D; (c) 4.
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4.2 Accuracy of the machine learning technique

Different MLTs were investigated to obtain the highest
possible accuracy. Figure 7 shows the accuracy of
different MLTs (SVM, bagged tree, fine tree, and ANN)
for the 3-story model, where ANN was found to provide
the highest accuracy in terms of the MSE. Different
algorithms, topologies, and activation functions were
studied to select the ANN with the highest possible
accuracy. Figure 8 shows the effect of three training
backpropagation algorithms (SCG, Levenberg—Marquardt
(LM), and Bayesian Regulation (BR)) on the accuracy of
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Fig. 8 Effect of training algorithm on: (a) MSE; (b) R.

the ANN. It can be observed that the LM and BR
algorithms obtained higher accuracies than the SCG
algorithm for the three EDPs. It should be noted that D is
less sensitive to the training algorithms than V" and A.
Figure 9 shows the effect of the number of hidden layers
on the accuracy of the ANN, where two hidden layers
provided the highest accuracy for all EDPs. Figure 10
shows the effect of the number of neurons on accuracy. It
was found that the use of 10 neurons provided the least
mean square error; conversely, 20 neurons provide a
slight edge over 10 neurons based on the R values for
and D.
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Fig. 9 Effect of number of hidden layers on: (a) MSE; (b) R.

Figure 11 shows the effect of the activation function,
where it can be observed that the hyperbolic tangent
sigmoid (TANSIG) function provides the most accurate
results compared with the log sigmoid transfer (LOGSIG)
and linear transfer (PURLIN) functions. Based on this,
the best accuracy can be achieved by using an ANN with
two layers, the TANSIG activation function, the LM
training algorithm, and 10 neurons per layer. Figure 12
shows an example of the R plot and the error histogram
for V' and D after using the optimum parameters of the
ANN for the 3-, 5-, and 9-story models.
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4.3 Validation using non-linear time history analyses and
comparison with ASCE methods

To validate the proposed framework, the MLT results
were compared with those of the NLTH analysis using 22
earthquakes representing design-level earthquake (DLE)
and maximum considered earthquake (MCE), as descri-
bed in Section 3. Figure 13 shows the comparison results
(for V, A, and D), where ANN represents the MLT; and
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FEM represents the NLTH analysis using the FEM
method. The results indicate that there is very good
agreement between the results of the proposed framework
and NLTH analysis for both the DBE and MCE levels.

The proposed framework results were compared with
those of conventional methods for calculating seismic
responses including SSI. FEM using an NLTH analysis
was used as a reference in this comparison. One of the
most common methods used for calculating the seismic
base shear with SSI is the ASCE [29] method.

Figure 14 shows the analysis results for the DBE and
MCE levels of the ASCE methods (fixed, ELFP, and
NLP), two different MLTs (ANN and bagged tree), and
the NLTH analysis method. In this figure, the ASCE
method using the equivalent lateral force procedure with
SSI is denoted as ELFP. For comparison purposes, two
other ASCE methods were used: the fixed base
procedure, Fixed, and the nonlinear procedure to account
for the kinematic SSI effect on the ground motion input,
NLP. The proposed framework is denoted as ANN, and
for comparison purposes, the bagged tree technique is
included. The FEM using an NLTH analysis is denoted as
FEM in the figure (reference method). The figure shows
that the proposed framework with ANN provides the
most accurate results compared with the ASCE methods.

For example, in the case of V, ELFP overestimated the
results by 12.53% and 11.89% for the DBE and MCE
levels, respectively. In the Fixed case, these values
increased to 17.68% and 17.01%, respectively; and in the
NLP case, they increased to 16.31% and 16.49%,
respectively. However, in the ANN case, the difference
was reduced to 7.75% and 0.96% for the DBE and MCE
levels, respectively. In the case of D, the ELFP
overestimated the results by 10.94% and 4.54%,
respectively. Other ASCE methods show more conserva-
tive results than the ELFP. However, the difference in the
case of the ANN was reduced to 2.34% and 1.23% for the
DBE and MCE levels, respectively. This shows that the
proposed framework provides a higher accuracy in
predicting V' and D compared with conventional ASCE
methods. It was found that the bagged tree technique
underestimates the response values in general, especially
in the case of D, as can be observed in Fig. 14(b).

4.4 Generalization of the framework

The generalization potential of the proposed framework
was tested by investigating two irregularities: stiffness
and mass irregularities. Figure 15 shows the 3-story
model with mass irregularity on the second floor owing to
the addition of heavyweight equipment. The same figure
shows the 4-story model with a vertical irregularity (soft
story) in the first story, according to ASCE-7 [29]. The
cross-sections of the first- and second-story columns of
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the 4-story model are W14 x 311, and those of the third-
and fourth-story columns are W14 x 257. All beams were
designed with W14 x 118 sections. This model was not
used in the training process of the MLT. For the 3-story
model, the same modeling of the elements used in Section
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3 was applied. The earthquake records (indicated with an
asterisk in Table 2) used for NLTH analyses were not
used in the training process of the framework.

Figure 16 shows the results of the mass-irregular 3-
story model using an NLTH analysis and the proposed
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Fig. 12 Accuracy of the ANN in the example structures: (a) R plot of V' in 3-story model; (b) R plot of V' in 5-story model; (c) R plot of V'

in 9-story model; (d) error histogram of D.

MLT (ANN) for the DBE and MCE levels. For the
majority of earthquakes, the results from both the
methods were almost identical. For the DBE level, the
difference in averages of the 11 EQs results using the
proposed MLT and NLTH methods for V, 4, and D were

6.9%, 5.5%, and 1.5%, respectively. For the MCE level,

the values were 1.1%, 0.99%, and 5.7%, respectively.

Figure 17 shows the results of the stiffhess-irregular 4-
story model using an NLTH analysis and the proposed
MLT (ANN) for five different earthquakes to test the
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validity of the proposed MLT. These earthquakes were
not used in the training phase, and their characteristics are
listed in Table 2. The MLT results are in good agreement
with those obtained from the NLTH method. The
differences between the results of the five EQs obtained
from the proposed MLT and the NLTH method for V, 4,
and D were 0.001%, 3.09%, and 0.05%, respectively.

4.5 Global seismic assessment ratio

The seismic assessment was evaluated using the proposed
framework for regular 3-story, mass-irregular 3-story, and
stuffiness-irregular 4-story models. Table 4 lists the
details of the global seismic assessment ratio (G)
estimation for the previous models.

For the regular 3-story model, the same value of 1/3
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Fig. 14 Comparison of the MLT with the ASCE and NLTH
results: (a) V; (b) D.

was assigned to the weight factors (Fp, Fa, and Fy for D,
A, and V, respectively), considering that all EDPs had the
same importance. For the DBE level (life safety), the

. (Vavg Aavg Davg)

EDP ratios ; ; were found to be 0.43,
Vim  Atim Diim

0.40, and 0.65, respectively. For the MCE level (collapse
prevention), the values are 0.6, 0.650, and 0.52,
respectively. Based on these conditions, the resulting life
safety and collapse prevention global seismic assessment
ratios, (G, ) and (Gp), were 0.51 and 0.41, respectively,
which correspond to moderate and poor seismic
performance classifications. This means that this model
can perform moderately during the DBE level but
performs poorly under the MCE level. This requires
additional attention to the components that are sensitive
to each EDP at the MCE level. For example, connections,
interior wall partitions, and external curtain walls, which
are sensitive to D, need to be designed for large drifts.
However, suspended ceilings, which are sensitive to A4,
need to be designed to accommodate large A4 values
during the MCE level.

For the mass-irregular 3-story model, the acceleration
of heavy equipment fixation requires more attention.
Therefore, F, was assumed to be 0.8, whereas F, and Fy
were assumed to be 0.1. Based on these assumptions, the
resulting life safety and collapse prevention global
seismic assessment ratios, (G g) and (G¢p), were 0.36 and
0.12, respectively, which correspond to poor and not
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Fig. 15
acceptable seismic performance classifications. This
requires fixation and the special arrangement of

heavyweight equipment on the second floor, especially
under the MCE level. Otherwise, the overall life-cycle
cost of the building [65] will be excessively high in this
case.

For the stiffness-irregular 4-story model, the
importance goes to the drift, which necessitates Fy, to be
higher (assumed 0.8) than F, and Fy (assumed 0.1 each).
Based on that, the resulting G was 0.44, which makes the
structure fall in the poor seismic performance
classification. This may require reinforcement to decrease
the drift by using bracings or additional damper devices.

Irregular framed structures: (a) 3-story with mass irregularity; (b) 4-story with stiffness irregularity.

4.6 Advantages of the proposed framework

The proposed framework has several advantages over the
conventional methods. The main advantages of the
proposed framework are summarized as follows.

1) A new global seismic assessment ratio that accounts
for serviceability (4) and strength (D and V) aspects.

2) The consideration of multi-hazard levels in the
seismic assessment.

3) The consideration of multiple limit states for
assessment and design (e.g., life safety and collapse
prevention).

4) The consideration of SSI parameters, and the
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identification of the most important SSI parameters using 5) Less conservative results compared with ASCE
a sensitivity analysis. methods by approximately 15%.
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Fig. 16 Results of the mass irregular 3-story model obtained Fig. 17 Results of the stiffness irregular 4-story model
from NLTH analysis and the proposed MLT for the DBE and obtained from NLTH analysis and the proposed MLT using 5
MCE level earthquakes: (a) V; (b) 4; (c) D. different earthquake records: (a) V; (b) 4; (a) D.
Table 4 Global seismic assessment ratio (G)
model limit state/EQ level Vave Aavg Dayg global seismic seismic performance
(Fv) Viim (FA)A“m (Fp) Dy,  assessment ratios (G) classifications
regular 3-story life safety (DBE) (1/3) 0.43 (1/3) 0.40 (1/3) 0.65 0.51 moderate
collapse prevention (MCE) (1/3) 0.6 (1/3) 0.65 (1/3) 0.52 0.41 poor
mass-irregular 3-story life safety (DBE) (0.1)0.38  (0.8)0.67  (0.1)0.60 0.36 poor
collapse prevention (MCE) (0.1) 0.67 (0.8) 0.96 (0.1)0.43 0.12 not acceptable

stiffness-irregular 4-story selected (0.1) 0.59 (0.1) 0.58 (0.8) 0.55 0.44 poor
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6) Applicability to structures having limited irregu-
larities, such as stiffness and mass irregularities.

7) Insight into the type of retrofit technique required for
the structure based on DAV values.

8) If D is high, an increase in stiffness is required (e.g.,
adding bracings, dampers, etc.).

9) If V'is high, an increase in strength is required for the
important elements to remain elastic during excitation
(e.g., bracing, column jacketing, and foundation retrofit-
ting).

10) If 4 is high, attention is required for nonstructural
elements and equipment that are sensitive to large A
values.

11) Additional EDPs such as floor velocity, energy
dissipation, and plastic hinge formation can be added
easily.

12) Easy application to regional area surveys for
seismic performance assessment of an inventory of
buildings.

5 Conclusions

In the current study, an expert system framework for the
seismic performance evaluation and classification of
structures considering SSI  was introduced. This
framework consists of three main parts: dataset
preparation, MLT selection, and seismic performance
evaluation. The framework considers the serviceability
and strength requirements with multiple limit states in the
classification process. Several low- to mid-rise structures
were used with dozens of natural earthquakes to conduct
thousands of NLTH analyses. A sensitivity analysis was
conducted on the output parameters to enhance the
accuracy of the MLT. The framework was validated
using an NLTH analysis and compared with conventional
methods.  Different structural irregularities were
investigated to test the generalization potential of the
framework. The main outcomes of this study are
summarized as follows.

* The sensitivity analysis showed that PGA is the most
important input parameter that affects the prediction of
EDPs. This requires more attention from designers
regarding this particular characteristic of an input
earthquake.

» The best MLT accuracy can be achieved by using an
ANN with two layers with 10 neurons per layer, the
TANSIG activation function, and the LM training
algorithm. In this case, the accuracy was 98.0%. This
means that the framework can be reliably used as a design
tool to quickly predict different EDPs. Moreover, the
simplicity of the ANN makes it an easy to use tool for
designers.

* The MLT-predicted results were in very good agree-
ment with those of the NLTH results. The difference
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between the average results from both methods for the
DBE and MCE levels was less than 4.0%. Based on these
results, the framework can reduce the time required for
long NLTH analyses while maintaining almost the same
accuracy.

* The proposed framework provides a higher accuracy
in predicting ¥ and D compared with conventional ASCE
methods. Additionally, the proposed framework with
ANNSs provides the most accurate results compared with
ASCE methods. This is an interesting finding because it
provides a reliable alternative to the ASCE method for
predicting drifts while maintaining an accuracy similar to
that of the NLTH method.

* The proposed framework shows high generalization
potential for low- to mid-rise structures, and can be used
for structures with limited irregularities and acceptable
errors.

» The classification of the seismic performance of the
investigated models could be accurately predicted by the
proposed framework, considering the life safety and
collapse prevention limit states and three different EDPs.
The regular 3-story and mass-irregular 3-story models
were classified as moderate and poor, respectively, for the
DBE level; whereas they were classified as poor and not
acceptable for the MCE level. The stuffiness-irregular 4-
story model falls into the poor seismic performance
classification. This finding is interesting because it
provides a qualitative assessment of a building at
different hazard levels, which is very important in the
case of retrofitting or strengthening a deficient structure,
as it will be useful in selecting a proper retrofitting
scheme for the structure considering its seismic
performance at different hazard levels.
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