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ABSTRACT In recent years, tunnel boring machines (TBMs) have been widely used in tunnel construction. However,
the TBM control parameters set based on operator experience may not necessarily be suitable for certain geological
conditions. Hence, a method to optimize TBM control parameters using an improved loss function-based artificial neural
network (ILF-ANN) combined with quantum particle swarm optimization (QPSO) is proposed herein. The purpose of
this method is to improve the TBM performance by optimizing the penetration and cutterhead rotation speeds. Inspired
by the regularization technique, a custom artificial neural network (ANN) loss function based on the penetration rate and
rock-breaking specific energy as TBM performance indicators is developed in the form of a penalty function to adjust the
output of the network. In addition, to overcome the disadvantage of classical error backpropagation ANN:S, i.e., the ease
of falling into a local optimum, QPSO is adopted to train the ANN hyperparameters (weight and bias). Rock mass classes
and tunneling parameters obtained in real time are used as the input of the QPSO-ILF-ANN, whereas the cutterhead
rotation speed and penetration are specified as the output. The proposed method is validated using construction data from
the Songhua River water conveyance tunnel project. Results show that, compared with the TBM operator and QPSO-
ANN, the QPSO-ILF-ANN effectively increases the TBM penetration rate by 14.85% and 13.71%, respectively, and
reduces the rock-breaking specific energy by 9.41% and 9.18%, respectively.

KEYWORDS tunnel boring machine, control parameter optimization, quantum particle swarm optimization, artificial
neural network, tunneling energy efficiency

1 Introduction cutterhead in certain cases, which consequently affects

the excavation speed [1]. Hence, control parameters

During the construction of tunnel boring machines
(TBMs), the selection and adjustment of the control
parameters affect the tunneling performance and con-
struction efficiency. Currently, TBM control parameters
are adjusted primarily based on operator experience,
which is not a highly accurate method. The operational
errors of the TBM driver can result in a severely worn
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should be specified based on the current geological
conditions and driving parameters to ensure safe and
efficient TBM construction.

Recently, several TBM construction and control para-
meter prediction methods have been proposed. Hasanpour
et al. [2] investigated the effects of different geological
and machine parameters on the thrust required for a
single-shield TBM in a squeezing stratum and proposed a
TBM thrust prediction model. Shirlaw et al. [3] analyzed
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the relationship among the rock-breaking specific energy,
field penetration index (FPI), and ring number, which
provides a basis for adjusting the TBM mud cycling
process. By performing simulations and on-site excava-
tion tests, Ramoni and Anagnostou [4] and Zhao et al. [5]
predicted the thrust required for TBMs. Huo et al. [6]
analyzed the effect of the cutterhead rotation speed on its
vibration, and the results showed that the appropriate
cutterhead rotation speed must be selected to avoid
accidents such as bearing damage and seal failure.

Owing to advances in computer technology, many
artificial intelligence methods have been proposed for
solving complex engineering problems [7-9]. Artificial
intelligence algorithms typically perform better than
classical regression methods [10]. Wang et al. [11]
proposed a comprehensive prediction model based on
TBM operation data and geological information using
four machine learning algorithms to assist in TBM
operations. To predict the TBM parameters in real time, a
long short-term memory (LSTM) neuron network was
used [12]. Gao et al. [13] proposed a real-time method for
predicting TBM operating parameters in which a
recurrent neural network, LSTM, and gated recurrent unit
network were used to predict the TBM operating
parameters. Moreover, LSTM was combined with a one-
dimensional convolutional neural network (CNN) to
develop a TBM cutterhead rotation speed and penetration
prediction model [14]. Guo et al. [15] proposed a TBM
assistant driving method that applies deep learning to
determine the appropriate thrust and cutterhead torque
based on the integrity of the surrounding rock. Addition-
ally, the Monte Carlo-backpropagation (BP) neural
network [16], the fuzzy logic method [17], extreme
gradient boosting [18], and the transformed temporal
pattern (TransTP) network [19] were used to develop
models for predicting TBM parameters. Compared with
classical statistical regression methods, models based on
machine learning algorithms typically afford better
prediction performance [20].

As the TBM cutterhead system is extremely sensitive to
geological conditions, the TBM control parameters must
be appropriately adjusted during excavation to obtain the
best tunneling performance under certain geological
conditions. Many indicators can reflect TBM performa-
nce, such as the cutterhead thrust (7)), FPI, rock-breaking
specific energy (E,), advance rate, and penetration rate
(V). Many models for estimating these indicators have
been developed [21-23]. Meanwhile, some researchers
have proposed an optimization method for control
parameters based on tunneling performance. Yang et al.
[24] established an optimal control strategy for the
cutterhead system mode using the prediction results of the
cutterhead load and efficiency to control the energy
consumption. Xue et al. [25] proposed a method for
selecting TBM control parameters based on the principle

of optimal energy. Liu et al. [26] proposed an intelligent
decision-making method based on multi-objective
optimization that considers mining efficiency and cost.
Gong et al. [27] developed a real-time analysis system
based on machine vision and deep learning and then
applied it to optimize TBM operation parameters. Xia
et al. [28] improved the residue performance of TBMs by
optimizing the penetration and cutterhead speeds. In
general, TBM energy consumption and efficiency are the
main indicators of tunneling performance. However, most
classical models trained on historical data rely on driver
experience. Under certain geological conditions, the
optimized penetration and cutterhead rotation speeds
should increase the penetration rate of the TBM and
reduce the E_ such that it is lower than empirical values.
The aim of the current study is to develop a method that
optimizes the TBM penetration and cutterhead rotation
speeds to increase the tunnel excavation speed and reduce
the rock-breaking energy consumption. Hence, a hybrid
algorithm that combines quantum particle swarm optimiza-
tion (QPSO) and an improved-loss function-based
artificial neural network (ILF-ANN), denoted as QPSO-
ILF-ANN, is proposed herein. The cutterhead rotation
speed and penetration optimization are estimated by
improving the loss function of the ANN. In addition,
QPSO is used to replace the gradient descent method,
which is typically utilized during the training of classical
ANN models. The optimization results of the model can
provide a basis for specifying TBM control parameters.

2 Methodology

2.1 Artificial neural network

ANNSs are a widely used machine learning technique for
solving regression and classification problems. They
typically comprise input, hidden, and output layers
[29,30]. Figure 1 illustrates a typical three-layer ANN
topology.

The connection weight and bias are the most important
hyperparameters of an ANN. These parameters are
optimized during the training of the ANN via an error BP

hidden layer

output layer

Fig. 1

Typical three-layer ANN.
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approach that minimizes the loss function [31]. The loss
function of an ANN is typically defined as

m

Loss = Z —9 (1

k=1

where m is the total number of training samples; y* and $*
are the actual and predicted values of the kth training
dataset, respectively.

2.2 Quantum particle swarm optimization

Particle swarm optimization (PSO) is a heuristic swarm
intelligence algorithm that simulates the predatory
behavior of birds via information sharing to transform
disordered particles to ordered ones such that the optimal
solution can be obtained in a search space [32,33].
Inspired by quantum science, quantum particle swarm
optimization (QPSO) is an improved version of the PSO
that overcomes the premature problem [34].

Generally, QPSO assumes that the particles in a
population exhibit quantum behavior. Each particle
propagates in a P-centered J-potential well where its
position and velocity cannot be determined simultane-
ously. Hence, a Monte Carlo stochastic simulation is
introduced to update the particle positions. The position
of the ith particle at the (# + 1)th iteration can be calcu-
lated as follows.

L(t
x(t+1)=86-pbest,+(1—-0)- ghest+ g

-In l, 2)
u

where 0 and u are random numbers between 0 and 1,

pbest; is the optimal position searched by the ith particle,

gbest is the optimal position searched by all particles, and

L(?) is the characteristic length of the d-potential well.

2.3 Artificial neural network combined with quantum
particle swarm optimization

The classical training process of ANNs with error BP
presents a few disadvantages, including gradient disappea-
rance and falling into a local optimum [35,36]. Thus, to
improve the capabilities of the ANN model, QPSO is
combined with an ANN to develop an optimized model
for control parameters. In particular, QPSO particles are
introduced at the connection weights and biases of the
ANN. Accordingly, the loss function of the ANN is
minimized, whereas the ANN weights and biases are
adjusted via QPSO instead of error BP, as shown in
Fig. 2.

3 Database description
3.1 Project overview

The database used in this research was obtained from the
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TBM3 section of the Songhua River water conveyance
tunnel project, built in Jilin Province, China. The total
length of the study area was 11.2 km (i.e., (56 + 700) to
(67 + 900) m), with a maximum buried depth of 260 m.
In this study, the surrounding rock was classified into
four classes based on the code for the geological engi-
neering investigation of water resources and hydropower
(GB50287-2008) [37]. Figure 3 shows the percentages of
classes I, III, IV, and V, i.e., 11.81%, 61.45%, 15.57%,
and 11.17%, respectively. Figure 4 shows the geological
profile of the study area, which is primarily comprised of
tuff, diorite, granite, sandstone, and limestone. An open-
type TBM was adopted for the construction, and the main
technical parameters are listed in Table 1.

3.2 Database establishment

The TBM’s operating data included those from shutdown
and driving stages. Based on the data change trend, the
driving stage can be classified as idle, rising, or steady
[38]. To account for the rock-TBM interaction during
modeling, one must eliminate the shutdown and idle

I initialize the particle position |

i
ANN I-—‘ input X |

| TBM control parameters |

pbest; and gbest

maximum
iteration
Y

output
W and b

Fig.2 QPSO-ANN framework.
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Fig. 3 Proportion of rock mass classes.
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Fig. 4 Geological profile of study area.

Table 1 Main specifications of the TBM

technical parameter

design value

cutterhead diameter (mm) 7930
number of hobs 56

cutterhead distance (mm) 70-89
rated thrust (kN) 23260
propulsion cylinder stroke (mm) 1800
rated torque (kN-m) 8410
maximum cutterhead speed (r-min_l) 7.6

stages of the database. Accordingly, the binary discri-
minant function defined in Eqgs. (3)—(5) is used to identify
the shutdown and driving stages.

S =f(F) - f(T): f(RPM)- f(PRev), (3)
1
(= {oj e @
|1, driving,
§ = {O, shutdown, ®)

where F is the cutterhead thrust, 7 the cutterhead torque,
RPM the cutterhead rotation speed, and PRev the TBM
penetration.

After eliminating the shutdown-stage data, the idle-
stage data must be identified and removed. Hou and Liu
[39] analyzed on-site TBM data and discovered that when
a TBM established contact with the surrounding rocks
from an idle state, the driving parameters declined
significantly prior to the rising stage, and the duration of
the idle stage was generally less than 60 s. Therefore, the
time corresponding to the peak value in the first 60 s of
the idle stage can be regarded as the time at which the
cutterhead establishes contact with the surrounding rock.
Hence, the minimum value in the range of [z, ¢ + 30] was
used as the starting time of the rising stage. Accordingly,
the method above was used in this study to identify the
breaking point of the idle and rising stages and to extract
data from the first 30 s of the rising stage. Comparative
assessments of field data showed that the total duration of
the idle and rising stages in a cyclic excavation process

did not exceed 200 s [37]. Hence, the 300th second of the
driving stage were used in this study as the starting
moment of the steady stage. The data for each driving
parameter in the first 600 s of the steady stage were
extracted as their representative values. The classification
of the TBM driving parameters is shown in Fig. 5. After
processing, a TBM driving parameter dataset containing
4459 excavation cycles was obtained. Each excavation
cycle comprised 30 s of rising-stage data and 600 s of
steady-stage data.

The processed parameters can be matched with
geological data using chainage information. Accordingly,
the database contains 4459 excavation cycles, including
the TBM driving parameters and the corresponding rock
mass classes. Generally, the driving parameters include
those of the main driving and cutterhead systems, such as
thrust, cutterhead torque, penetration rate, cutterhead
rotation speed, and penetration. In addition, the rock mass
classes were classes 11, 111, IV, and V (the HC method).

4 Model establishment

4.1 Selection of input features

In an excavation cycle, the changes in the driving
parameters of each rising stage are reflected in the
geological conditions under certain control parameters.
Therefore, the driving parameters of the rising stage were
adopted in this study as the input argument to predict the
control parameters of the steady stage.

Based on an analysis of previous studies [13,40—42],
the following input parameters were used in this study:
cutterhead torque, cutterhead thrust, cutterhead power,
penetration, and excavation rate. The cutterhead torque
reflects the hardness and integrity of a rock mass. The
cutterhead thrust is primarily affected by the uniaxial
compressive strength of the rock. The cutterhead power
can be regarded as the combined effect of the cutterhead
torque and cutterhead thrust. The penetration depth
indicates the depth of cut in one revolution of the
cutterhead, and the penetration rate represents the
distance traversed by the TBM per unit of time. The
penetration depth and rate are important indicators for
measuring the excavatability of a rock mass. The
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Fig. 5 Classification of TBM driving parameters.

least-squares method was used to obtain a fitting line for
each of the parameters above (X)) in the rising stage, as
shown in Fig. 6. Subsequently, the slope of the fitting line
(X¥), root mean squared error of the fitting line (X*), and
mean value of X; (X[") were used as inputs for the model.
In addition, the rock mass class was used as the input.
Sixteen features were selected as inputs for the model,
and the output of the model included two parameters, as
shown in Egs. (6) to (8). Moreover, X" can be calculated
using Eq. (9).

X= [X19X27X39X47X59Rc]3 (6)
X = [xr. X5 x5 ©)
Y = [PRev,RPM)], ®)
e \/ L (KO- ) o

where X and Y are the input and output vectors of the
model, respectively; X, to X are the vectors of the
cutterhead thrust, cutterhead torque, cutterhead power,
penetration, and penetration rate, respectively; R, is the
rock mass class; X", X*, and X* are the mean, slope, and
volatility of parameter X, respectively; PRev and RPM
are the penetration depth and cutterhead rotation speeds,
respectively; fy(¢) is the fitting line of X in the rising
stage; T is the length of the stage interval, which was set
as 30 s in this study.

As the rock mass classes were discrete variables and
their hierarchical results exhibited an inner-order

the first 30 s of rising stage

0 5 10 15 20 25 30
t(s)

Fig. 6 Fitting line of driving parameter X in rising stage.

relationship, rock mass classes 1I-V were mapped to
integers 1-4, respectively. The output parameters of the
model were regarded as the mean values of RPM and
PRev in the steady stage.

4.2 Improved loss function-based artificial neural network
combined with quantum particle swarm optimization

In on-site engineering, the selection and adjustment of
TBM control parameters primarily depends on operator
experience. In fact, most of the settings specified cannot
yield the optimum tunneling performance under specific
geological conditions. Therefore, the values of RPM and
PRev must be optimized based on model prediction
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results. In this study, the penetration rate was selected to
characterize the TBM tunneling performance and was
specified as the optimization goal of the aided decision-
making model.

The penetration rate (V) is one of the main factors that
determines the construction efficiency of TBMs. It is
defined as the distance of the TBM excavating forward
within a unit of time and is calculated as follows:

V =RPM - PRev. (10)

Crack propagation and rock fragmentation are complex
physical processes [43,44]. The rock-breaking specific
energy (E,) is defined as the energy consumed by the
cutterhead to cut a unit volume of rock blocks [45].
Typically, it is used to characterize the rock-breaking
energy consumption of a TBM cutterhead and is
calculated as follows [46].

B F - PRev+2nT

_ 11
) nR? - PRev (1

where F is the cutterhead thrust (kN), 7 the cutterhead
torque (kN-m), and R the cutterhead radius (m).

The lower the E, the higher is the rock-breaking
efficiency. To optimize E, and V, a QPSO-ILF-ANN
model was developed in this study by improving the loss
function of the QPSO-ANN. The improved loss function
is defined as follows.

Loss’ = Loss+ E;+(=V), (12)
where £ and V are the rock-breaking specific energy and
penetration rate, respectively, obtained via the current
control-parameter calculation.

E, and V in Eq. (12) are used to penalize the loss
functions, and their values are affected by the control
parameters. During model training, the calculated value
of Loss’ provides important feedback for adjusting the
output values of the control parameters.

4.3 Calculation of loss function

Equation (12) comprises three terms, among which Loss
and V can be calculated using Eqs. (1) and (10),
respectively. However, E cannot be calculated using Eq.
(11) because the relationship among F, 7, and the control
parameters is unknown. Zhang et al. [47] proposed a
formula for predicting E, via regression analysis;
however, the foundation capacity required for the formula
is difficult to obtain during TBM construction. Because F
and T depend on the geological conditions and control
parameters, and the geological conditions can be reflected
by the driving data characteristics of the rising stage and
rock mass class, an E_ prediction model can be
developed. In particular, the model inputs are the driving
parameters of the rising stage, the rock mass class, and
the control parameters of the steady stage. The

calculation of the driving parameters in the rising stage is
presented in Subsection 4.1. The model output is £ under
specific control parameters and geological conditions.

In this study, the random forest (RF) machine learning
technique [48] was used to develop an E, prediction
model. Generally, in the RF method, bagging is adopted
to ensemble decision trees, and random attribute selection
is applied to the node-partitioning process. Compared
with classical decision trees, the RF reduces the risk of
overfitting and improves the generalization ability of a
model. RF has been widely used in many practical tasks
and has demonstrated excellent performance [49]. A more
detailed introduction to RF is presented in Ref. [50]. Prior
to training the machine learning model, the sample data
were normalized using Eq. (13).

X — Xmin

xnorm = ( 1 3)

9
Xmax — Xmin

where x and x, . represent the feature variables before

and after normalization, respectively; x,_.. and x,,.
represent the minimum and maximum values of the
feature variables in the sample, respectively.

The 4459 samples were classified into 4013 training
samples (90%) and 446 test samples (10%), and the
actual E_ value was calculated using Eq. (11). The RF
hyperparameters were optimized via grid search with 10-
fold cross-validation [51]. The optimization process is
illustrated in Fig. 7. Table 2 shows the hyperparameter
ranges of the RF model, where T represents the number
of decision trees contained in the RF, minLF the
minimum number of leaf node samples on the tree, and
maxDP the maximum depth of the tree. Each possible
hyperparameter combination was traversed via grid
search, and the optimal hyperparameters were determined
based on 10-fold cross-validation results.

The results of the hyperparameter optimization are
shown in Fig. 8. The RF model achieved the best
prediction performance when 7T, minLF, and maxDP
were 400, 1, and 42, respectively. The results predicted
by the RF model for the test samples are shown in Fig. 9.
As shown, the RF model predicted £, accurately, with an
R* of 0.905. Therefore, the RF model is suitable for
evaluating E_ under specific geological conditions and
control parameters.

The training process of the QPSO-ILF-ANN is
illustrated in Fig. 10. In general, E is predicted in the
current iteration after the model outputs the RPM and
PRev. Subsequently, the improved loss function Loss’ is
calculated and used as the fitness function for the next
iteration of the model.

5 Model prediction results

The main hyperparameters of the QPSO-ILF-ANN
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Fig. 7 Hyperparameter optimization process.

include the population size (POP), contraction and
expansion factor (83), hidden layer number of the neural
network (nLayer), and number of neurons in the hidden
layer (nNeure). Both POP and g primarily affect the
search range and convergence speed of the QPSO
algorithm. Meanwhile, nlayer and nNeure primarily
affect the prediction accuracy of the model. The
hyperparameters of the model were optimized using grid
search and 10-fold cross-validation. The prediction
results of the model were evaluated using the mean
absolute percent error (MAPE), which is calculated as
follows.

1 m ._A‘
MAPE = —Z’u‘xm%, (14)
maz i

where y; is the measured value of sample 7, J; the

Table 2 Hyperparameter ranges of RF model used in current study

hyperparameter range of value

T, 2,5, 10, 50, 100, 150, 200, 250, 300, 400
minLF [1,10]

maxDP [2,50]

predicted value of sample 7, and m the number of samples
in the test set.

The lower the MAPE, the better the performance of the
model. The range of values and the optimization results
for each hyperparameter are listed in Table 3.

The output results of the QPSO-ILF-ANN model for
446 test samples are shown in Figs. 11(a)-11(d).
Figures 12(a) to 12(d) show the optimization effects of
the model on £, and V. In general, the control parameters
provided by QPSO-ILF-ANN in most samples achieved
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Fig. 8 RF model hyperparameter optimization results.
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lower E, and higher V' values as compared with those
provided by the QPSO-ANN model and the operator. The
output effects of the QPSO-ILF-ANN and QPSO-ANN
models on £  and V' are summarized in Fig. 13. The mean
values of £ and V obtained by the QPSO-ANN model for
the test samples were 7.95 MJ/m’ and 65.51 mm/min,
respectively, and those of the QPSO-ILF-ANN were
7.22 MJ/m’ and 74.49 mm/min, respectively. Moreover,
optimizing the control parameters in the QPSO-ILF-ANN
model reduced E, by 9.18% and increased V' by an
average of 13.71% as compared with the performance of
the QPSO-ANN model. Additionally, the QPSO-ILF-
ANN model reduced E, by 9.41% and increased V by
14.85% as compared with the performance based on
driver experience (£, = 7.97 MJ/m’, V= 64.86 mm/min).

6 Conclusions

Instead of being set based on precise geological
conditions, the values of TBM control parameters are
often estimated based on driver experience. A method for
optimizing TBM control parameters based on the
penetration rate and rock-breaking specific energy was
proposed herein. The approach was developed using a
hybrid model that combined QPSO and an ILF-ANN.
Sixteen features, including tunneling parameters and rock
mass classes, were used as inputs to the model. In

20

R*>=0.905

R L A
)

predicted value of E, (MJ/m?)
=

L
:

0 2 4 6 & 10 12 14 16 18 20
actual value of £, (MJ/m%)

Fig. 9 RF model prediction results.

Table 3 QPSO-ILF-ANN model hyperparameter optimization results

addition, the control parameters, including the cutterhead
rotation speed and penetration, were used as outputs. The
penetration rate and rock-breaking specific energy were
added to the loss function of the ILF-ANN in the form of
dependent variables for the cutterhead rotation speed and
penetration to adjust the model output automatically. A
QPSO was performed to train the neural network
parameters and improve the global optimization
performance of the model. Finally, the model was
validated using field data obtained from the Songhua
River water conveyance tunnel project. The results
showed that the proposed method achieved effective
optimization performance. Compared with the cutterhead
rotation speeds and penetration outputs of the TBM
operator and QPSO-ANN, those of the QPSO-ILF-ANN
increased the penetration rate by 14.85% and 13.71%,
respectively, and reduced the rock-breaking specific
energy by 9.41% and 9.18%, respectively. The various
weights of the penetration rate and the rock-breaking
specific energy in the loss function of the ANN were not
considered in this study. Under different geological
conditions, the effects of efficiency and energy
consumption on TBM performance are typically
different. In the future, the effects of the weights of the

| initialize the particle position |
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| TBM control parameters H RF |
!

[ & ]
update the !
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maximum
iteration

Y
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W and b
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Fig. 10 QPSO-ILF-ANN algorithm framework.

hyperparameter range of value optimization result
POP 50, 100, 200, 400, 600, 800, 1000 600

B [0.1,0.5], [0.2, 0.5], [0.3, 0.5], [0.5, 0.7], [0.5, 0.8], [0.5, 0.9], [0.3, 0.7], [0.2, 0.8], [0.1, 0.9] [0.3,0.7]
nLayer 1,2 2

nNeure [2%,2] (32,16)
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