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ABSTRACT A numerical framework was proposed for the seismic analysis of underground structures in layered
ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on
plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical
model of the soil-structure system. The proposed numerical framework was verified by providing comparisons with
analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-
dependent heterogeneous ground, as well as for an example of a soil-structure interaction simulation. Compared with the
viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the
advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-
waves are more destructive to underground structures than P-waves, and the responses of underground structures are
significantly affected by the incident angles.
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1 Introduction soil-structure interaction, and dynamic behavior of

underground structures [1]. With respect to the latter

The response of underground structures subjected to
seismic loading is an important topic in geotechnical
earthquake engineering. With the rapid development of
computer technology, numerical simulation presents a
promising approach for accomplishing seismic analysis of
underground structures. Generally, numerical simulations
of seismic responses of underground structures should
consider critical issues such as the input and radiation of
earthquake motions at the truncated boundary of
numerical models, wave propagation in the near ground,
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three issues, considerable research has been conducted in
recent years via benchmark tests [2,3] or numerical
validation [4] to evaluate the capabilities of the available
numerical models. However, the first issue, i.e., the input
and radiation of earthquake motions, is beyond the scope
of extant studies, in which only vertically incident
motions (one-dimensional problem) are considered.

To address this issue, some researchers [1,5] developed
comprehensive numerical models to simultaneously con-
sider fault ruptures around the hypocenter, seismic wave
propagation in heterogeneous ground, and engineering
structures in a particular site as schematically illustrated
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in Fig. 1(a). These advanced models can break the
explicit or implicit assumptions including earthquake
source and site condition. However, it is difficult to
incorporate high-frequency components of earthquake
motions and strong nonlinearity of near-surface soils in
these models. Moreover, the exceedingly heavy
computational burden of such a large-scale region also
prohibits the use of this scheme as a routine procedure for
analyzing the seismic responses of most underground
structures.

A more common and economical practice involves
introducing the assumption of plane waves, which is
widely and implicitly used in current numerical models
for seismic analysis of underground structures because
the distance between the source and most underground
structures is sufficiently large. Based on Huygens’
principle, the seismic wavefield in the local model, as
shown in Fig. 1(b), can be recovered if the displacements
at the truncated boundary are accurately replicated. The
earthquake source and wave propagation history can be
partially represented by the characteristics of the input
earthquake motion at the truncated boundary of the
numerical model. When compared with the former
scheme in Fig. 1(a), this method exhibits the advantage of
significantly lower computational cost as well as the
incorporation of nonlinear behaviors of soil and
structures. Lakke and Chopra [6] used viscous boundaries
[7] to input earthquake motions for a dam-water-
foundation interaction system and obtained the wavefield
via one-dimensional deconvolution. Zhao et al. [8] used
viscous boundaries to analyze tunnel responses under
obliquely incident P-SV waves. They used the wave
potential method to obtain the free-field response of
layered ground. Li and Song [9] employed viscous-spring
boundaries and corresponding equivalent nodal force
methods to analyze the longitudinal responses of tunnels
under inclined P, SV, and SH waves. The free-field
analysis was performed based on a soil column with
viscous boundaries at the bottom. Huang et al. [10]
analyzed the seismic responses of tunnels under P, SV,
and SH waves using the same viscous-spring boundary
method. An analytical solution for homogeneous ground

surface waves

b structures 1
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under inclined waves was used to obtain the free-field
responses. Subsequently, the same method was applied
by Sun et al. [11] for hydraulic tunnels. The paradigms
used in these analyses were similar. First, the free field is
obtained, and then the wavefield is recovered in the
numerical models via the viscous boundary or viscous-
spring boundary. However, viscous and viscous-spring
boundaries are local artificial boundaries, which
inevitably suffer from long-term instability issues [12]
and other limitations of artificial boundaries. Hence, to a
certain extent, most of the aforementioned numerical
simulations consider only homogeneous ground. Additio-
nally, the two types of boundaries were originally
proposed for internal-source problems; therefore, they are
inherently inconsistent with the seismic analysis of
underground structures, which is a typical external-source
problem.

To remedy the aforementioned flaws, the two steps of
the paradigm, namely free-field analysis and wavefield
reconstruction, should be improved. Different analytical
methods are available for the free-field response of
layered ground, including the transfer matrix method
[13], thin-layer method [14], transmission and reflection
method [15], and stiffness matrix method [16]. The
stiffness matrix method, which was proposed by Kausel
and Roésset [16], yielded symmetric, stable, and well-
conditioned matrices with negative exponential terms.
The exact stiffness matrices associated with displace-
ments and stresses were formulated for each soil layer,
and the global equilibrium equation was then assembled.
Hence, this similarity to the finite-element method leads
to higher compatibility with numerical simulations.
Therefore, the stiffness matrix method was adopted to
obtain the wavefield for the inclined P-SV waves. For
wavefield reconstruction in numerical models, domain
reduction method (DRM) is more advanced than viscous
and viscous-spring methods. DRM was proposed by
Bielak et al. [17] to analyze local site effects in
seismology. It is deduced based on the finite element
method for external-source problems, in which the
ground near structures can be considered as elastic or
elastoplastic, homogeneous, or heterogeneous. Regarding
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Fig. 1 Analysis models: (a) global model and (b) local model with plane wave assumption.
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analysis under inclined motions, Zhang et al. [18] used
this method to analyze the responses of a rectangular
underground structure under obliquely incident SV waves
in homogeneous ground. They further developed their
method for a layered ground [19]. However, the potential
method employed to obtain the free-field responses has
intrinsic limitations. This method introduces positive
exponential terms, which can easily lead to arithmetic
overflow [16]. Compared with the potential method, the
stiffness matrix method is stable and well-behaved, and
thereby, facilitates the free-field responses of heteroge-
neous ground as illustrated in Subsection 4.3.

The objective of this study involves proposing a novel
numerical framework for the seismic analysis of
underground structures in layered ground under obliquely
incident P-SV waves. The free-field responses of the
layered ground are first obtained using the stiffness
matrix method in Section 2, and then DRM is used to
recover the wavefield in the numerical model as
illustrated in Section 3. The proposed framework outper-
forms the methods available in the literature because it is
stable and applicable to nonlinear heterogeneous ground
subjected to inclined plane waves. The verification of the
proposed framework is presented in Section 4. Then,
examples of free-field responses and soil-structure
interactions are provided in Section 5. Finally, the
conclusions of the study are summarized in Section 6.

2 Free field responses of layered ground

The prerequisite of the free-field analysis is the stiffness
matrix of a homogeneous soil layer, which is presented in

@] X

Electronic Supplementary Material. Then, based on the
continuity and equilibrium conditions between adjacent
layers, the global dynamic stiffness matrix of each
layered ground, as shown in Fig. 2, can be assembled;
thus, the global dynamic equilibrium equation can be
obtained as follows:

o1 [Kn K O 0 0 110,
0 K, K, K, 0 0 172
0 0 K, K; Ky 0 173
0 = 0 0 K43 K44 . . L) U4 ’
: : o K, ., :
L 0 0 0 Kn,n—] Knn + Kha]f 4= U" -

(M

where K;; denotes a 2x2 submatrix of the stiffness
matrices of the soil layers. Furthermore, U, denotes the
displacement at every soil layer interface in the
frequency—wavenumber domain, and [, denotes the load
due to the inclined P-SV waves at the top surface of the
underlying half-space, which is as follows:

5 Zkﬂ(l—sz)[p o](

cosf
L_Ainp l—ps 0 s

isin 9) for P-wave, (2)

- 2ku(l —s* i
L:Aian p 0 .s1n0 for SV-wave, (3)
1-ps 0 s |\icos@
where A;,, denotes the Fourier amplitude of the input

displacement. Viscous damping can be incorporated by
the well-known correspondence principle, namely by
replacing the Lamé constants with complex constants.
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Fig.2 Layered ground under inclined P-SV waves.
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where ¢ denotes the damping ratio. The free-field
responses in the time—spatial domain can be obtained
using the inverse double Fourier transform used in the
DRM step. It should be noted that complex damping is
used in free-field analysis, which differs from the widely
used Rayleigh damping in numerical models.

3 Wavefield reconstruction in numerical
models

The DRM is adopted to reconstruct the wavefield in the
numerical model for the seismic analysis of underground
structures. In DRM [17], as shown in Fig. 3, the outer
boundary [ truncates the numerical model from an
infinite domain. The entire numerical model is divided by
boundary I' into two parts: Q- and Q+. The interior
domain Q- contains the underground structure of interest,
capturing its seismic responses as well as the soil-struc-
ture interaction. The exterior domain Q* is an auxiliary
region that applies seismic excitations and dissipates
possible outgoing waves from the interior domain. An
auxiliary boundary exists for applying seismic excitations
in the exterior domain, QO*. The equivalent nodal forces
Pt are imposed on the nodes in a single-element layer
enclosed by the boundaries I" and I, as follows:

The detailed process for deducing the equivalent nodal
force is presented in Electronic Supplementary Material.
Given that the possible outgoing waves from the interior
domain due to the underground structures are expected to
be dissipated by the region enclosed by I'. and [,
additional Rayleigh damping reduces the computational
cost [20]. The dimensions of the region and correspond-
ing Rayleigh damping are related to the plasticity of the
interior domain, underground structure, seismic motion.
Lower damping ratios can be used when the region is
large and vice versa. The dimensions of the region and
damping imposed can be selected through preliminary
simulations in specific applications. The method in this
study was implemented in Abaqus [21] and OpenSees
[22] using Python script. In the implementation, the
thicknesses of the soil layers in the stiffness matrix
method are consistent with the element dimensions of the
numerical model along the depth to incorporate the
variation of soil parameters in the vertical direction.

4 Verification

4.1 Homogeneous ground

Consider a homogeneous elastic ground with a Young’s
modulus E, = 250 MPa, Poisson’s ratio v, = 0.25, and
density p. = 2000 kg/m®. A Ricker wavelet with a central
frequency of 3 Hz and an amplitude of 1 m, as shown in

Py _ M i, - K u, ) Fig. 4, is input from a depth of 200 m as P-waves. The
Pt - M2 il + K u' incidence angle was 75°. The width of the interior domain
was 200 m. The observation points were on the medial
A
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Fig.3 Scheme of the DRM.
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axis of the numerical model (x = 0). The seismogram
comparison between the analytical and numerical
solutions is shown in Fig. 5, in which the results are
magnified five times for better visualization. This
consistency indicated that the analytical wavefield is fully
reconstructed in the numerical model. The wave propa-
gation trace is clear: the motion is inputted upward and
reflected downward at the ground surface. The displace-
ment responses at points (0,—40) and (0,-140) are
compared in Fig. 6. The time histories and spectra of the
analytical and numerical solutions coincided, and the
accuracy of the proposed method was verified. The
displacement contours of the numerical model at different
moments are shown in Fig. 7, where the obliquely
incident plane wavefront is shown. The reflection occurs
at 1.4-1.8 s, and then the reflected wave propagates
downward. It can be observed that the plane wavefronts
of the reflected wave are not as clear as those of the
incident wave. This is due to the fact that the incident P-
wave simultaneously induces reflected P- and SV-waves.

4.2 Layered ground

Consider a two-layer ground, and each layer is 100 m in

thickness. The Young’s moduli of the upper and lower
layers were E, = 250 MPa and E, = 500 MPa,
respectively. The Poisson’s ratio and density of both
layers were v, = 0.25 and p,= 2000 kg/m’, respectively.
The Ricker wavelet that is input from a depth of 200 m is
similar to that of the SV-waves. The incidence angle was
80°. Analytical and numerical seismograms are presented
in Fig. 8. The consistency between the analytical and
numerical solutions again verified that the wavefield was
completely reconstructed in the numerical model. The
displacements at two positions (0,—60) and (0,-120) are
compared in Fig. 9. The numerical solutions are
consistent with the analytical solutions, which again
verify the accuracy of the proposed method. As shown in
Fig. 9, the displacement responses are more complex than
those in the homogeneous ground (Fig. 6) owing to
reflections and refractions at the interface of the two soil
layers.

4.3 Pressure-dependent heterogeneous ground
It is widely known that the maximum shear modulus of

granular soil is dependent on void ratios, confining
pressures, and other parameters [23,24]. Assuming that
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Fig. 4 Ricker wavelet: (a) time history; (b) frequency spectrum.
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Fig. 6 Displacements at positions: (a) (0,~40) and (b) (0,—140).

the ground is uniform, its maximum shear modulus
increases gradually with respect to depth owing to the
increasing confining pressure values. By revisiting the
homogeneous ground in Subsection 4.1, the following
relationship can be considered.

0.5
GO = Gref(i) s (6)

ref

where G ;= 250 MPa and p,; = 101 kPa corresponds to
the reference shear modulus and reference confining
pressure, respectively, G, and p denote the maximum
shear modulus and confining pressure at different depths,
respectively, which are controlled by the self-weight of
the ground. The same Ricker wavelet was input from a
depth of 200 m as SV-waves with an incident angle of
70°. The seismograms obtained from the analytical and
numerical solutions are compared in Fig. 10. The
coincidence between them indicates that the method in
this study can incorporate the pressure-dependent
characteristics of the ground. The displacement contours
at different times are shown in Fig. 11. It is evident that
the numerical model accurately replicates the incidence
and reflection of wave propagation. Given the pressure-
dependent feature, the shear modulus, as well as the shear
wave velocity, of the ground declines from the bottom to
the top. Therefore, the wave propagation direction

deviates from the original incident direction and
gradually approaches the vertical direction, as marked in
Fig. 11 (1.2 and 1.3 s), because of the well-known Snell’s
law.

4.4  Soil-tunnel model

All the aforementioned cases involve free-field analyses,
which verify the ability of the proposed method to
recover the analytical plane wavefield in numerical
models. The soil-tunnel interaction problem was
considered in this study. A tunnel with a radius of 3 m
and thickness of 0.35 m is considered, which is simulated
by beam elements. The density of the tunnel was p, =
2500 kg/m’. The Young’s modulus and Poisson’s ratio
were E, = 35.5 GPa and v, = 0.2, respectively. The tunnel
was bonded to the surrounding ground and had a buried
depth of 10 m. The ground parameters used in Subsection
4.1 are adopted. The same Ricker wavelet was input
vertically as the SV-waves with an incident angle of 90°.
To verify the proposed method, an extended model with a
depth of 1000 m is built, and the Ricker wavelet is input
from the bottom boundary as shown in Fig. 12. A
repeatable boundary was used at the lateral boundaries.
According to the wave propagation theory, the motion
reached the top surface after 4.47 s and then reflected
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Fig. 7 Displacement contours at different moments (unit: m).
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Fig. 8 Seismograms in the two-layer ground: (a) horizontal displacement and (b) vertical displacement.

@

downward. Therefore, the simulation time was 8 s to elastic half-space under vertically incident SV waves
avoid superfluous reflections at the bottom boundary. were captured. Comparatively, the motion was input from

Thus, the dynamic responses of the tunnel resting on an  a depth of 100 m using the method proposed in this study.
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Fig. 10 Seismogram in the pressure-dependent homogeneous

The maximum displacements of the tunnel along the
circumferential direction are compared in Fig. 13, which
verifies the accuracy of the proposed method as well as
its applicability to soil-structure interaction problems.

5 Examples
5.1 Free field responses

As introduced in Section 1, viscous and viscous-spring

vertical displacement (scaling factor: 5)

(b)

ground: (a) horizontal displacement and (b) vertical displacement.

boundaries are widely used in the literature to simulate
vertical motions, as well as inclined motions, from under-
lying elastic bases. The two methods are compared with
the method proposed in this study, and their differences
are clarified. Considering the one-dimensional problem,
SV-waves are inputted vertically from a depth of 200 m
as shown in Fig. 14. All vertical degrees of freedom were
fixed because vertical SV waves were only associated
with horizontal displacements. The equivalent nodal
forces related to viscous boundaries, which are input at
the bottom nodes, can be calculated as follows [7]:
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Fig. 11 Displacement contours at different moments in the pressure-dependent ground (unit: m).

Fig. 12 Extended model.

F,=2Cv(1), @)

where C = p,V.A denotes the dashpot coefficient, p, and
V, denote the density and shear wave velocity of the
ground, respectively, and 4 denotes the cross-sectional

area of the bottom boundary. Furthermore, v(#) denotes
the velocity—time history at the bottom boundary.
Correspondingly, the equivalent nodal forces associated
with the viscous-spring boundaries are [9] as follows:
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where K =0.66AG,/R is the spring coefficient, and G,
denotes the shear modulus of the ground. Furthermore, R
denotes the distance between the scattering source and
viscous-spring boundary. Additionally, u(#) denotes the
displacement—time history at the bottom boundary.

First, the homogeneous ground in Subsection 4.1 is
used, and the same Ricker wavelet is input vertically. In
this scenario, parameter R = 200 m, in Eq. (8), is desig-
nated. The horizontal displacements at a depth of 190 m
and at the top surface are compared in Fig. 15. Clearly, all
the methods obtained satisfactory results and were in
good agreement with the analytical solution. Minor
discrepancies were observed when the viscous-spring

et
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—
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Comparison of maximum displacements of the tunnel: (a) maximum horizontal displacement; (b) maximum vertical displacement.

boundary was used.

Then, the two-layer ground in Subsection 4.2 is used,
and the motion is still input from a depth of 200 m. In this
scenario, parameter R = 100 m in Eq. (8) is considered
because there is a reflection at the interface between the
two layers. Analogously, the horizontal displacements at
a depth of 190 m and top surface are compared in Fig. 16.
It is clear that the results from the different methods are
consistent with the analytical solution. Minor discrepan-
cies occurred at the viscous spring boundary. The
aforementioned comparison indicates that the proposed
method is in good agreement with the methods available
in the literature.

The differences between the proposed method and
viscous or viscous spring boundary are clarified here. In
the DRM, the single-element thick layer, enclosed by
boundaries I' and I'., plays the role of reconstructing the
free wavefield based on the applied nodal forces.
Simultaneously, the region enclosed by the boundaries I,
and [+ dissipates the possible outgoing waves (the term
w, in Eq. (B3)). Correspondingly, the viscous or viscous-
spring boundary plays a dual role in reconstructing the
free wavefield and dissipating the outgoing waves.
Hence, their performance deteriorates when soil
nonlinearity is considered in the interior domain. DRM is
deduced based on the assumption that the source of
excitation is outside the region of interest. The interior
region can be elastic, viscoelastic, or elasto-plastic.
However, the viscous or viscous-spring boundary method
is based on the excitation source inside the near field.
Hence, parameter R is included in Eq. (8). Therefore,
DRM is more appropriate for the seismic analysis of
engineering structures without any additional parameters,
and the framework in this study has significant
advantages over the viscous and viscous-spring boundary
methods. In summary, the numerical framework in this
study can facilitate the development of current numerical
models used for one-dimensional problems to incorporate
wavefields under inclined P-SV waves without further
requirements on the ground. The next example
demonstrates the framework for the seismic analysis of
underground structures with nonlinear soil.
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5.2 Soil-structure interaction

A typical rectangular underground structure in a
homogeneous and pressure-dependent ground is
considered as shown in Fig. 17. The burial depth was 10
m. The width and height of the structure were 16 and 6 m,
respectively. The thicknesses of the ceiling, floor, and
side walls were 1 m while that of the central column was
0.4 m. The structure was simulated by elastic beam
elements in OpenSees [22] with a Young’s modulus of
35.5 GPa. The ground was simulated by plane strain
elements and the PDMYO02 model [25]. The parameters
suggested by the developer are listed in Table 1. For
simplicity, the interface between the soil and underground
structure is assumed as fully bonded. It should be noted
that other complex soil-structure interaction models can
be used without any challenges. The Ricker wavelet in
Fig. 4 is still used in this interaction model and is input
from a depth of 50 m. Its displacement amplitude was
scaled to 0.002 m, corresponding to an acceleration
amplitude of 0.1 g. The Newmark method [26] was used
to integrate the dynamic response with parameters y = 0.6
and B = 0.3025, which introduce small numerical
damping for better convergence.

First, we input the Ricker wavelet as P- and SV-waves
with the same incident angle of 75° to compare their
differences. The deformation of the structure is shown in
Fig. 18. The horizontal drift ratio is defined as the ratio of
the horizontal displacement difference between the
ceiling and floor to the height. The vertical drift ratio is
defined as the ratio of the vertical displacement difference
of the side walls to the width, which is seldom considered
in previous studies. It can be observed that SV-waves
induce larger deformations, in terms of amplitudes and
residues, than P-waves, whereas P-waves trigger the
responses of the structure earlier owing to higher wave
velocities. Additionally, it can be observed that the
structure rotates toward the right and floor direction first,
and the rotation direction is reversed when the phase of
motion changes. This indicates that the seismic responses
of underground structures under inclined motion differ
significantly from those under one-dimensional vertical
shear waves. The internal forces on the central column at
the top are shown in Fig. 19. Furthermore, P-waves excite
larger axial forces than SV waves, whereas SV waves
excite larger shear forces and bending moments.
Additionally, SV waves induce larger permanent internal
forces than P-waves. This indicates that SV-waves can
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Fig. 17 Geometry of the numerical model (unit: m). (a) The whole soil—structure model; (b) the detail structure model.
Table 1 PDMYO02 model parameters
parameter value description
o (kg/m’) 2000 density
Pres (kPa) 101 reference effective confining pressure
G; (kPa) 1x10° reference shear modulus
B; (kPa) 1.67x10° reference bulk modulus
d 0.5 pressure dependency coefficient
Ymax,r 0.1 maximum shear strain
$(°) 335 friction angle
dpr (°) 25.5 phase transformation angle
c (kPa) 0.1 cohesion
e 0.7 void ratio
< 0.045 control the shear-induced volumetric change, contraction tendency based on the dilation history, and overburden stress effect
[ 5
[ 0.15
d, 0.06 reflect dilation tendency, stress history, and overburden stress effect
) 3
d, 0.15
lig, 1 define accumulated permanent shear strain
lig 0
NYS 20 number of yield surface
3 S
2 0.02+ < 0.024 R
= <
::; 0.00 1 5 0.004
& —0.02+ 5 —0.02 :
—-0.04 T T —0.04 T T
0 1 2 0 1 2 3
time (s) time (s)
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Fig. 18 Deformation of the structure: (a) horizontal drift ratio (AH/H) and (b) vertical drift ratio (AV/W).
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excite higher responses of the structure than P-waves, and
thus, SV-waves are more destructive.

Then, we input the Ricker wavelet as SV waves with
different incident angles of 60°, 70°, 80°, and 90° to
investigate the effect of incident angles. Analogously, the
deformation of the structure and internal forces of the
central column at the top are plotted in Figs. 20 and 21,
respectively. This clearly suggests that the responses of
the structure are affected by the incident angles. The
structural deformation amplitudes increased with the

Front. Struct. Civ. Eng. 2023, 17(1): 10-24

incident angle. Larger incident angles excited the
responses of the structure more quickly. The shear force
and bending moment of the central column exhibited the
same tendency as the deformation of the structure.
However, the axial force amplitudes decreased and the
permanent values increased as incident angles increased.
This implies that the assumption of one-dimensional
problems, namely the incident angle of 90°, can lead to
the underestimating of the axial force of the central
column. It is important to note that the numerical
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Fig. 19 Internal forces of the central column at the top: (a) axial force, (b) shear force and (c) moment.
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Fig. 20 Deformation of the structure: (a) horizontal drift ratio (AH/H) and (b) vertical drift ratio (AV/W) under different incident angles.
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framework proposed in this study is compatible with the
available elements and constitutive models used in
common one-dimensional numerical models. By
incorporating inclined waves, the proposed method
overcomes the limitations of one-dimensional problem
assumptions and provides more accurate numerical
results on the seismic responses of underground
structures.

6 Conclusions

In this study, a numerical framework for the seismic
analysis of underground structures in layered ground
under inclined plane waves was proposed and verified.
For elastic ground, the method in this study was in good
agreement with the viscous and viscous-spring boundary
methods. In nonlinear heterogeneous ground, the method
outperformed the viscous and viscous-spring boundary
methods owing to the advantages of the DRM and
stiffness matrix method. The proposed method was used
to analyze the seismic responses of rectangular structures.
The results showed that SV-waves are more destructive
than P-waves, and that the responses of the structure are
significantly affected by the incident angles. The
deformations of the structure, as well as the shear force

©

Internal forces of the central column at the top: (a) axial force, (b) shear force and (c) moment under different incident angles.

and bending moment of the central column, increase with
increasing incident angles, whereas the axial force of the
central column decreases with increasing incident angles.
The proposed method can overcome the limitation of
vertical incidence, and thereby, facilitating the seismic
analysis of underground structures in nonlinear
heterogeneous ground under inclined P-SV waves.
Furthermore, it can be used for seismic analysis of other
engineering structures. A similar framework for the
seismic analysis of underground structures in saturated
ground under inclined plane waves will be presented in
another follow-up study.
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