Front. Mech. Eng. 2023, 18(2): 26
https://doi.org/10.1007/s11465-022-0742-y

RESEARCH ARTICLE

Footholds optimization for legged robots walking on
complex terrain

Yunpeng YINZ, Yue ZHAOP, Yuguang XIAO?, Feng GAO (<)

4 State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai
200240, China
b Al Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

X Corresponding author. E-mail: gaofengsjtu@gmail.com (Feng GAO)

© Higher Education Press 2023

ABSTRACT This paper proposes a novel continuous footholds optimization method for legged robots to expand their
walking ability on complex terrains. The algorithm can efficiently run onboard and online by using terrain perception
information to protect the robot against slipping or tripping on the edge of obstacles, and to improve its stability and
safety when walking on complex terrain. By relying on the depth camera installed on the robot and obtaining the terrain
heightmap, the algorithm converts the discrete grid heightmap into a continuous costmap. Then, it constructs an
optimization function combined with the robot’s state information to select the next footholds and generate the motion
trajectory to control the robot’s locomotion. Compared with most existing footholds selection algorithms that rely on
discrete enumeration search, as far as we know, the proposed algorithm is the first to use a continuous optimization
method. We successfully implemented the algorithm on a hexapod robot, and verified its feasibility in a walking

experiment on a complex terrain.

KEYWORDS footholds optimization, legged robot, complex terrain adapting, hexapod robot, locomotion control

1 Introduction

Legged robots have more capacity in complex terrain
than wheeled ones. The agile and dynamic control of
legged robots in flat terrains has achieved great progress,
but taking full advantage of the flexibility of legged
robots in rough terrain remains a challenge. Because in
the locomotion of a legged robot, its own motion balance
and terrain perception should be considered at the same
time, only then the corresponding footwork for adapting
to complex terrain can be generated.

Heuristic walking gait [1,2] is a simple and effective
blind locomotion strategy. Based on the model of spring-
loaded inverted pendulum (SLIP), it considers the balance
relationship between its own speed and foothold in the
process of walking. However, in this strategy, the next
foothold is related only to its body speed but not to the
ground features. It is only suitable for flat road conditions
and cannot effectively adapt to unstructured terrains.
Moreover, there is an assumption that in the locomotion
of legged robots, it has no relative sliding between the

Received July 6, 2022; accepted November 7, 2022

support legs and the ground. Nevertheless, the more
uneven the ground is, the more difficult it is to satisfy this
assumption. For example, when climbing stairs with a
fixed gait, the robot often slips when stepping on the edge
of a step, kicks to the eaves of a step, and even trips over.

If such a blind walking strategy is applied on complex
terrains, the stability and safety of the robot cannot be
guaranteed. Thus, it is necessary to introduce perceptive
information of the terrain, to optimize the footholds
selection, and avoid stepping on the edge of potholes or
obstacles.

Researchers at LittleDog [3,4], HyQ [5,6], and
ANYmal [7,8] proposed methods for footholds and
trajectory optimization based on a one-time preprocessed
costmap. This kind of methods is time consuming to plan
the actions before the robot starts to move. After the
action trajectories are determined, it runs open loop,
which cannot be adjusted when environmental changes or
error occurs. Then, onboard and online foothold
optimization methods were proposed and applied in HyQ
[9-11], ANYmal [12,13], Hexapod-IIl [14], Mini
Cheetah [15], and Qingzhui [16—18]. They considered a
similar approach (i.e., obtaining a grid heightmap of the

https://doi.org/10.1007/s11465-022-0742-y

2 Front. Mech. Eng. 2023, 18(2): 26

terrain through a depth camera and generating a costmap),
then conducted a random search in the batch area around
the preplanned foothold. However, given that the costmap
is discretized in grid cells, the optimization of the
footholds can only enumerate a finite set of integers in the
batch area, rather than a spatial continuous optimization.
The distance of the searched footholds in the optimization
process depends on the grid size. Hence, although the
feasibility of a selected foothold can be guaranteed, it is
not a global optimum. Later, HyQ researchers [19]
utilized a convolutional neural network (CNN) to find the
optimal foothold, whose input is also the batch area
around the preplanned foothold. The CNN greatly
improved the computational efficiency. ANYmal resear-
chers [20,21] directly applied the reinforcement learning
method to complete the autonomous movement of the
robot in the field environment and offshore platform [22],
which can be said to be a milestone achievement in the
field of legged robots. However, these data-driven
methods require considerable data for training, which
increases the initial cost of algorithm deployment. In
addition to such methods of constructing terrain maps,
some researchers have extracted geometric features of
known target structures through visual information
[23-25], but these methods can only adapt to the terrain
of preknown scenes.

Therefore, we need to develop a set of solutions that
combine terrain awareness with the state constraints of
the robot, do not rely on high-cost data training, and can
operate efficiently onboard, to optimize the footholds,
control the robot’s actions in a spatially continuous way,
and expand the adaptability of the legged robot in
complex terrain.

The contributions of this paper are summarized as
follows:

a) A continuous and derivable method for converting
discrete grid maps is proposed. Through this method, the
grid terrain heightmap is converted into a smooth terrain
costmap.

b) A gradient-based continuous optimization method is
constructed using the terrain costmap and the motion state
of the robot to select the robot’s footholds.

¢) The body motion is corrected in accordance with the
optimized footholds, and the swing leg trajectories are
generated. Combined with the method of balance force
control, an experiment is carried out on a hexapod robot
passing through a complex terrain.

To our knowledge, this is the first footholds selection
method for legged robots based on continuous optimiza-
tion algorithm with no training data required, which can
efficiently run online and onboard. We choose the
continuous optimization method, for the reason that we
want to realize optimal footholds in a continuous space.
Given that it requires a continuous and derivable costmap
and objective function, it can be efficiently deployed
online. The remainder of this paper is structured as
follows:

Section 2 provides the overview of the hexapod robot
developed by Shanghai Jiao Tong University. Section 3
presents a novel and efficient method to make discrete
heightmaps continuous and derivable, generalizing a
continuous costmap from an elevation map obtained by a
red, green, blue, depth (RGBD) camera. Section 4
formulates the cost function in consideration of the
costmap above, along with the robot locomotion and
kinematics, to instruct the footholds of the robot when
walking. Section 5 explains how to use the optimized
footholds on our robot to combine it with our control
framework. Section 6 shows the results from the
experiment of the hexapod walking on an irregular terrain
with our method. Finally, conclusions are drawn in
Section 7.

2 Robot overview

2.1 Hardware structure

LittleStrong is a bionic designed hexapod robot inspired
by insects. Its six legs are symmetrically distributed on
both sides of the body. To avoid legs’ collision with each
other when walking, the middle legs are installed slightly
farther from the sagittal plane.

There are 3 degrees of freedom for each leg, serially
constructed as hip, thigh, and shank joints. Thus,
LittleStrong has 18 joints in total, as shown in Fig. 1.
Each joint is driven by a brushless electric motor with a
planetary gear set and an embedded encoder. The robot is
about 0.4 m in height, 0.6 m in length, and 0.4 m in width
when standing.

The coordinate systems of the robot are defined in
Fig. 1. The world coordinate system (WCS) is fixed to the
ground, and the position where the robot is turned on is
regarded as the origin. The robot locomotion control is
mostly completed in the WCS. The body coordinate
system (BCS) is fixed at the center of its body, and all
variables in BCS will be marked with a left superscript
{B}. The six legs of the robot have their own leg
coordinate system (LCS), which is fixed with the BCS
but takes the leg’s hip joint as the origin. All variables in
LCS will be marked with a left superscript L, and the
right subscript i represents the leg number.

The electrical system is shown in Fig. 2. There are two
onboard computers that cooperate with each other. The
locomotion control computer runs the GNU/Linux
patched with Xenomai [26] real-time kernel. It communi-
cates with 18 drivers and an inertial measurement unit
(IMU) through EtherCAT protocol. The drivers provide
power for 18 actuators (brushless motors), along with 18
encoders feeding back the angle and angular velocity of
each motor. IMU is installed at the center of the robot
body and feeds back attitude, angular velocity, and
acceleration. The depth camera is fixed on the head of the

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain 3

RGBD camera
LiDAR (not
used)

Fig. 1 Photo of the hexapod robot and its coordinate systems. RGBD: red, green, blue, depth.

I LiDAR
[Ethernet|

USB| [RGBD
camera

)
Bl

Navigation
computer

Locomotion

computer
(@)
EtherCAT O x18
o
[+[=
Motor
v (oo
| e
Fig. 2 Electrical system of the robot. IMU: inertial

measurement unit, RGBD: red, green, blue, depth.

robot and connected to the navigation computer running
the Robot Operating System. The navigation computer
sends the locomotion commands to the locomotion
control computer through ZeroMQ [27].

2.2 Control framework

The overall control framework of the robot is shown in
Fig. 3. The orange blocks run on the navigation computer,
which will be the main content of the footholds
optimization in the later sections. The blue blocks run on
the locomotion control computer. The locomotion control
of the legged robot mainly includes two contents, namely,
gait control and body balance control.

For gait control, the robot employs a gait scheduler to
generate step cycles. A legged robot needs to periodically
control the alternating lifting and landing of different legs
to let the body move. For a hexapod, there are many
optional gait combinations. Considering that a trot gait is
commonly used for quadrupeds, a tripod-trot gait [28] is
adopted for hexapods. Tripod-trot gait refers to that the
six legs of the robot are divided into two groups. In each
step cycle, there are three legs in swing phase and the
other three legs in support phase. The gait scheduler is
shown in Fig. 4, where the white areas represent the
swing phase; the blue and red areas represent the support
phase for different leg groups, corresponding to the lifting
and landing of each leg, respectively.

l ¢)7 07 w
Uksar Va Footholds Heightmap Pointcloud [0
command optimization spllclpg a'nd Point cloud
rasterization
Py RGBD
" camera
Dy .
Gait T T > Swing leg
scheduler | Zwis Lei — control .
; Joint PD
> Qo> T
control
Remoter |
Body balance 4.4
[—> control @, 0,9
I P p , p
Navigation | R, @, py, P, Bl B "

Kinematics, |¢ J

oA Ly

Locomotion

state estimation

Fig. 3 Control framework of the robot for footholds optimization.

4 Front. Mech. Eng. 2023, 18(2): 26

0 0.25 0.50 0.75

Fig. 4 Gait scheduler and tripod-trot gait for the robot.

The tripod-trot gait can furnish a triangular stable
region underneath its supported legs in each gait cycle, as
shown in Fig. 4. This can be considered a natural
advantage of hexapods over quadrupeds, such that we can
focus on the working task itself without wasting much
attention on the balance control of the robot. For a swing
leg, a suitable foothold must be selected to satisfy the
speed and balance requirements of body movement when
it becomes a supporting leg in the next step cycle.
Additionally, a suitable swing leg trajectory is also
needed to be designed. This will be further explained in
Section 4 and Subsection 5.1.

The robot employs a centroid balance control (CBC)
algorithm to generate support legs’ control signals
through the state feedback of the whole robot body. In the
calculation process, we apply a simplified model of robot
dynamics. The details are elucidated in Subsection 5.2.

The locomotion controller composed of the above two
contents can satisfy the adaptive locomotion on general
terrain. However, when in complex terrain, it can only
pass through by blind walking. A gait optimizer should be
introduced in combination with visual information to
avoid pits and obstacles. The details will be elaborated
below.

3 Costmap processing

The key idea for a legged robot adapting to complex
terrains is to select suitable footholds for the next step.
The selection of footholds integrates two parts: terrain
perception and body state. This section focuses on terrain
perception. To obtain spatial continuous optimal and
apply continuous optimization algorithms, this section
proposes a new method to transform the discrete grid
heightmap into a continuous costmap. Subsection 3.1
proposes a new method to transform the discrete grid map
into a second-order continuously derivable costmap. Note
that this subsection is purely a theoretical approach to
discrete grid continuation, and the examples used are only
representative and simple grid maps. Subsection 3.2
introduces how to apply this method to convert the terrain
point cloud obtained by the depth camera into a terrain
costmap for robot locomotion optimization in the next
section.

3.1 Grid map continuation

Convolution is a commonly used method in digital image
processing [29]. In the process of image convolution,
each element of the image is added to its local neighbors,
weighted by the kernel. As shown in Fig. 5, the
Hadamard product (i.e., multiplication of corresponding
elements) is performed between the four pixels in the red
box in the left original image and the yellow convolution
kernel matrix. The elements of the generated intermediate
matrix are summed to obtain the pixels in the red box in
the processed image on the right. The lower part of the
figure shows a 3D view of the process. Given that the
convolution operation synthesizes the information
between the pixels, the influence of image noise is well
avoided. However, in this process, the convolution kernel
operates on the image pixel by pixel and moves
discretely. To obtain spatial continuously changing
values, interpolation methods can be adopted.

In our grid map, each pixel (grid cell) represents the
average height of the ground in a specific area (2 cm x
2 cm). To obtain the height between cells, continuous
height values must be obtained through 2D interpolation.
Considering that the direct interpolation will be affected
by random noise, the convolution interpolation (CI) is
used for continuous smoothing of the grid map on the
basis of the image convolution technique. As shown in
Fig. 6, in the CI process, different from the image
convolution, the kernel (red box) is a mask-plate that
moves smoothly on the grid map. The overlapping area
(yellow box in dash line) between the mask-plate and the
cell is defined as its weight. The sum of weighted cells is
used as the center (point ¢) value of the mask-plate. In
this way, a continuous heightmap can be obtained.
Moreover, in the image convolution mentioned above,
adjusting the size of its kernel, so called mask-matrix, can
yield different filtering results. Similarly, in CI, the
number of cells involved in convolution can be adjusted
by altering the size of the mask-plate to obtain similar
effects.

Although CI can obtain continuous costmaps, its results
are not differentiable. As shown in Fig. 6, there will be
obvious bending at the boundary of the grid, which will
have a fatal impact on the optimization solution in the
next section. To solve this problem, we propose a
pyramid convolution interpolation (PCI) smoothing

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain 5

1/4 | 1/4

1/4 | 1/4

& -
0 0 0 0 0
Hadamard product

0 0 0 0 0

Original image

Original heightmap

Convolution kernel

Intermediate

— 8 I)
0

Element
summation

matrix .
Processed image

Processed heightmap

& /
~ /
g

Fig. 5 Example of image convolution in digital image processing.

Original image

Processed heightmap

Fig. 6 Convolution interpolation for transforming a pixel into a continuous heightmap.

algorithm. In PCI, the kernel is no longer the mask-matrix
used for image convolution nor the mask-plate mentioned
in CI but a mask-pyramid (projected as red box) shown in
Fig. 7. Similarly, the mask-pyramid moves smoothly on
the grid map. The overlapping volume (projected as
yellow box) above the cell, which is covered by the
projection of the pyramid, is used as the weight of this
cell. The sum of weighted cells is used as the center point
value of the pyramid. From Fig. 7, the continuous
heightmap obtained in this way is smoother and derivable
than that in Fig. 6. The number of cells involved in
convolution can also be adjusted by changing the size of
the pyramid’s bottom quadrilateral.

However, in the actual computing process, the
overlapping volume of the pyramid and the cell is
difficult to calculate; especially after the size of different

bottom surfaces of the pyramid is adjusted, the volume
shape of a block is more complex and difficult to
calculate. This will have a significant impact on the
calculation efficiency in the optimization iterative
calculation process in the next section.

Therefore, this paper proposes a new convolution
method, Normalized Derivable Convolution Interpolation
(NDCI) algorithm. In PCI, the second-order continuity
can be obtained because in the weighting process, with
the smooth movement of the pyramid, the cell’s weight
gradually increases from zero, along with its second-order
continuous. When the center of the convolution kernel
coincides with the center of the grid, the weight value
reaches its maximum. Then, to make the costmap
differentiable, we only need to find the weight function
with similar expression. Obviously, this characteristic can

6 Front. Mech. Eng. 2023, 18(2): 26

Original image

Processed heightmap

Fig. 7 Pyramid convolution interpolation for transforming a pixel into a continuous heightmap.

be obtained by a cosine function. The algorithm formula
is as follows:

_ WAN (X, — X;) (=) ’
J(p,) = Z:O: Z; (cos 2o cos 20, , (D
where p, =[x, y.]" is a horizontal coordinate,

representing the position of the selected point on the
whole map, x, and y, are x and y components of the
horizontal coordinate for the position of the selected point
on the heightmap, respectively, ¢,; =[x;; ;1" is the
coordinate of the center of the pixel (i, j) on the map, x;,;
and y;; are x and y components of the horizontal
|

4J (p,)

coordinate for the position of the selected point on the
heightmap, respectively, {m, n} are the set numbers of
pixels that need to be involved, similar to the size of the
kernel in image convolution, {o,,o,} are the smoothing
factors in two directions, which can eliminate the local
minimum to a certain extent and keep the continuity of
the function. Briefly, they ensure that the variable value

of the cosine function is kept between [—g, g]

Therefore, {o,,0,} are related to {m, n}. In addition, on

the basis of the chain rule, its partial derivative VJ(p,)
can also be easily obtained:

V‘I (ph) = 6‘16()(;) =

Oy

g,
i=0 j=0 x

i=0 j=0

Figure 8 shows the outcome heightmap of NDCI,
whose shape is similar to the PCI result in Fig. 7 but
greatly reduces the difficulty of calculation. The lower
part of Fig.8 shows the gradient in the horizontal
directions, respectively.

3.2 Costmap generation

In the previous subsection, we proposed a method for
continuous smoothing of grid maps. This subsection will
take the above approach and describes the process of
generating a costmap from a complete heightmap
obtained by the depth camera.

First, a discrete heightmap of the terrain around the
robot is generated. The robot only has a depth camera on
its head. To obtain complete terrain information around
the robot, the point cloud data obtained by the depth
camera during the movement of the robot should be
recorded. Then, the point cloud data, combined with the
robot’s position and attitude information, are spliced and
filtered. The spliced point cloud data are compressed,

Zmli(T n(o—x,) . (- x;) 2n(yh_yi'f))
——cos ——— sin Ccos

20

20, y

2

- Z’":Z":(T (X —X;) T —Yi)) . n(yh_y"~f)) '
——cos cos sin
oy

20, 20

20, y

sampled, and rasterized, so we can obtain a heightmap of
the terrain around the robot. The heightmap has (100 x
50) pixels, each pixel corresponds to an area (2 cm X
2 c¢m) projected on the horizontal plane, and each pixel’s
value (grayscale) represents a different height.

Secondly, the heightmap is transformed into a discrete
height difference map. The places with large height
difference are usually the edges of obstacles, which are
the areas that the robot does not want to step on. The
places with small height difference are flat areas, which
can be safely stepped on with confidence. The edge
detection algorithm commonly used in digital image
processing is employed.

Lastly, the method mentioned in Subsection 3.1 is
applied to convert the discrete height difference map into
a continuous costmap. This costmap will be used as one
of the items for optimization in the next section. Figure 9
shows our experimental environment, which will be
further discussed in Section 6, as well as the processed
discrete heightmap and continuous costmap.

The processing and splicing of point cloud data are

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain

oo.oo NDCI

X
0 Processed heightmap

Original image

oJ(p,) oJ(p,)
Ox,)

Fig. 8 NDCI for transforming a pixel into a continuous heightmap, with its gradients. NDCI: normalized derivable convolution
interpolation.

9

8 &
73
6 8
58
4 =
35
2 T
1

0

Fig. 9 Experimental environment and the postprocessing: (a) photograph, (b) point cloud, (¢) heightmap, (d) height difference map, and
(e) costmap.

8 Front. Mech. Eng. 2023, 18(2): 26

updated in real time at the frequency of 30 Hz. The
heightmap is sampled at once before each step cycle of
the robot. After the discrete height difference map is
obtained, the continuous costmap does not need to be
calculated completely at one time, but is calculated
iteratively in accordance with different points py in the
form of a cost function in the optimization process in the
next section.

4 Locomotion optimization

As mentioned earlier, footholds optimization includes
two parts: terrain perception and the robot’s own state. In
the previous section, the cost function based on terrain
perception was generated. In consideration of the robot
state, this section will build a continuous and derivable
objective function to obtain optimized footholds.
Afterward, the body trajectory is corrected in accordance
with the selected foothold, and the motion control in
Section 5 can be performed.

4.1 Foothold preplanning

The robot adopts the stable walking mode of tripod-trot
gait. As described in Subsection 2.2, during the
alternating swing of the two leg groups, when the ith leg
is in the swing phase, according to the heuristic algorithm
[2] inspired by the SLIP model, the preplanning of the
target foothold is as follows:

Ty
ppre,i = pb + R ' Bphip,i + 7‘) + (Tsw - tsw,i) Va,

R=R.(y)R,(OR.(9), 3)
where p,., is the preplanning of the target foothold, py, is
the current position of the body, RESO(3) is the current
attitude matrix, calculated from the Euler angles, roll (¢),
pitch (6), and yaw () measured by the IMU, Bpy, ; is the
position of the ith leg’s hip joint in the BCS, v is the
current velocity of the body, vq is the desired velocity of
the body, Ty is the duration of the standing phase, Ty is
the duration of the swing phase, and #,; is the time when
the ith leg enters the swing phase.

After the preplanned foothold is obtained, in considera-
tion of the terrain information, calculating an adjustment
Ap; relative to the preplanned foothold is necessary. The
addition of them is the optimized foothold position.

pi :ppre,i+APi‘ (4)
The next subsection will find the optimized foothold p;.

4.2 Footholds optimization

With the tripod-trot gait, there are only three legs in
swing phase at every footstep. Therefore, the legs can be

divided into two groups (leg groups A and B) in
accordance with which are in swing phase, and only one
group needs to be optimized at each footstep. Only the
horizontal components of the footholds are considered
because the height component is directly obtained from
the heightmap in accordance with the coordinates of the
horizontal components.

The horizontal components of the foothold point p, € R?
are extracted and reorganized into h; € R* as

pi = [pi,x pl}y pi,z:IT,
T
hi = [pi,x pi,y] .

Then, the grouped footholds are merged into one vector
h as

)

|k b
|n} R
Similarly, the preplanned foothold py.; is extracted as

hpe i, and the grouped preplanned footholds are merged
into a vector /e,

h;]T, leg group A,
h= (6)

h;]T, leg group B.

T
hpre,i = [pprc,i,x pprc,i,y] s (7)
T
h _ I:hgre,() h:re,z hgreA] ’ leg gI'Ollp A’ (8)
pre — T
[h;re,l hgm3 h;re‘s] , leg group B.
Finally, the footholds optimization equation is

established as
h' = argmin {Q/Z J(h)+(h—h,)' W(h-h,,)|,

[0 2 4]T, leg group A, 9)

i€ T
[1 3 5] , leg group B,
- Ahlim < h— hpre < Ahlim’ Ahlim > 0’

where h" is optimized horizontal coordinate of the
foothold.

The first item of the optimization objective J(h;) is the
terrain cost shown in Section 3, as to keep away from the
edge of potholes and obstacles, to prevent footsteps from
slipping, and to maintain the predictive balance of the
robot. « is the weighting factor of this cost. The second
item is the balance cost of the robot state. The weighting
matrix W = gD + pQ is a symmetric matrix, as shown
below, where the diagonal matrix D indicates that the
optimized footholds cannot be too far away from the
preplanned footholds /e, and the symmetrical matrix Q
indicates that the grouped footholds can be adjusted in the
same direction. {8, y} are their weights. The constraint
Ahyiy, represents the maximum amount of adjustment Ap;
allowed to prevent exceeding the leg workspace.

S.t.

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain 9

1
1
1
w=g |
1
1
D
2 0 -1 0 -1 0
o 2 0 -1 0 -1
-1 0 2 O -1 O
+y (10)

The designation of the symmetric matrix @ is intuitive.
Let Ah = h — hy, which is an expansion of the following
quadratic formula:

AR"QAR = (,Ah —,AR)’ +(,Ah — ,Ah)’
+(,Ah— ,Ah)’ +(,Ah — ,Ah)’
+(,Ah— AR)’ + (AR — ARY'. (11)

To distinguish from the right subscript of A; represen-
ting different legs, the left subscript of ,Ah represents the
nth element of Ah. When it is used as a cost function, it
indicates that the adjustments of the footholds of different
legs are encouraged to be biased in the same direction, to
prevent different legs from moving away from or
approaching each other, which would impair the body
balance.

In the objective function Eq. (9), the gradient VJ of the
first term J(h;) is given by Eq. (2). The second term is a
quadratic type, whose gradient can be easily obtained. In
this way, the objective function can be solved via the
Levenberg—Marquardt method [30].

After the optimized horizontal coordinate k; € R* of the
foothold is obtained, it is easy to find the height
components p;. at the corresponding position on the
heightmap. Then, they are combined into a 3D point

pi=|h. h, p.] €R, which is the final optimized
position of the foothold for i-leg.

4.3 Body trajectory correction

The preplanned footholds are obtained on the basis of the
heuristic algorithm, which conform to the basic SLIP
balance model. After new optimized footholds are
generated, this balance may be broken to some extent.
Given that the optimized footholds include the costs of
adapting to the terrain, the body trajectory should be
corrected in accordance with the optimized footholds.

i

. . i [0 2 4]T, leg group A,
APy =D (P = Py i€ { 3 5] eg roup,

Av; =0,

(12)
where Ap; is the correction amount on the original body
trajectory. The speed correction Av; is zero. Then,
according to the gait cycle, within the current swing
phase Ts,, which refers to the position and velocity
startpoint and endpoint conditions, the body trajectory
correction is subjected to cubic interpolation.

To further improve the accuracy, there is a discussion
that is it possible to run the footholds optimization
repeatedly in accordance with the corrected body
trajectory? In fact, it is not necessary. The reason is that,
in Eq. (10), the balance cost of the second term, the
quadratic matrix Q already contains the inspiration of the
grouped legs adjusting to the same direction. In the
experiment, we have tried to iterate the optimization
many times but found little improvement.

5 Control strategy

Subsection 2.1 described the basic gait scheduler that
directs the lift-up and touch-down of each leg. Section 4
introduced the optimization method for the footholds and
the correction of the body trajectory. However, these two
parts are not enough to control a robot.

For a legged robot, animal-like walking is realized by
swinging and touching-down its legs alternately.
Therefore, the legs are divided into two groups, namely,
swing and support. During the walking process, the swing
trajectories of swing legs should be controlled to step on
the desired foothold point of each leg. The support legs
should also be controlled to maintain body stability and
its movement. These actions rely on the cooperation of
each joint of the robot, which means that the motors need
to provide the corresponding torque. This section will go
through the remaining part of the control framework
shown in Fig. 3.

5.1 Swing leg control

In the WCS, assuming there is no relative sliding between
the supporting legs and the ground, the current tip of the
supporting leg is fixed to the ground. The optimal
footholds are also calculated in the WCS, which will be
the support points for the next gait cycle of each leg.
Therefore, when the leg enters the swing phase, the
current support point and the optimized foothold must be
connected through a smooth curve in combination with
the gait scheduler. This curve is the leg swing trajectory.
The current tip position of the leg is obtained by
forward kinematics and state estimation [31]. This study

10 Front. Mech. Eng. 2023, 18(2): 26

adopts a spatial composite trajectory based on cycloid.
The expression is as follows:

Pxé
Pyé
D¢

0

+za—m@»

2
Lo :
&=2n Yiw’l €0, 2x].

SW

D —P:ico
2n

pg, (tsw,i) = (é‘:l —sin (é:z))

(13)

The trajectory p, € R’ is a function of the ith leg’s
swing time fg,;, with & for the swing phase. p; is the
target foothold optimized in Section 4, p,_, is the tip
position before leg lifting (when t,; = 0), 4. is the step
height that needs to be raised in the middle of the swing
process. This trajectory is continuous and derivable, and
the derivative of the trajectory is the velocity of the tip.
Figure 10 shows a step-walk sequence. The red solid line
represents the swing leg, and the blue solid line is the
support leg. The red dotted line is the swing trajectory,
and the yellow dotted line is the swing trajectory when
the height component of p; is equal to 0.

P:=o X

Fig. 10 Swing trajectory based on cycloid spatial composite
trajectory.

After the swing trajectory is determined, the target
position of the tip in the LCS "I’ is obtained as follows:

‘I =R"(p,— P,)~ " P (14)
Then, the virtual force “f7, . of the swing leg in LCS is
generated by tracking the swing trajectory through the

virtual model impedance control. The virtual model is
shown in Fig. 11.

“fos =Ko (L =11) + Ky (M1 1), (15)

The inertia term is not included in the impedance model
formulation because we assume that the leg has a
negligibly small mass. The notations with a subscript *,
i, “I' and its derivative “I;, are the target position and
velocity of the ith leg in the LCS, respectively, “I; and its
derivative "“I; are the position and velocity of the ith leg
obtained by the forward kinematics, respectively.
Diagonal matrices {“Kp,"Kp} € R* represent the three-
dimensional stiffness and damping of the leg,
respectively. Through this virtual model, the feedforward

Fig. 11 Leg virtual model of impedance control.

force " f, . of the swing leg can be obtained.
5.2 Body balance control

A CBC is used to generate the virtual force (or called
ground reaction force, GRF [2,32]) of the supporting legs.
The states that need to be controlled for body balance
include the desired position p; € R* and velocity p; € R
of the center of mass (CoM), along with the attitude
R" € SO(3) and angular velocity o; € R? of the body. The
feedback control regulation can be described by the
following formula:

Py = Kep (9, — D) + Koy (B3~ By

i, = Ko, (log(R'R)) + Ko (0, —). (16)

where {j)b, i)b,c?)b} €R?® and Re SO(3) are the estimated
states of the current position, velocity, angular velocity,
and attitude of the robot. The diagonal matrices
{Kep,Kpp, Kp,, K, } € R7 are the stiffness (subscript
with P) and damping (subscript with D) of position
(subscript with ,p) and attitude (subscript with ,a). log(*)
is the mapping from a rotation matrix (SO(3)) to a
rotation vector (R?®). After the above PD control
regulation, the control values of the CoM’s acceleration
P, € R and angular acceleration @; € R’ are obtained.

The position acceleration and angular acceleration need
to be provided by the GRFs of the support legs. Here, the
mass of legs is assumed to be negligible compared with
the mass of body, and the body mass is concentrated on
the CoM, ignoring the influence of the Coriolis force and
centrifugal force. Then, the simplified dynamics of the
robot satisfies

mpy+g)=. f,

a7)
o AT |, TN
RPI-R oy~) RPLxf,

where m is the mass of CoM, geR?® is the local
gravitational acceleration, and BJ ¢ R¥® is the inertia
matrix of the body in the BCS. x4 means the leg number in
contact, Bl; is the tip position in the BCS, and f; is the

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain 11

GREF of the ith leg. Equation (17) is rewritten in matrix
form as

E E Jf‘ | mp+g)
[Ren]x . [RP1]x “|ReI-R o |
¥ ﬁb/_/
f

(18)
where E e R is the identity matrix. The symbol [*]x
maps from a vector (R?) to an antisymmetric matrix
(R*>3). A, f, and b are the merged matrix and vectors
defined in Eq. (18). The legs in the support phase form an
over-restraint system for the body. Therefore, the virtual
force of each support leg should be obtained through the
following optimization equation:

fi= arg;n;g((Af— BY'S(Af ~b) +6f°),

st. Cf < fin

The diagonal matrix S € R"®!® ig the selection matrix,
and its elements will be zeros if the corresponding leg is
in the swing phase, J is the weighting factor for CBC,
Matrix C and vector fii, ensure that the optimized GRFs
satisfy the friction cone and upper and lower bound
constraints, f7, is the virtual force of the supporting legs
and f, is the virtual force of the supporting legs. The
virtual force of the supporting leg can be optimized by the
balance optimizer model above:

(19)

= 3 * T
fo=[fu fis] - (20)
Then, the feedforward force " f; in the LCS is obtained
as follows:
Lf:t,i = RTf:1,i' (21)

5.3 Joint PD control

The virtual force obtained above is transformed into joint
space as feedforward torque, and the final control torque
of the actuator is generated through joint feedback
control.

L £* .
L p* _ fsw7i9 SWlng 1eg’
fi= {Lf «i» support leg, (22)
T =J] " f +Kej (g —q)+ Kn; (g —q). (23)

where " f7 is the virtual feedforward force of the ith leg in
the LCS, J; € R is the Jacobian matrix of the ith leg,
and the diagonal matrices {Kp;, Kp;} € R¥® are the joint
stiffness and damping coefficients of each leg.
{4;.4;} € R® are the target angle and angular velocity for
each joint of the leg, respectively, which are obtained by
the inverse kinematic solution. {q,,¢,} € R® are the current
angle and angular velocity read by the encoder installed
on each joint. Finally, the control torque 7; for the joint of
each leg is obtained and sent to the motor driver.

So far, the entire robot control framework is accom-
plished.

6 Contrast experiments and analysis

The approach mentioned above is tested on a hexapod
robot, LittleStrong. We conduct experiments on a terrain
composed of irregularly placed strips. As shown in
Fig. 12, each strip is about 0.2 m wide and 0.12 m high.
To compare our foothold optimization algorithm, we set
up a control group, comparing the results of the hexapod
passing through the terrain without and with using the
foothold optimization method proposed in Subsection 6.1.
The comparison of the experiments is analyzed in
Subsection 6.2.

6.1 Contrast experiments

(1) Without the presented foothold optimization
algorithm

First, the robot walks blindly, adopting a heuristic
method with fixed gait cycle and step length. In the
experiment, the robot slips when stepping on the edge of
the strip. The process is demonstrated in the attached
video; a screenshot of the process is shown in Fig. 13.

When there is a sliding step, the robot exhibits

Fig. 12 Experiment setup for footholds optimization with the hexapod robot.

12 Front. Mech. Eng. 2023, 18(2): 26

Fig. 13 Screenshots of blind walking. Slips are circled in red.

instantaneous shaking. Figure 14 shows the graph of the
Euler angles of robot attitude, which indicates that when
slips occur, the robot loses its balance, and the Euler
angles have large peaks. Hence, in the case of irregular
terrain, the balance of the robot, when facing obstacles, is
difficult to ensure when a blind walking gait is adopted.

(2) With the presented footholds optimization algorithm

After our online foothold optimization method is
deployed, experiments are carried out under the same
scenario mentioned above. The process is also shown in
the attached video; Fig. 15 shows the screenshots of it.
The robot adopts a variable step length, and each step is
stepped on a position that is relatively safe from the edge
of the strip, and no sliding occurs. Figure 16 shows the
point cloud data processing, and the outstanding points in
it are the swing leg tips before touching down.

Figure 17 depicts the footholds optimization results
from the corresponding experiment. The six thinner
curves are the step length of each leg. In the tripod-trot
gait, the back-right, middle-left, and front-right legs are in

0.2 : . . . : ; :

Euler angle/rad

— Slips/

0 5 10 15 20 25 30 35 40
Time/s

Fig. 14 Euler angles during blind walk.

one group; the back-left, front-left, and middle-right legs
are in another group. Accordingly, the bold blue curve is
the average step length of the leg group coming into the
standing phase. From the attached video, a smaller step
length is carried out before the strip to avoid stepping on
the edge of it. Meanwhile, a larger step length is used
when leaving the strip.

With the elimination of the interference of sliding and

Fig. 15 Screenshots of footholds optimization.

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain 13

-\

4\

—~

o S

Fig. 16 Screenshots of point cloud processing.

Big step length leaving
the obstacle

— M ¢
Front-left
Front-right
Middle-right

Small step length .
before the obstacle

0 5 10 15 20 25 30 35 40
Step number

Step length/m
OCOOOOOOOOOO
e N R BB

[« S B Ne o Ra) (S I Yo e Sk =)

Fig. 17 Step length with footholds optimization.

falling under the feet, the balance of the robot has been
greatly improved. As shown in Fig. 18, compared with
Fig. 14, the Euler angles are well smoothed, and no peaks
occur.

6.2 Analysis of the contrast experiments

We have conducted 10 comparative experiments, as
shown above. From Table 1, when the blind walking
algorithm is used, the foot slides for a total of 47 times,
and the Euler angle fluctuation variance of the body is
5.71x10* rad? for roll and 5.40x10™* rad? for pitch.
After the foothold optimization algorithm is applied,

0.2 —Roll ||
—Roll
——Pitch
T 0l
s A j\ N
AL A VW AL AN ?"‘;M"J N
PRy VRV
=
m
02l . s 30 35 4
0 5 10 15 20 25 30 35 40
Time/s

Fig. 18 Euler angles when using foothold optimization.

Table 1 Contrast between blind walking and footholds optimized
walking

Variance of Euler angle/(107* rad?)

Experiment Slip number -
Roll Pitch

Blind walking 47 5.71 5.40

Footholds optimized 2 2.72 3.21

sliding occurs 2 times (caused by the failure of point
cloud splicing in one experiment, which is beyond the
discussion of this paper). The fluctuation variance of the
body Euler angle is reduced to 2.72x107* rad? for roll and
3.21x107* rad? for pitch, indicating that our algorithm
significantly improves the stability of the robot.

7 Conclusions

In this paper, we propose a novel smooth and derivable
method for generating a costmap from a terrain grid map.
Moreover, we propose an algorithm for online
optimization of footholds, combined with the robot’s
heuristic gait. The algorithm is fast and stable, and has a
clear physical meaning and optimization objective, which
can be directly deployed on the onboard computer. We
verify this method on a hexapod robot. On an irregular
terrain, the robot using blind walking will stumble. Now,
with the proposed algorithm, combined with real-time
visual information, the robot can pass through the terrain
gracefully. The real-time property and feasibility of the
algorithm are proved.

Nomenclature

Abbreviations

BCS Body coordinate system

CBC Centroid balance control

CI Convolution interpolation

CNN Convolutional neural network

CoM Center of mass

GRF Ground reaction force

MU Inertial measurement unit

LCS Leg coordinate system

NDCI Normalized derivable convolution interpolation
PCI Pyramid convolution interpolation

RGBD Red, green, blue, depth

14

SLIP
WCS

Variables

fi
“fi
./ iim

I
fu
AT

*

J (hi)

J (pn)
VJ(p)
Ky, Ko
K, K;,
KD,aa KP.a
"Kp, "Kp
B,
L7,

L Ly
[A

Front. Mech. Eng. 2023, 18(2): 26

Spring-loaded inverted pendulum

World coordinate system

Merged matrix for CBC

Merged vectors for CBC

Center of the pixel (7, j) on the map

Matrix of friction cone and upper and lower bound
constraints for GRF

Identity matrix

GRF of the ith leg

Virtual feedforward force of the ith leg in the LCS

Friction cone and upper and lower bound constraints for
GRF

Virtual force of the supporting legs

Virtual force of the ith supporting leg

Virtual feedforward forces of the ith supporting leg and
swing leg in the LCS, respectivley

Local gravitational acceleration

Step height that needs to be raised in the middle of the swing
process

Merged vector of h;

Horizontal component of optimized footholds

Horizontal component of p;

Optimized horizontal coordinate of the foothold

Merged vector of hpe ;i

Horizontal component of preplanned foothold
Intermediate variable of the difference between the
optimized footholds and the preplanned footholds
Maximum amount of adjustment Ap; allowed

nth element of Ak

Index for the item, such as the ith leg, or the (i, j) pixel
Inertia matrix of the body in the BCS

Index for the item, such as the (7, j) pixel

Jacobian matrix of the ith leg

Terrain cost at the position of A;

Cost function for NDCI

Partial derivative of the cost function for NDCI

Joint damping and stiffness matrices, respectively
Damping and stiffness of body position, respectively
Damping and stiffness of body attitude, respectively
Damping and stiffness of the leg, respectively

Tip position in the BCS

Position and velocity of the ith leg in the LCS, respectively
Target position and velocity of the ith leg in the LCS,
respectively

Set numbers of pixels that need to be involved

p,
Dy Py Dy

p;

Pixs Piys Piz
p;

P

Pyrei

P

Py P,

Ap;

Api

Bphip, i

qi’ qi

q.q

X =

“wow ox

tsw,i
Tot, Tow
v

Vd

Av;

Xh

Position of the robot body

Target position, velocity, and acceleration of the robot’s
CoM, respectively

Horizontal coordinate of the position of the selected point on
the whole map

Foothold point of the ith leg

X, y, and z components of the foothold p,, respectively
Optimized footholds

Height components at the position p; on the heightmap
Preplanning of the target foothold

Swing trajectory of the ith leg

Estimated position and velocity of the robot, respectively
Correction amount on the original body trajectory

Foothold adjustment for the ith leg

Position of the ith leg’s hip joint in the BCS

Current angle and angular velocity read by the ith encoder,
respectively

Target angle and angular velocity of the ith joint,
respectively

Current attitude matrix

Desired attitude of the body

Estimated current attitude of the robot

Set of real number

Selection matrix for CBC

Time when the ith leg enters the swing phase

Duration of the standing and swing phase, respectively
Velocity of the body

Desired velocity of the body

Speed correction

x component of the horizontal coordinate of the position of
the selected point on the heightmap

x component of the center of the pixel (i, /) on the map

y component of the horizontal coordinate of the position of
the selected point on the heightmap

y component of the center of the pixel (7,) on the map
Weighting matrices for footholds optimization

Weighting factors for footholds optimization

Weighting factor for CBC

Smoothing factor in x and y directions, respectively

Euler angle roll, pitch, and yaw measured by the IMU
Number of legs in contact

Control torque of the ith joint

Swing phase

Angular velocity of the body

Target angular velocity and acceleration of the robot,

respectively

Acknowledgements

Yunpeng YIN et al. Footholds optimization for legged robot walking on complex terrain 15

Symbol maps from a vector (R?) to an antisymmetric matrix

(R3><3)

This work was supported by the National Key R&D

Program of China (Grant No. 2021 YFF0306202).

References

10.

11.

. Raibert M H, Tello E R. Legged robots that balance. IEEE Expert,

1986, 1(4): 89

. Bledt G, Powell M J, Katz B, Di Carlo J, Wensing P M, Kim S.

MIT Cheetah 3: design and control of a robust, dynamic quadruped
robot. In: Proceedings of 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Madrid: IEEE, 2018

. Vernaza P, Likhachev M, Bhattacharya S, Chitta S, Kushleyev A,

Lee D D. Search-based planning for a legged robot over rough
terrain. In: Proceedings of 2009 IEEE International Conference on
Robotics & Automation. Kobe: IEEE, 2009, 23802387

. Kalakrishnan M, Buchli J, Pastor P, Mistry M, Schaal S. Fast,

robust quadruped locomotion over challenging terrain. In:
Proceedings of 2010 IEEE International Conference on Robotics &

Automation. Anchorage: IEEE, 2010, 2665-2670

. Semini C, Tsagarakis N G, Guglielmino E, Focchi M, Cannella F,

Caldwell D G. Design of HyQ—a hydraulically and electrically
actuated quadruped robot. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, 2011, 225(6): 831-849

. Winkler A, Havoutis I, Bazeille S, Ortiz J, Focchi M, Dillmann R,

Caldwell D, Semini C. Path planning with force-based foothold
adaptation and virtual model control for torque controlled
quadruped robots. In: Proceedings of 2014 IEEE International
Conference on Robotics & Automation (ICRA). Hong Kong:
IEEE, 2014, 6476—6482

. Hutter M, Gehring C, Jud D, Lauber A, Bellicoso C D, Tsounis V,

Hwangbo J, Bodie K, Fankhauser P, Bloesch M, Diethelm R,
Bachmann S, Melzer A, Hoepflinger M. ANYmal—a highly
mobile and dynamic quadrupedal robot. In: Proceedings of 2016
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Daejeon: IEEE, 2016, 38—44

. Winkler A W, Bellicoso C D, Hutter M, Buchli J. Gait and

trajectory optimization for legged systems through phase-based
end-effector parameterization. IEEE Robotics and Automation
Letters, 2018, 3(3): 1560-1567

. Mastalli C, Focchi M, Havoutis I, Radulescu A, Calinon S, Buchli

J, Caldwell D G, Semini C. Trajectory and foothold optimization
using low-dimensional models for rough terrain locomotion. In:
Proceedings of 2017 IEEE International Conference on Robotics &
Automation (ICRA). Singapore: IEEE, 2017, 1096—1103

Mastalli C, Havoutis I, Focchi M, Caldwell D G, Semini C. Motion
planning for quadrupedal locomotion: coupled planning, terrain
mapping and whole-body control. IEEE Transactions on Robotics,
2020, 36(6): 1635-1648

Mastalli C, Havoutis I, Winkler A W, Caldwell D G, Semini C.
On-line and on-board planning and perception for quadrupedal

20.

21.

22.

23.

24.

25.

26.

locomotion. In: Proceedings of 2015 IEEE International
Conference on Technologies for Practical Robot Applications

(TePRA). Woburn: IEEE, 2019, 1-7

. Fankhauser P, Bjelonic M, Bellicoso C D, Miki T, Hutter M.

Robust rough-terrain locomotion with a quadrupedal robot. In:
Proceedings of 2018 IEEE International Conference on Robotics
and Automation (ICRA). Brisbane: IEEE, 2018, 5761-5768

. Jenelten F, Miki T, Vijayan A E, Bjelonic M, Hutter M. Perceptive

locomotion in rough terrain—online foothold optimization. IEEE
Robotics and Automation Letters, 2020, 5(4): 5370-5376

. Chai X, Gao F, Xu Y L. Perception-based gait planning for a

hexapod robot walking on typical structured terrain. In: Zhang X
M, Wang N F, Huang Y J, eds. Mechanism and Machine Science.
Singapore: Springer, 2017, 169-181

. Kim D, Carballo D, Di Carlo J, Katz B, Bledt G, Lim B, Kim S.

Vision aided dynamic exploration of unstructured terrain with a
small-scale quadruped robot. In: Proceedings of 2020 IEEE
International Conference on Robotics and Automation (ICRA).
Paris: IEEE, 2020, 24642470

. Mao L H, Tian Y, Gao F, Zhao Y. Novel method of gait switching

in six-legged robot walking on continuous-nondifferentiable terrain
by utilizing stability and interference criteria. Science China
Technological Sciences, 2020, 63(12): 2527-2540

. Mao L H, Gao F, Tian Y, Zhao Y. Novel method for preventing

shin-collisions in six-legged robots by utilising a robot—terrain
interference model. Mechanism and Machine Theory, 2020, 151:
103897

. Zhao Y, Gao F, Yin Y P. Obstacle avoidance and terrain

identification for a hexapod robot. Research Square, 2020, preprint

. Magafia O A V, Barasuol V, Camurri M, Franceschi L, Focchi M,

Pontil M, Caldwell D G, Semini C. Fast and continuous foothold
adaptation for dynamic locomotion through CNNs. IEEE Robotics
and Automation Letters, 2019, 4(2): 2140-2147

Miki T, Lee J, Hwangbo J, Wellhausen L, Koltun V, Hutter M.
Learning robust perceptive locomotion for quadrupedal robots in
the wild. Science Robotics, 2022, 7(62): eabk2822

Tsounis V, Alge M, Lee J, Farshidian F, Hutter M. DeepGait:
planning and control of quadrupedal gaits using deep
reinforcement learning. IEEE Robotics and Automation Letters,
2020, 5(2): 3699-3706

Gehring C, Fankhauser P, Isler L, Diethelm R, Bachmann S, Potz
M, Gerstenberg L, Hutter M. ANYmal in the field: solving
industrial inspection of an offshore HVDC platform with a
quadrupedal robot. In: Ishigami G, Yoshida K, eds. Field and
Service Robotics. Singapore: Springer, 2021, 247-260

Liu W, Gao Y, Gao F, Li S Y. Trajectory adaptation and safety
control via control barrier functions for legged robots. In:
Proceedings of 2021 China Automation Congress (CAC). Beijing:
IEEE, 2021, 5571-5576

Park H W, Wensing P M, Kim S. Jumping over obstacles with
MIT Cheetah 2. Robotics and Autonomous Systems, 2021, 136:
103703

Qi S H, Lin W C, Hong Z J, Chen H, Zhang W. Perceptive
autonomous stair climbing for quadrupedal robots. In: Proceedings
of 2021 IEEE/RS]J International Conference on Intelligent Robots
and Systems (IROS). Prague: IEEE, 2021, 2313-2320

Gerum P. Xenomai—Implementing a RTOS emulation framework

https://doi.org/10.1109/MEX.1986.4307016
https://doi.org/10.1109/MEX.1986.4307016
https://doi.org/10.1109/IROS.2018.8593885
https://doi.org/10.1109/IROS.2018.8593885
https://doi.org/10.1109/IROS.2018.8593885
https://doi.org/10.1109/IROS.2018.8593885
https://doi.org/10.1109/ROBOT.2009.5152769
https://doi.org/10.1109/ROBOT.2009.5152769
https://doi.org/10.1109/ROBOT.2009.5152769
https://doi.org/10.1109/ROBOT.2009.5152769
https://doi.org/10.1109/ROBOT.2009.5152769
https://doi.org/10.1109/ROBOT.2010.5509805
https://doi.org/10.1109/ROBOT.2010.5509805
https://doi.org/10.1109/ROBOT.2010.5509805
https://doi.org/10.1109/ROBOT.2010.5509805
https://doi.org/10.1109/ROBOT.2010.5509805
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/ICRA.2014.6907815
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1109/ICRA.2017.7989131
https://doi.org/10.1109/ICRA.2017.7989131
https://doi.org/10.1109/ICRA.2017.7989131
https://doi.org/10.1109/ICRA.2017.7989131
https://doi.org/10.1109/ICRA.2017.7989131
https://doi.org/10.1109/ICRA.2017.7989131
https://doi.org/10.1109/TRO.2020.3003464
https://doi.org/10.1109/TRO.2020.3003464
https://doi.org/10.1109/TRO.2020.3003464
https://doi.org/10.1109/TRO.2020.3003464
https://doi.org/10.1109/TRO.2020.3003464
https://doi.org/10.1109/TePRA.2015.7219685
https://doi.org/10.1109/TePRA.2015.7219685
https://doi.org/10.1109/TePRA.2015.7219685
https://doi.org/10.1109/TePRA.2015.7219685
https://doi.org/10.1109/TePRA.2015.7219685
https://doi.org/10.1109/TePRA.2015.7219685
https://doi.org/10.1109/ICRA.2018.8460731
https://doi.org/10.1109/ICRA.2018.8460731
https://doi.org/10.1109/ICRA.2018.8460731
https://doi.org/10.1109/ICRA.2018.8460731
https://doi.org/10.1109/ICRA.2018.8460731
https://doi.org/10.1109/LRA.2020.3007427
https://doi.org/10.1109/LRA.2020.3007427
https://doi.org/10.1109/LRA.2020.3007427
https://doi.org/10.1109/LRA.2020.3007427
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1007/s11431-020-1588-5
https://doi.org/10.1007/s11431-020-1588-5
https://doi.org/10.1007/s11431-020-1588-5
https://doi.org/10.1007/s11431-020-1588-5
https://doi.org/10.1007/s11431-020-1588-5
https://doi.org/10.1016/j.mechmachtheory.2020.103897
https://doi.org/10.1016/j.mechmachtheory.2020.103897
https://doi.org/10.1016/j.mechmachtheory.2020.103897
https://doi.org/10.1016/j.mechmachtheory.2020.103897
https://doi.org/10.1016/j.mechmachtheory.2020.103897
https://doi.org/10.21203/rs.3.rs-50693/v1
https://doi.org/10.21203/rs.3.rs-50693/v1
https://doi.org/10.1109/LRA.2019.2899434
https://doi.org/10.1109/LRA.2019.2899434
https://doi.org/10.1109/LRA.2019.2899434
https://doi.org/10.1109/LRA.2019.2899434
https://doi.org/10.1109/LRA.2019.2899434
https://doi.org/10.1126/scirobotics.abk2822
https://doi.org/10.1126/scirobotics.abk2822
https://doi.org/10.1126/scirobotics.abk2822
https://doi.org/10.1109/LRA.2020.2979660
https://doi.org/10.1109/LRA.2020.2979660
https://doi.org/10.1109/LRA.2020.2979660
https://doi.org/10.1109/LRA.2020.2979660
https://doi.org/10.1109/LRA.2020.2979660
https://doi.org/10.1007/978-981-15-9460-1_18
https://doi.org/10.1007/978-981-15-9460-1_18
https://doi.org/10.1007/978-981-15-9460-1_18
https://doi.org/10.1007/978-981-15-9460-1_18
https://doi.org/10.1007/978-981-15-9460-1_18
https://doi.org/10.1007/978-981-15-9460-1_18
https://doi.org/10.1109/CAC53003.2021.9728082
https://doi.org/10.1109/CAC53003.2021.9728082
https://doi.org/10.1109/CAC53003.2021.9728082
https://doi.org/10.1109/CAC53003.2021.9728082
https://doi.org/10.1109/CAC53003.2021.9728082
https://doi.org/10.1016/j.robot.2020.103703
https://doi.org/10.1016/j.robot.2020.103703
https://doi.org/10.1016/j.robot.2020.103703
https://doi.org/10.1109/IROS51168.2021.9636302
https://doi.org/10.1109/IROS51168.2021.9636302
https://doi.org/10.1109/IROS51168.2021.9636302
https://doi.org/10.1109/IROS51168.2021.9636302
https://doi.org/10.1109/IROS51168.2021.9636302

16

27.

28.

29.

30.

Front. Mech. Eng. 2023, 18(2): 26

on GNU/Linux. White Paper, 2004, 81

Hintjens P. ZeroMQ: Messaging for Many Applications. O’Reilly
Media, 2013

Sun Q, Gao F, Chen X B. Towards dynamic alternating tripod
trotting of a pony-sized hexapod robot for disaster rescuing based
on multi-modal impedance control. Robotica, 2018, 36(7):
1048-1076

Ekstrom M P. Digital Image Processing Techniques. 2nd ed.
Academic Press, 2012

Ranganathan, A. The Levenberg—Marquardt algorithm. Tutoral on

31.

32.

LM Algorithm, 2004, 11(1): 101-110

Blosch M, Hutter M, Hopflinger M A, Leutenegger S, Gehring C,
Remy C D, Siegwart R Y. State estimation for legged
robots—consistent fusion of leg kinematics and IMU. In:
Proceedings of Robotics: Science and Systems Conference (RSS
2012). Sidney: Robotics: Science and Systems Conference, 2012
Focchi M, Del Prete A, Havoutis I, Featherstone R, Caldwell D G,
Semini C. High-slope terrain locomotion for torque-controlled
quadruped robots. Autonomous Robots, 2017, 41(1): 259-272

https://doi.org/10.1017/S026357471800022X
https://doi.org/10.1017/S026357471800022X
https://doi.org/10.1017/S026357471800022X
https://doi.org/10.1017/S026357471800022X
https://doi.org/10.1017/S026357471800022X
https://doi.org/10.3929/ethz-a-010137526
https://doi.org/10.3929/ethz-a-010137526
https://doi.org/10.3929/ethz-a-010137526
https://doi.org/10.3929/ethz-a-010137526
https://doi.org/10.3929/ethz-a-010137526
https://doi.org/10.1007/s10514-016-9573-1
https://doi.org/10.1007/s10514-016-9573-1
https://doi.org/10.1007/s10514-016-9573-1
https://doi.org/10.1007/s10514-016-9573-1

	1 Introduction
	2 Robot overview
	2.1 Hardware structure
	2.2 Control framework

	3 Costmap processing
	3.1 Grid map continuation
	3.2 Costmap generation

	4 Locomotion optimization
	4.1 Foothold preplanning
	4.2 Footholds optimization
	4.3 Body trajectory correction

	5 Control strategy
	5.1 Swing leg control
	5.2 Body balance control
	5.3 Joint PD control

	6 Contrast experiments and analysis
	6.1 Contrast experiments
	6.2 Analysis of the contrast experiments

	7 Conclusions
	Nomenclature
	Acknowledgements
	References

