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Abstract Amino acids are important nitrogen-containing
chemicals that have a variety of applications. Currently,
fermentation is the widely employed method to produce
amino acids; however, the products are mostly limited to
natural amino acids in the L-configuration. Catalytic synthe-
sis is an alternative approach for the synthesis of amino
acids with different types and configurations, where the
use of renewable biomass-based feedstocks is highly attrac-
tive. To date, several lignocellulose and triacylglycerol-
derived intermediates, typically a-keto acids and a-hydro-
xyl acids, have been transformed into amino acids via the
amination reaction in the presence of additional nitrogen
sources (i.e., NH;-H,0). Making full use of inherent nitro-
gen in biomass (i.e., chitin and protein) to produce amino
acids avoids the use of extra nitrogen sources and meets
the requirements of green chemistry, which is attracting
increasing attention. In this review, we summarize
different chemical-catalytic systems for the transformation
of biomass to amino acids. An outlook on the challenges
and opportunities for more effective production of amino
acids from biomass by catalytic methods is provided.
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1 Introduction

Amino acids are fundamental building blocks of proteins
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and play a crucial role in life forms. Amino acids are
important nitrogen-containing chemicals that face substan-
tial global demand. They have been widely used in the
field of pharmaceuticals, food, animal nutrients, cosme-
tics, etc. [1]. Currently, amino acids are being mainly
produced on a large scale by microbial fermentation
processes employing low-priced carbohydrates (i.e.,
starch, crude sugar, and molasses) and their derivatives as
substrates [1,2]. Despite economic and environmental
advantages, the biosynthesis of some amino acids by
fermentation still suffers from several drawbacks, such as
limited product scope (natural amino acids in L-
configuration in most cases), strict operating conditions,
and energy-intensive separation processes [3,4].

The catalytic production of amino acids is an
alternative to their biosynthesis. The Strecker reaction is a
classical method employed for the synthesis of amino
acids starting from formaldehyde, cyanide, and ammo-
nium salts [5], as shown in Scheme 1. The use of highly
toxic formaldehyde and cyanide on a large scale might
cause serious environmental and health problems,
limiting the application of the Strecker reaction. As
shown in Scheme 1, another typical method is Petasis
synthesis for protected amino acids employing non-toxic
boronic compounds as nucleophilic species [5]. In
comparison with the Strecker reaction, Petasis synthesis
can overcome some disadvantages by using more green
and stable reagents. Although Petasis synthesis is
promising, with the increasing demand of various amino
acids, developing novel technologies for the green
production is challenging and calls for further research
efforts.

Recently, the catalytic production of amino acids from
abundant and renewable biomass has attracted significant
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attention [6,7]. As shown in Scheme 2, several derivatives
of lignocellulose, triacylglycerol, and chitin have been
used as substrates. When lignocellulose or triacylgly-
cerol-derived compounds (typically, a-keto acids, a-
hydroxyl acids, and glycerol) are used, additional
nitrogen sources are needed for the amination of
substrates to amino acids. In contrast, due to the existence
of bio-fixed nitrogen, the synthesis of amino acids from
chitin and proteins does not require additional nitrogen
sources, which is a more promising strategy in terms of
the energy-intensive ammonia synthesis. Previously,
some reviews summarized amino acid production via
biological pathways [2,4] and catalytic synthesis of
organonitrogen chemicals from biomass-based feedstock
[8]. Nonetheless, to the best of our knowledge, there has
been no review dedicated to amino acid synthesis from
renewable organic carbon sources via chemical pathways.
Herein, we systematically summarized the advances in
the catalytic synthesis of amino acids from biomass-based
chemicals, in which different systems (substrates,
catalysts, mechanism, etc.) were discussed.
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2 Conversion of lignocellulose or
triacylglycerol biomass to amino acids

2.1 Conversion of lignocellulose or triacylglycerol
biomass to intermediates for amino acid synthesis

Lignin, cellulose, and hemicellulose are typical biomass
components. The conversion of lignocellulose to fine
chemicals, fuels, and materials has been widely studied
[9-12]. Various a-hydroxyl acids, like lactic acid [13,14],
glycolic acid [15-17], furylglycolic acid [18], and a-
hydroxyglutaric acid [19], are valuable compounds and
have been produced via the degradation of lignocellulose.
Among these, lactic acid has been extensively
investigated. Various carbohydrates, such as glucose,
fructose, xylose, and dihydroxyacetone, have been used
for the preparation of lactic acid. Because the
transformation of carbohydrates to lactic acid usually
involves two key steps including isomerization and retro-
aldol reactions, various homogeneous/heterogeneous acid

NH,
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Scheme 1 Production of amino acids via Strecker and Petasis reaction.
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Scheme 2 Overview of main chemical methods for production of amino acids from different biomass-based intermediates.
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or base catalysts have been reported for these conversions
[20]. To date, some encouraging chemo-catalytic systems
for the production of lactic acid from biomass sugars have
been reported. For example, Cao et al. [21] prepared an
N-TiO, photothermal catalyst that could catalyze
conversion of fructose, glucose, arabinose, and xylose
into lactic acid, affording 93%, 85%, 96%, and 88%
yields, respectively.

Triacylglycerol is another important biomass compo-
nent and exists in both plants and animals. Glycerol can
be produced by the hydrolysis of triacylglycerol. The
direct conversion of glycerol to alanine has been reported
[22]. Furthermore, the selective synthesis of lactic and
glycolic acid can be achieved by regulating the compe-
titive reaction pathways [23].

The product of a-keto acids can be obtained by the
simple oxidation of hydroxyl groups in a-hydroxyl acids
to carbonyl groups. As shown in Scheme 3, both a-keto
acids and a-hydroxyl acids are potential substrates for the
synthesis of corresponding amino acids by amination.
Recent advances in this area will be discussed.
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Scheme 3 Conversion of a-keto acids and a-hydroxyl acids to
amino acids.
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2.2 Conversion of a-keto acids and their derivatives

2.2.1 Traditional thermocatalysis

2.2.1.1 Precious metal-based catalysts

Several Rh, Ir, and Pd-based catalysts have been used for
the reductive amination of a-keto acids to amino acids.
Kitamura et al. [24] reported an efficient [RhCp*Cl,],
complex for the reductive amination of various ketones
under mild conditions in the presence of HCOONH,,
affording corresponding primary amines in satisfactory
yields. Herein, HCOONH, acted as both a hydrogen and
nitrogen resource. This method was also employed for the
catalytic reductive amination of a-keto acids to
corresponding a-amino acids in methanol with good
yields. Typically, a high phenylglycine yield of 91% was
obtained from phenylglyoxylic acid at 50 °C for 1.5 h.
Notably, the procedure for purification of these a-amino
acids was simple. Due to poor solubility of the product in
methanol, it can usually be separated from reaction
mixtures by filtration. Kadyrov et al. [25] reported that
Rh-based catalysts were used for the reductive amination
of biomass-derived a-keto acids (Scheme 4). As shown in
Scheme 4(a), benzylamine was used as nitrogen resource,
as the benzyl group is a suitable protecting group and can
be easily removed. The catalysts were synthesized in situ
via the reaction of 96 chiral ligands with [Rh(COD),]BF,
and [Rh(COD)CI],, respectively. High-throughput
screening showed that the chiral ligand has a remarkable
effect on the catalytic performance. Among others, (R,R)-
norphos, (S,S)-chiraphos, and (R,R)-deguphos were
superior, possibly owing to their five-membered structure
bearing diphenylphosphino groups, presented in Scheme
4(b). Taking phenylpyruvic acid as an example, the
catalysts based on these three ligands had both high yields
(= 98%) and ee values (= 91%). Thereby, several
natural amino acids, including glutamic acid, leucine, and
alanine in protected form, have been produced with high
stereoselectivity.
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Scheme 4 (a) Conversion of a-keto acids to amino acids over Rh-based catalysts. (b) Structures of (R,R)-norphos, (S,S)-chiraphos,
and (R,R)-deguphos. Reprinted with permission from Ref. [25], copyright 2003, American Chemical Society.
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Ir-based catalysts have likewise shown promising
activity for this reaction. Unlike previous catalytic sys-
tems with organic solvents as reaction medium, Ogo et al.
[26] achieved reductive amination in aqueous NH, and
HCOOH/HCOONa over Ir complexes [Cp*Ir'!(bpy)H]
n(X), where X = SO, (n = 2) or PF6 (n = 1), Cp* = n°-
C;Me;, bpy = 2,2’-bipyridine. The use of green solvent
(i.e., water) is attractive. As proposed in Scheme 5, the
reductive amination starts from a nucleophilic attack of
NH, to the carbonyl carbon catalyzed by protons in acidic
medium, yielding the a-imino acid as a key intermediate.
The further reduction of C=N in a-imino acid yields the
a-amino acid. Therefore, the reductive amination requires
acid-stable catalysts. Meanwhile, an acidic environment
facilitates the protonation of NH; to form NH," that
cannot act as the nitrogen donor, where a-keto acids are
hydrogenated to a-hydroxyl acids. The selective
conversion of a-keto acids to amino acids has been
achieved by using these acid-stable Ir-based catalysts and
adjusting the pH value of reaction medium, while the
reduction of a-keto acids to a-hydroxyl acids is inhibited
as well. Recently, Nguyen et al. [27] developed a novel
system for amino acid synthesis over [Cp*Ir(N-phenyl-2-
pyridinecarboxamidate)Cl] in methanol, where HCOONH,
provided both nitrogen and hydrogen. After the reaction
at 37 °C for 6 h, several typical amino acids, including
glycine, alanine, and tyrosine, were obtained in good
isolated yields above 90%. Under the same conditions,
the yields of phenylalanine (62%) and DOPA (82%) were
relatively low due to the loss during product recovery.
Consistent with previous reports [26], the reductive
amination of a-keto acids in an aqueous medium with low
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Scheme 5 pH-dependent reductive amination of a-keto acids in
the presence of NH; and HCOO™ over Ir complexes. Reprinted
with permission from Ref. [26], copyright 2004, American
Chemical Society.
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pH value significantly promoted the formation of
o-hydroxyl acids, which supported the dependence of pro-
duct selectivity on proton concentration. However, it must
be noted that the effect of the pH value on a-keto acids
conversion is complicated and requires further study. As a
useful metal, the Ir-based catalyst has been used for
reductive amination of ketone, aldehyde, and a-keto acids
to corresponding nitrogen-containing compounds [28].

In addition to Rh and Ir, Pd-based catalysts have also
been demonstrated for the synthesis of amino acids from
o-keto acids [29,30]. Chang et al. [30] reported that the
supported Pd nanoparticles have good catalytic perfor-
mance for the reductive amination of a-keto acids using
(S)-(-)-a-methylbenzylamine as nitrogen resource, affor-
ding high enantioselectivity. Under optimized conditions,
81 and 88 ee % were obtained over 10% Pd/SBA-15 and
Pd/NaY, respectively. For both Pd/SBA-15 and Pd/NaY,
the highest ee % was achieved at H, pressure of 3.5455 x
10° Pa. In addition to H, pressure, another key parameter
was the Pd metal size. The authors proposed that Pd
catalysts with larger crystallite size had regularly-
arranged metal atoms on the catalyst surface, providing
an appropriate environment for enantio-differentiation dur-
ing the hydrogenation step and producing high optical
yields. Taking pyruvic acid as an example, as shown in
Scheme 6, Structure I was the major structure during the
reaction, resulting in the highly selective synthesis of (S)-
alanine.

2.2.1.2 Non-precious metal-based catalysts

Compared to precious metals, the use of non-precious
metal catalysts is significantly more attractive, with limi-
ted examples so far. Chan et al. [31] reported the effective
reductive amination of a-keto acids to desired amino
acids over the commercial Raney nickel catalyst. H, was
employed as the hydrogen donor, while both ammonia
gas and aqueous ammonia act as aminating agents in
methanol. Using sodium S-phenylpyruvate as substrate, a
high yield of phenylalanine above 98% was achieved in
the presence of aqueous ammonia under mild conditions
(50 °C, 20 h, 200 psig H,). Considering the relatively
poor stability of f-phenylpyruvic acid, the satisfactory
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Scheme 6 Conformation of substrates. Reprinted with

permission from Ref. [30], copyright 2003, Elsevier B.V.
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yield of phenylalanine might be ascribed to the rapid
trapping of f-phenylpyruvic acid by ammonia, which can
effectively inhibit the decomposition of S-phenylpyruvic
acid. When aqueous ammonia is used under the same
condition, sodium p-phenylpyruvate, p-hydroxyphenyl-
pyruvic acid, pyruvic acid, and benzoylformic acid were
converted to their corresponding amino acids with good
yields of = 97%, indicating the promising potential of
nickel catalysts. Unfortunately, to the best of our
knowledge, there are no further reports on the progress of
nickel-catalyzed reductive amination of a-keto acids.

Another interesting case of iron oxyhydroxide was
recently reported by Barge et al. [32]. They demonstrated
that mixed-valence iron oxyhydroxides could drive
reductive amination of pyruvate to form alanine, while
pyruvate could also be reduced to lactate. The selectivity
of products depended on the ratio of Fe(Il) to Fe(Ill) in
the iron hydroxide catalysts. Pure ferrous hydroxides
could catalyze the reduction of pyruvate to lactate, but
showed no activity for the alanine production, while ferric
hydroxides exhibited no catalytic activity for both
reductive amination and reduction of pyruvate. In fact,
the partially oxidized state of the catalyst significantly
promoted the formation of alanine, yielding the highest
yield of alanine (ca. 70%) as well as ca. 30% lactate at
70 °C for 72 h when Fe(II)/Fe(III) ratio was 1:1. The need
of mixed-valence indicates the synergistic effect of Fe(II)
and Fe(IIl) components. Unfortunately, the catalysts are
sensitive to oxygen, making the experimental results
difficult to reproduce. Similarly to other systems [26],
alkaline conditions significantly promote the formation of
alanine, and neutral conditions only facilitate the
synthesis of lactate. The development of stable and
repeatable Fe-based catalysts is a promising strategy in
view of the low price and abundance of the iron element
on earth.

2.2.2  Electrocatalysis

Electrochemical hydrogenation of biomass-based com-
pounds with water as the hydrogen donor has attracted
significant attention owing to its mild reaction conditions
and simplicity [33]. Fukushima et al. [34] demonstrated
the electrocatalytic production of several amino acids
from biomass-derived a-keto acids on TiO,/Ti mesh
electrodes, affording Faradaic efficiencies of 77%—99%
using NH,OH as a nitrogen source. Compared to NH, for
pyruvic acid conversion, NH,OH can significantly enha-
nce the formation of amino acid and inhibit the reduction
reaction. Nevertheless, NH,OH has its shortcomings,
including instability and toxicity. The authors developed
a flow-type reactor named polymer electrolyte amino acid
electrosynthesis cell (AAEC) for the continuous synthesis
of alanine from pyruvic acid, achieving 89% conversion
with 77% Faradaic efficiencies (Fig. 1). The same group
[35] further investigated the reaction mechanism of
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Fig.1 Electrosynthesis of alanine from pyruvic acid and NH,OH

using AAEC. Reprinted with permission from Ref. [34], copyright
2019, Royal Society of Chemistry.

Step 1: *CH;COCOO™ + *H' + *NH,0H — *CH;C(OH)(NH,OH)COO
Step 2: *CH,;C(OH)(NH,OH)COO — *CH;C(OH)(NHOH)COO™ + *H"
Step 3: *CH;C(OH)(NHOH)COO™ + *H' = *CH;C(NOH)COO™ + *H* +H,0
Step 4: *CH;C(NOH)COO™ +2#H' + e~ = *CH;C(NHOH)COO =+ *H
Step 5: *CH;C(NHOH)COO ™ +2*H'+ e = *CH;C(NH)COO™ + *H' + H,0
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Step 7: *CH;C(NH,)COO™ +2+H' + e~ = *CH;CH(NH,)COO ~+ *H'

Scheme 7 Elemental reactions from pyruvic acid to alanine.
Reprinted with permission from Ref. [35], copyright 2021,
American Chemical Society.

alanine production using density functional theory, and
several important findings were summarized as follows.
As shown in Scheme 7, the formation of alanine consists
of seven elementary reactions mainly described by proton
transfer. The formation of the N-H bond from the oxime
intermediate to alanine is the key step with the highest
energy barrier. This step is mediated by a proton-coupled
electron transfer reaction, resulting in lower activation
energy. The H,O-TiO, interface enhances alanine
formation for two main reasons. First, the protons bound
to the surface oxygen of the TiO, transfer to the acceptors
with the assistance of the hydrogen bond network of
water molecules in most steps. Furthermore, compared to
water, pyruvic acid has stronger affinity with TiO,
surface, which facilitates electron transfer from TiO, to
pyruvic acid.

In addition to a-keto acids, the Yamauchi group [36]
likewise investigated the electrosynthesis of glycine from
oxalic acid and NH,OH. Oxalic acid is a typical dicar-
boxylic acid derived from the biomass [37]. As shown in
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Scheme 8, oxalic acid is reduced to glyoxylic acid, an a-
keto acid, as an intermediate product. Further reductive
amination of glyoxylic acid produces glycine. This work
provides an example for amino acid preparation by using
an upstream compound of a-keto acid as substrate, and
moderate Faradaic efficiency was obtained.

2.3 Conversion of a-hydroxyl acids intermediates

The transformation of a-hydroxyl acids is another method
to produce amino acids, which usually requires relatively
harsh reaction conditions [38—41]. The Yan’s group [38]
reported a heterogeneously catalytic conversion of a-
hydroxyl acids derived from lignocellulosic biomass to

(a) The formation of a-keto acid
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(b) Reductive amination of a-keto acid
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Scheme 8 Reaction route for glycine formation from oxalic acid.
Reprinted with permission from Ref. [36], copyright 2021,
Springer.
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the desired amino acids including alanine, leucine, valine,
aspartic acid, and phenylalanine with moderate yields,
where ammonia and H, were used. As shown in Scheme
9, there are two possible mechanisms for alanine forma-
tion from lactic acid. In comparison with lactic acid, the
treatment of a-hydroxyl isobutyric acid without an a-H
under various conditions generated no corresponding
amino acid, suggesting that the indirect route is dominant.
Some recent investigations further supported the dehy-
drogenation—amination—hydrogenation pathway [41,42].
The dehydrogenation of hydroxyl groups generates a-keto
acid intermediates first, which is a slow process and
considered as the rate-determining step. Compared to Pd,
Pt, Rh, and Ir, the Ru nanoparticles supported on carbon
nanotubes (Ru/CNT) showed better amino acid formation
performance owing to the significant enhancing effect of
Ru for dehydrogenation in the presence of NH,. The use
of RwW/CNT modified with 10 wt % Ni slightly increased
the yields of amino acids. A two-step chemical process
for the conversion of glucose to alanine with lactic acid as
the intermediate produced a satisfactory overall yield of
43%, which is comparable with that of well-developed
biotechnology. Moreover, the product purification from
ammonia solution by membrane distillation was
proposed, as shown in Fig. 2. This study offers a novel
and valuable strategy for the production of amino acids
from lignocellulosic ~ biomass-derived compounds.
Subsequently, Xie et al. [39] found that the use of Ru/N-
CNTs promoted amino acid production and inhibited the
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—
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Scheme 9 Two possible reaction pathways for amination of lactic acid to alanine. Reprinted with permission from Ref. [38],

copyright 2018, National Academy of Sciences.
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amide formation from a-hydroxyl acids under milder
conditions (180 °C vs 220 °C), where N-CNTs represents
nitrogen-doped CNTs. The nitrogen-containing species
facilitated the dispersion of Ru nanoparticles on N-CNTs
and strengthened the interaction between active Ru
nanoparticles and supports. Moreover, the nitrogen-
containing basic sites favored the adsorption of acidic
reactants, which also promoted the formation of amino
acids.

As an important a-hydroxyl acid, lactic acid has been
regarded as a promising monomer to produce biodegra-
dable plastic polylactic. In comparison with the natural
carbon-emitting degradation process, the selective
upcycling of waste polylactic plastic into value-added
products is highly desirable. Tian et al. [42] developed a
simple method for “one-pot” conversion of polylactic
acid over Ru/TiO, in ammonia solution at 140 °C,
affording a 77% yield of alanine. Unlike lactic acid as a
substrate [38—41], no additional hydrogen resource was
required. Both lactamide and ammonium lactate were key
intermediates for alanine formation, as shown in Scheme
10. The reuse of byproducts like lactamide and
ammonium lactate as a reactant after separating alanine
enhanced the overall selectivity of alanine to 94%.

In addition to traditional thermocatalysis, photocatal-
ysis has also been applied in amino acid synthesis from
a-hydroxyl acids [43,44]. For example, Song et al. [43]
reported the visible-light-driven amination of a-hydroxyl
acids at 50 °C using NH; as nitrogen resource. Among
the commercial and homemade CdS materials, the self-
prepared ultrathin CdS nanosheets exhibited the best
catalytic performance and good stability for the synthesis
of alanine from lactic acid with a productivity up to
10.5 mmol-g !*h™!. There are two main reasons for its
superior activity. First, it could enhance the formation of

OH OH
(6] (6]

LZH
NH, NH 0
OH H 3 NH; o
e s I o K
(0] 0 (6]

Alanine

Polylactlc acid

Scheme 10 Proposed reaction mechanism of polylactic acid
amination on a Ru/TiO, catalyst in ammonia solution. Reprinted
with permission from Ref. [42], copyright 2021, American
Chemical Society.
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oxygen-centered radicals, which further promotes the
dehydrogenation reaction to produce a pyruvic acid
intermediate. Consistent with previous results [38],
pyruvic acid generation is also identified as the rate-
determining step. CdS nanosheets showed the poorest H,
synthesis ability, which decreased the consumption of
electrons and facilitated the amination of pyruvic acid to
alanine, as shown in Scheme 11. In addition to alanine,
several amino acids have been produced by this process,
starting from corresponding o-hydroxyl acids, and the
one-pot conversion of glucose to alanine can be achieved
in productivity of 0.34 mmol-g~'-h™!. Another example is
that the use of Mo-doped In,O; yielded an 81%
conversion of lactic acid with 91% selectivity of alanine
under visible-light irradiation at 50 °C [44]. Despite the
photocatalysis potential in the production of amino acids,
successful cases are still limited.

2.4 Conversion of other nitrogen-free intermediates

Taking advantage of similar structures, the production of
amino acids from o-keto acids or a-hydroxyl acids
requires the amination of carbonyl or hydroxyl groups
with the retention of carboxyl groups. Starting from other
substrates that do not contain amino and carboxyl groups,
the synthesis of amino acids requires their simultaneous
synthesis, which is typically difficult. Herein, we
introduce two recently reported examples.

Glycerol is a low-cost and abundant biodiesel-derived
compound [45,46]. Wang et al. [22] developed one-pot
synthesis of alanine from glycerol via a lactic acid
intermediate over a single Ru;Ni,/MgO catalyst with a
yield of 43% in the presence of NaOH and H, in aqueous
ammonia. As shown in Scheme 12, multiple steps
including dehydrogenation, isomerization, amination,
dehydration, and hydrogenation have been integrated in a
single-step process with high yield of the desired product,
which provides a successful case for the design of
multifunctional catalysts (i.e., bimetallic catalyst)
biorefinery.

Furfural is a crucial platform compound produced from
biomass [47]. Song et al. [48] reported the single-step
conversion of furfural to pyrrole through tandem decar-
bonylation—amination reactions over Pd@S-1 combined
with H-beta zeolite with a yield of 75%, as shown in
Scheme 13. The carboxylation of pyrrole by K,CO,
generated pyrrole-2-carboxylic acid with 63% yield, and
the hydrogenation of pyrrole-2-carboxylic acid over Rh/C
produced DL-proline in 98% yield. Notably, the DL-

2¢7, 2HY )ﬁfOH

Alamne

Scheme 11 Reaction route for alanine formation from lactic acid. Reprinted with permission from Ref. [43], copyright 2020,

Springer.



824

OH
J\/ [Meta 1]
Glycerol Glyceraldehyde
,Hz
Metal
[Meta ]\ [Base]
2 0
\)J\ &
OH ™™ Metal] OH
INHy NH
Alanine 2-Iminopropanoic acid

_H2

/O—‘

Front. Chem. Sci. Eng. 2023, 17(7): 817-829

/’\/O ‘—)J\/O

Pyruvaldehyde

[Base]
2-Hydroxyacrylaldehyde

[Base] | + H,O

0 (0]
& \HJ\
OH [Metal] OH
0 OH

Pyruvic acid Lactic acid

Scheme 12 Proposed reaction network for glycerol conversion. Reprinted with permission from Ref. [22], copyright 2020, Wiley.

/
Oy om0 20
Furfural Pyrrole

cho@

DL-prohne

Scheme 13  Conversion of furfural to proline. Reprinted with permission from Ref. [48], copyright 2020, John Wiley and Sons Ltd.

proline isolated from reaction mixtures can be selectively
converted into D-proline by treatment with Escherichia
coli. By using both chemical and biologic methods,
furfural was successfully transformed into valuable D-
proline.

3 Conversion of nitrogen-containing
biomass to amino acids

3.1 Conversion of protein and derivatives

The hydrolysis of protein might produce a mixture of
oligopeptides and various amino acids. In strongly acidic
or alkaline medium, protein can be nearly completely
hydrolyzed, whereas some amino acids would be
degraded. The use of concentrated acid or base solution
(i.e., 6 mol-L™! HCI or 5 mol-L™' NaOH) might cause
numerous problems, such as the risk of acid/base leakage,
strong corrosiveness to reactor, and salt waste generation
upon neutralization. To date, protein hydrolysis has
usually been applied as an analytical method [49].

3.2 Conversion of chitin and its derivatives

Chitin containing about 7 wt % bio-fixed nitrogen is the
second most abundant biopolymer after cellulose. Owing
to the presence of organonitrogen, chitin is a promising
raw material for the production of nitrogen-containing
chemicals, such as amino sugars, amino alcohols, or
heterocyclic compounds [50]. The deacetylation of chitin
produces chitosan. N-acetyl glucosamine (NAG) and
glucosamine (GIcN) are the main products obtained by
the hydrolysis of chitin and chitosan, respectively. The
corresponding amino acids can be prepared by the direct

oxidation of amino sugars or their analogues. Moreover,
some precursors of small amino acids can be obtained via
the C—C cleavage of amino sugars, which provides the
possibility to produce other valuable amino acids in
addition to amino sugar acids. The study of the synthesis
of amino acids from chitin biomass has attracted
significant attention [51-53]. Here, we briefly introduced
the progress in this area.

3.2.1 Amino sugar acid as product

In early investigations in 1915, yellow mercuric oxide
was used as oxidizing agent to oxidize GlcN hydroch-
loride (GIcN-HCI) with a ca. 54% yield of glucosaminic
acid (GIcNA) [54]. Wolfrom and Cron [55] prepared
GIcNA from crab containing chitin with a yield of 62%
by the sequential HCl-catalyzed chitin hydrolysis, GlcN-
HCI purification, and GlcN-HCI oxidation by using half
of the oxidant amount compared to the previous method
[54]. Considering safety and oxidation efficiency, the use
of toxic oxidants (i.e., yellow mercuric oxide) must be
avoided as much as possible.

Several heterogeneous catalysts for green catalytic
oxidation of GlcN by O, have been developed. Both
catalysts (supports and supported components) and the
reaction medium significantly affect the catalytic
performance. Gu and Xia [56] reported a 70% isolated
yield of GIcNA from GIcN-HCI over Pd-Bi/C under mild
conditions (30 °C, 6 h), where nontoxic O, was used as
the oxidant. The addition of bases (i.e., NaOH and
KHCO;) was carried out to neutralize as-formed GIcNA.
Notably, Pd-Bi/C still exhibited good activity after eight
catalytic runs. Compared with the previous systems
[54,55], green oxidant, environment-friendly procedures
and reusable heterogeneous catalysts all indicate
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encouraging progresses. Ohmi et al. [57] demonstrated
that Au nanoparticles supported on basic supports (i.e.,
hydrotalcite and MgO) are promising catalysts for the
oxidation of GIcN-HCl and its derivatives, and an
87%—-99% yield of corresponding amino acids could be
obtained under mild conditions (2040 °C, 2-5 h, O,
flow). The use of basic supports significantly enhanced
the yield of amino acids and required no additional bases.
Furthermore, Au/MgO showed stable catalytic perfor-
mance for three successive runs, and they speculated the
strong interaction between Au nanoparticles and MgO
contributing to the stability of Au/MgO. Recently, Zheng
et al. [58] demonstrated that Auw/ZnO with average
particle size of 1.5-2.5 nm could effectively catalyze
oxidation of GIcN-HCIl to GIcNA in an open beaker
without any basic additive, producing a considerable
yield of 85% at 35 °C for 2 h. Both the surface oxygen
vacancies and smaller-sized Au nanoparticles on supports
contributed to the high catalytic activity. The introduction
of a strong base (i.e., NaOH) or oxidant (i.e., H,O,) could
further facilitate GIcNA formation.

Considering the complex process of GIcN preparation,
the direct conversion of chitosan to GIcNA is a more
attractive option, which avoids the purification step. Dai
et al. [59] investigated the feasibility for the synthesis of
GIcNA from chitosan by using heterogeneous catalysts.
As shown in Scheme 14, commercial Amberlyst-15
catalyzed the hydrolysis of chitosan sulfate with
monomer/H,SO, ratio of 1:1, and the GIcN yield was
58%. After the removal of Amberlyst-15, the GIcNA
yield of direct oxidation of hydrolysate over Au/MgO
was only 17%, which could be ascribed to the catalyst
poisoning caused by humin-like byproducts. Importantly,
the GIcNA yield could be improved to 63% after selective
removal of undesirable side-products by activated carbon.
A total GIcNA yield of 35% was obtained from chitosan
without purification of GIcN, but further improvement on
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catalysts and catalytic systems is required to increase the
yield of GIcNA.

3.2.2  Acetylglycine or glycine as product

Some small nitrogen-containing chemicals have been
obtained via C—C cleavage of amino sugars. For example,
2-acetamido-acetaldehyde, a product formed by the
retro-aldol of NAG, can be further converted into N-
acetylmonoethanolamine (NMEA) by hydrogenation. The
hydrolysis products of NMEA are ethanolamine and
acetic acid. These chitin-derived NMEA and ethanola-
mine are potential substrates for the synthesis of
corresponding amino acids by oxidation of hydroxyl
group to carboxyl group, as shown in Scheme 15.

Hu et al. [60] systematically investigated the
preparation of amino acids from amino alcohols over a
Ru-based complex in a strong alkaline medium with H,O
as the oxygen donor and H, as a useful product, as shown
in Scheme 16. Under optimized conditions, 99% glycine
and 95% acetylglycine were obtained from ethanolamine
and NMEA wusing 2 and 10 equivalent NaOH,
respectively. This study proposed a general and efficient
method for green oxidation of amino alcohols by H,O,
but the stability and recyclability of the catalysts must be
further investigated.

Techikawara et al. [61] prepared a 5 wt % Ru/C
catalyst to convert NAG toward acetylglycine via an
NMEA intermediate in the presence of NaHCO,. In the
first step for the synthesis of NMEA, the direct
hydrogenation of NAG to 2-acetamido-2-deoxysorbitol in
H, atmosphere was the main side-reaction, and the
formation of NMEA was inhibited. Only 29% yield of
NMEA (based on N) was achieved under optimized
conditions. In the second step, the highest yield of
acetylglycine by the oxidation of NMEA over Ru/C in O,
was 40%. Because the catalysts adsorbed undesirable

NH
HO—-. 2
H. ~— L
0. L O/ DR Hydrolysis HO&OWOH
N HO
T Amberlyst-15 NH,
m GIcN
'(m+n)HQSO4 Yield = 58%

Chitosan-H,SO,4 (m>n)

l

. Detoxication
Direct AC
oxidation AwMgO Y
Oxidation | Au/MgO
Y y
OH NH,
HO OH  Yield=17% Yield=63%
OH OH O (based on GIcN) (based on GIcN)
GIcNA

Scheme 14 Protocol for catalytic conversion of chitosan to GIcNA. Reprinted with permission from Ref. [59], copyright 2019,

American Chemical Society.
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products like humins, the catalytic activity gradually
decreased.

Gold is another metal that has been widely applied in
oxidation reactions [62]. Biella et al. [63] reported that
the conversion of ethanolamine over Au/Al,O; was 23%
under basic conditions at 70 °C, with low selectivity
toward glycine due to the formation of dimers. Under the
same conditions, Pd/C and Pt/C showed no activity for
ethanolamine conversion, probably because of the
irreversible adsorption of the amino group on supported
Pd and Pt catalysts [62]. Villa et al. [64] further
demonstrated that the facile coordination of amino groups
in ethanolamine with the catalyst active site leads to a
remarkable decrease of catalyst durability. To enhance
the synthesis of glycine, Meng et al. [65] added polyvinyl
alcohol (PVA) to fabricate a capping layer during catalyst
preparation. The formed PVA capping layer inhibited the
interaction of amino group with Au nanoparticles via
desirable hydrogen bonds between the amino group of
ethanolamine and hydroxyl group of PVA, which
significantly enhanced the oxidation of ethanolamine with
a 95% yield of glycine. The same group [66] found the
aggregation of Au nanoparticles as the main reason for
catalyst deactivation. As shown in Fig. 3, an oxidative
dissolution-reductive  deposition mechanism during
ethanolamine oxidation was proposed, which might help
us understand the deactivation mechanism of Au catalysts
in oxidation reactions.

4 Conclusions and outlooks

4.1 Conclusions

With the increasing demand for amino acids, the green

i A
Glycine, O,, D NaAu(NH,CH,COO), NH,CH,CHO

NaOH  Oxidative
dissolution )
Reductive | Au ~H,N._~
. OH
deposition
Glycine, Au
NaOH

Fig.3 Proposed oxidative dissolution-reductive deposition
mechanism of Au nanoparticles aggregation. Reprinted with
permission from Ref. [66], copyright 2020, Elsevier.

processes of chemo-catalytic conversion of renewable
biomass-derived feedstock to amino acids have attracted
increasing attention. Nitrogen-free lignocellulose and
triacylglycerol-derived chemicals, including a-keto acids,
o-hydroxyl acids, glycerol and their derivatives, are
potential substrates for the synthesis of amino acids via
the amination step. The dehydrogenation of a-hydroxyl
acids to a-keto acids is a rate-determining step, and better
results are usually obtained using o-keto acids under
milder conditions. In addition to inorganic nitrogen
resources (typically ammonia and NH,OH), some organic
compounds containing amino groups have also been used
to produce corresponding protected amino acids. Only a
few studies focused on the chirality of amino acids. In
recent years, some emerging technologies, such as
photocatalysis and electrocatalysis, have been applied to
the synthesis of amino acids.

The use of nitrogen-containing biomass resources can
avoid the addition of nitrogen resources. The hydrolysis
of protein produces a mixture of various amino acids.
However, due to serious environmental concerns caused
by strong acid/base, protein hydrolysis has not been
widely employed for amino acids production. Abundant
chitin is a promising substrate for amino acid synthesis
because of the existing (protected) amino group. Amino
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sugar acids can be produced by the oxidation of chitin-
derived amino sugars with satisfactory yields. Moreover,
some amino alcohols derived from C-C cleavage of
amino sugars have also been transformed into amino
acids by simple oxidation reactions. Au and Ru catalysts
showed good catalytic performance in some cases.

4.2 Outlooks

Although recent encouraging progress provides novel
options for amino acid production except for fermenta-
tion, significantly more effort is needed to push the
development in this area. Some possible research direc-
tions from our perspective are summarized as follows:
(1) Novel chemical routes for the synthesis of amino
acids must be developed, which will enrich the biore-
finery roadmap. (2) Although both the precise analysis of
side-products and deep insight of reaction mechanisms
are significant for the design of catalytic systems, they are
still lacking. Indeed, both experimental and theoretical
calculations will be helpful. (3) Considering that the
chirality has an evident effect on biological activity, the
development of efficient approaches for the highly
selective production of amino acids will be a challenging
but important research direction. (4) The activity of some
catalysts decreases drastically after catalytic reactions. In-
depth understanding of the deactivation mechanism can
guide the design of novel catalysts with higher stability.
(5) Although some amino acids have been successfully
obtained from biomass-based platform compounds, the
use of more accessible biomass is highly desirable,
despite numerous difficulties. With modern catalysis
technologies, some integrated systems might be effective
for the selective conversion of real biomass to fine
chemicals like amino acids. (6) To develop efficient
catalysts of non-precious metals to replace precious
metals is consistently a promising research topic, which
can reduce production costs and promote their industrial
applications.
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